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Abstract 

Changes in clouds over the four decades using PATMOS-x v6.0: radiative effects and 

controlling factors. 

by Jongjin Seo 

Satellite-Based global cloud data records are crucial for understanding the impact of regional 

weather changes and global climate variations due to the direct and indirect radiative forcing of 

clouds. In this dissertation, the PATMOS-x version 6.0 dataset, developed through a collaboration 

between NOAA National Center for Environmental Information and the University of Wisconsin-

Madison, was used to investigate long-term changes in maritime clouds between 60°S to 60°N. 

This dataset provides reliable climate records from NOAA’s POES and EUMETSAT’s MetOp 

satellite series. To account for orbital drift and varying local overpass times between satellites, 

monthly mean cloud fractions were calculated using a generalized additive model with backfitting 

and observational weighting. The results show a decreasing trend in mean fractional cloudiness of 

0.86% per decade, with the most significant decline occurring over the central equatorial Pacific 

Ocean at a rate of 4% per decade. In contrast, increasing trends in water clouds over the 

southeastern Pacific Ocean as well as midlatitude and in ice clouds over western Pacific Ocean 

were observed. These changes in cloud fractions are closely linked to variations in cloud top 

heights. Cloud top heights have increased over western Pacific Ocean at a rate of 0.4 km per decade 

due to increases in ice clouds while decreasing cloud top heights were observed in the southeastern 

Pacific Ocean and other marine stratocumulus dominated regions. Such variations in cloud fraction 

and cloud top heights significantly contribute to cloud radiative effects, influencing Earth’s 

radiation budget. Recent studies suggest that ongoing global warming is associated with a 

reduction in planetary albedo, primarily driven by a decline in global cloud fractions. However, 

some regions, such as the southeastern Pacific Ocean, have shown increasing albedo, enhancing 

solar radiation reflection and mitigating surface warming. This trend in albedo is attributed to a 

rise in low cloud cover, which plays a key role in increasing albedo. For a more comprehensive 

understanding of the physical processes driving cloud formation in this region, this study utilizes 

two satellite-based observational datasets (PATMOS-x v6.0 and CERES EBAF), both of which 

show an increase in total cloud fractions (0.97% per decade), particularly a rise in water clouds 
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(1.63% per decade). This increase in strongly correlated with a strengthening of cloud induced 

cooling effects (−1.91 Wm-2 per decade). By applying the ridge regression method and the CCFs 

framework to the ERA5 reanalysis dataset, the analysis indicates that these changes are primarily 

driven by an increase in estimated inversion strength at a rate of 0.30 K per decade, reflecting 

enhanced atmospheric stability. This stabilization is attributed to a decrease in surface temperature 

(−0.10 K per decade) and an increase in atmospheric temperature at 700 hPa (0.21 K per decade).  
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Figure 2.5: Timeseries of mean cloud fractions over the ocean from 60°S to 60°N from Pv6.0. a is total clouds. b is 
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Figure 2.7: Trends after excluding single satellite (a) and histogram of trends of randomly sampled monthly mean 
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Figure 2.8: Anomalies of surface temperature from ERA5 reanalysis data and brightness temperature at 11.0 µm over 
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Figure 2.9: Map of trends of cloud fractions for different cloud phases (Top is total clouds. Middle is water cloud 

fractions. Bottom is ice cloud fractions.). Left column is from combination of AVHRR/1 and AVHRR/2 from NOAA-
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Figure 2.10: Box plots of mean cloud fractions (a: total clouds, b: water clouds, and c: ice clouds). The colors represent 

the time span used to calculate mean value. Black curves are the mean for the entire period. d) is the monthly trend of 

mean cloud fractions (Black curves are total clouds. Red curves are water clouds. Blue curves are ice clouds.). ∙∙∙∙∙∙ 40 

Figure 2.11: Monthly trend of mean cloud fractions for different latitude ranges (Black curves are total clouds. Red 
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Figure 2.12: Zonal mean plot of cloud fractions (a) and zonal mean cloud fraction trend plot (b) from 1981 to 2023. 
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Figure 2.13: Map of mean cloud top properties (a: cloud top height [km] and d: cloud top temperature [K]) and trend 

(b: cloud top height and e: cloud top temperature) from 1981 to 2023. Statistical significance test shows area that are 
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not statistically significant are blanked and area surrounded by a red line is statistically significant (c: cloud top height 

and f: cloud top temperature). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 45 

Figure 2.14: Map of mean cloud top temperature from 2000 to 2023 (left column; K) and trend of cloud top 

temperature (middle column; K per decade) from 2000 to 2023. Then trends of cloud top temperature from Pv6.0 and 
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Figure 2.15: Timeseries of mean cloud top height (a) and temperature (b) over the ocean from 60°S to 60°N from 
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Figure 2.16: Box plot of monthly mean cloud top properties from Pv6.0 (a: cloud top height [km] and b: cloud top 

temperature [K]). The colors represent the time span used to calculate the mean values. Black curves are the mean for 

the entire period. The monthly mean trends (c) in cloud top height (black) and cloud top temperature (red) are from 
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Figure 2.17: Zonal mean plot (a) and zonal mean trend plot (b) of cloud top height (black) and temperature (red) from 
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Figure 2.18: Zonal plots of frequency of cloud top height from Pv6.0 and tropopause height from MERRA-2 data over 

the ocean from 1981 to 2023. Left column is mean frequency and right column is trend of frequency. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54 

Figure 2.19: a) Map of mean cloud optical depth from 1981 to 2023 from Pv6.0. b) trend of cloud optical depth from 

1981 to 2023 from Pv6.0. c) trend of cloud optical depth from 2000 to 2023 from Pv6.0. d) mean cloud optical depth 

from 2000 to 2023 from CERES EBAF. e) trend of cloud optical depth from 2000 to 2023 from CERES EBAF. ∙∙∙ 56 

Figure 3.1: Map of mean outgoing shortwave radiation (W∙m-2) for (a) clear sky, (b) all sky, and (c) CRE from 2000 
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Figure 3.2: Map of mean outgoing longwave radiation (W∙m-2) for (a) clear sky, (b) all sky, and (c) CRE from 2000 
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Figure 3.3: Map of mean outgoing net radiation (W∙m-2) for (a) clear sky, (b) all sky, and (c) CRE from 2000 to 2023 
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Figure 3.4: Map of trend in outgoing net radiation (W∙m-2) for (a) clear sky, (b) all sky, and (c) CRE from 2000 to 
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Figure 3.5: Map of trend in CRE (W∙m-2) for (a) shortwave, (b) longwave, and (c) net radiation from 2000 to 2023 
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Figure 3.6: Map of trend in (a) net CRE (Wm-2) from CERES EBAF dataset and cloud fraction for (a) total clouds, (b) 
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Figure 3.7: (a) timeseries plot of normalized cloud fraction (black) from Pv6.0 dataset and net CRE from CERES 

EBAF dataset and (b) scatter plots between anomaly of cloud fraction and net CRE for different cloud phases (top: 
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Fig. 3.8 Timeseries of mean cloud fraction over the study area for different cloud phases (total clouds: top, water 
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Fig. 3.9 Timeseries of CREs from CERES EBAF over the study area (shortwave: top, longwave: middle, and net: 
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Figure 4.2: Map of R-squared values of individual CCFs from 1981 to 2023 for ice clouds. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 76 

Figure 4.3: Map of R-squared values (top) and RMES (bottom) of cloud fraction between Pv6.0 dataset and multilinear 

regression model from 2011 to 2023 for different cloud phases (left: total clouds, middle: water clouds, and right: ice 
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Figure 4.4: Map of mean cloud fractions from Pv6.0 dataset (top) and multilinear regression model (bottom) from 

2011 to 2023 for different cloud phases (left: total clouds, middle: water clouds, and right: ice clouds). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 78 

Figure 4.5: Map of trend in cloud fractions from Pv6.0 dataset (top) and multilinear regression model (bottom) from 

2011 to 2023 for different cloud phases (left: total clouds, middle: water clouds, and right: ice clouds). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 79 

Figure 4.6: Map of mean cloud fractions from Pv6.0 dataset (top) and multilinear regression model (bottom) from 

1981 to 2023 for different cloud phases (left: total clouds, middle: water clouds, and right: ice clouds). ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 80 

Figure 4.7: Map of R-squared values (top) and RMES (bottom) of cloud fraction between Pv6.0 dataset and multilinear 
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Chapter 1 

Introduction 

Clouds are a key component in shaping both regional weather patterns as well as global climate 

change though their direct and indirect effects (Ramanathan et al., 1989; Harrison et al., 1990) and 

it has been highlighted in the Intergovernmental Panel on Climate Change (IPCC) Sixth 

Assessment Report (AR6) in 2023. Changes in clouds including phase, height, and thickness can 

impact components of the atmosphere and environment such as thermodynamic structure, 

precipitation, regional weather pattern, interaction with aerosol, and ozone formation (Monod and 

Carlier, 1999; Matsui et al., 2004; Li et al., 2011; Tao et al., 2012; Rosenfeld et al., 2014; Bony et 

al., 2016). Moreover, clouds play discernible roles in the Earth’s radiative balance through their 

radiative characteristics, called cloud radiative effects (CREs), which include heat exchange in the 

atmosphere between clouds and the surface by absorption and emission, in addition to regulating 

solar energy by reflecting and scattering, as shown in Figure 1.1 (Arking, 1991; Chen et al., 2000).  



 

 

2 

 
Figure 1.1: Figure 1 from Wild et al. (2013): “Schematic diagram of the global mean energy 

balance of the Earth. Numbers indicate best estimates for the magnitudes of the globally averaged 

energy balance components together with their uncertainty ranges, representing present day 

climate conditions at the beginning of the twenty first century. Units Wm-2” 

 

These attributes vary with cloud types due to their properties, as shown in Figure 1.2 (Chen et al., 

2000; Matus and L’Ecuyer, 2017; Harrop and Hartmann, 2016; Fermepin and Bony, 2014). For 

example, high-altitude thin ice clouds have a net warming effects, acting as a thermal blanket by 

trapping outgoing longwave radiation from the Earth’s surface (Hong et al., 2016), contributing to 

increases in surface and atmospheric temperature. Low-level thick clouds or water clouds such as 

maritime stratocumulus clouds play a dual role, trapping heat close to the Earth’s surface during 

nighttime while providing a cooling effect during daytime due to reflection of incoming solar 

radiation (Stephens 2005; Klein et al., 2018). Variations of cloud properties have been accelerated 
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through changes in atmospheric composition by human influences, which are large enough to 

exceed the bounds of natural variability (Karl and Trenberth, 2003). As a result, clouds have been 

recognized as crucial components in climate studies, making it necessary to improve our 

understanding of their characteristics, impacts, and changes.  

 

 
Figure 1.2: Figure 5 from Matus and L’Ecuyer (2017): “Annual average shortwave, longwave, and 

net cloud radiative effects at the top of atmosphere. Radiative effects are separated by water phase 

(liquid, ice, mixed, and multilayered) using R05 FLXHR-LIDAR, 2007 – 2010.”  
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Many climate studies have investigated characteristics of clouds and changes in their properties 

connecting to the atmospheric variables using climate models. For example, the rise of convective 

cloud tops and decreases of tropical anvil cloud area over the ocean shown in a warmed climate 

condition (Bony et al., 2016). The shallow and low maritime clouds such as stratocumulus and 

trade cumulus increase in subtropical oceans (Bony and Dufresne, 2005; Brient et al., 2016). This 

change is controlled by atmospheric stability showing a strong relationship between inversion 

strength at the top of the planetary boundary layer and cloudiness (Wood and Bretherton, 2006) 

and it is strengthened with global warming. Therefore, these results are important to solve 

scientific questions about changes in clouds and their roles under global warming scenarios.  

Simulating clouds and their radiative effects have been a long-standing challenge for climate 

modeling because of their inherent variability and the difficulties in fully understanding cloud 

formation and microphysical mechanisms (Hill et al., 2023). The uncertainty from clouds may 

arise because climate models employ a wide variety of parametrizations of the physical processes 

(Myers and Norris, 2016). Wright et al. (2020) examine differences among reanalysis high cloud 

products in tropics and found that all reanalysis datasets exhibit substantial biases in at least one 

radiative effect metric. Moreover, at the marine low cloud feedback, climate model results show 

important differences in regional pattern and magnitude compared satellite-based observations, as 

shown in Figure 1.3 (Myers et al. 2021), and it suggests importance of observation constraints to 

reduce uncertainty of climate sensitivity. Consequently, long-term cloud observations are 

necessary as complementary resources to assess the performance of climate models and validate 

our finding about clouds (Cesana and Chepfer, 2012; Suzuki et al., 2013; Li et al., 2018; Bender 

et al., 2019).  
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Figure 1.3: Figure 2 from Myers et al. (2021): “Marine low cloud feedback constrained by 

observations and simulated by global climate models. a-d, Marine low cloud feedback constrained 

by MODIS (a), CERES-FBCT (b), ISCCP (c) and PATMOS-x (d) satellite cloud observations. 

Stippling indicates statistical significance at the 90% confidence level based on observational 

uncertainty. e, f, Model-predicted marine low cloud feedback averaged over 7 CMIP5 models (e) 

and 11 CMIP6 models (f). Stippling indicates where 6 out of 7 and 10 out of 11 models of the 

respective ensembles agree on the sign of the feedback.” 

 

Observing clouds has been conducted using diverse methods and measurements. Warren et al. 

(1998) investigated global distributions and changes in cloud cover and cloud phase over the ocean 

using observations from ships. Also, ground-based observations such as radar, lidar, ceilometer, 

and camera have been actively used in many cloud studies (Souza-Echer et al., 2006; Illingworth 

et al., 2007; Kazantzidis et al., 2012). These observations have the advantage of accuracy and 

reliability but are limited in spatial coverage and continuity of observations. In particular, these 

observations do not fully cover the ocean where clouds are crucial components in atmospheric and 
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oceanic energy exchanges. Satellite-based remote sensing techniques facilitate global climate 

research the advantages of global coverage and stability through calibration and validation with 

other observations including in-situ, airborne, and ground-based remote sensing. Consequently, 

the National Oceanic and Atmospheric Administration (NOAA) initiated the Pathfinder 

Atmospheres-Extended (PATMOS-x) project to develop satellite-based climate data records 

(CDRs) of atmospheric cloud properties in collaboration with the Cooperative Institute for 

Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison (Stowe et al., 

2002; Jacobowitz et al., 2003; Heidinger et al., 2014; Foster et al., 2023).  

Since the 1980s, global observations of CREs have become possible with satellite measurements 

(Barkstrom, 1984; Loeb et al., 2018), and many studies have investigated their characteristics and 

variations based on cloud properties and regions using satellite-based observations (Cherian and 

Quaas, 2020; Ham et al., 2017; Hartmann and Berry, 2017). One of the long-term satellite-based 

CDRs for CREs is the Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled 

(CERES EBAF) Top-of-Atmosphere (TOA) Edition 4.0 dataset (Loeb et al., 2018), which has 

been used widely in CREs studies. Goessling et al. (2025) shows that recent global warming has 

been associated with an unusually large total TOA Earth’s Energy Imbalance (EEI) due to a 

decrease in shortwave reflection by clouds, as shown in Figure 1.4. Recent studies suggest that 

this reduction in planetary albedo is driven by a decline in global cloud fractions (Tselioudis et al. 

(2024), Weaver et al. (2024), Loeb et al., (2024)). Notably, Figure 1.4 shows that the observations 

diverge from the full counterfactuals based on a two-layer model, in which ASR anomalies are 

assumed to be zero from the beginning of December 2020 onward, which is especially associated 

with low-level clouds. However, there are specific regions where albedo has increased, helping to 

reflect more solar radiation and mitigate surface warming. One notable example is the southeastern 
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Pacific Ocean, which serves as a representative region where enhanced cloud cover has contributed 

to higher albedo (Karlsson et al., 2023).  

 

 
Figure 1.4: Figure 2 from Goessling et al. (2025): “Global mean anomalies of key parameters 

related to Earth’s temperature, energy budget, and clouds. Three-month running-mean anomalies 

relative to 2001-2022 of (A) surface (skin) temperature, (B) National Oceanic and Atmospheric 

Administration (NOAA) Ocean Nin"o 3.4 index, (C) Earth’s TOA total energy imbalance, (D) TOA 

net solar radiation, (E) total cloud cover fraction, and (F) low-cloud cover fraction. Red curves 

show satellite data from CERES, and black curves show reanalysis data from ERA5. Dashed 

curves in (D) show the TOA solar cloud radiative effect (or ASR) inferred from TCC anomalies. 

Cyan curves show the full counterfactuals based on a two-layer in which ASR anomalies are 

assumed to be zero from the beginning of December 2020 onward. El Nin"o periods with anomalies 

exceeding +1 K are highlighted with gray shading.” 
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The southeastern Pacific Ocean, off the South America, is characterized by a prevalence of 

maritime low clouds. Maritime low clouds are essential for regulating climate and energy balance, 

primarily through their high albedo, which enhances solar radiation reflection into space (Boucher 

et al., 2013; Hartmann et al., 1992). These cloud formations are commonly found over the ocean 

near the western coasts of continents, where atmospheric subsidence driven by subtropical high-

pressure systems interacts with cold sea surface temperatures (SSTs). This interaction helps sustain 

a shallow marine boundary layer (MBL), which is constrained by a temperature inversion (Norris 

and Klein, 2000; Wood and Bretherton, 2006). These meteorological conditions are collectively 

referred to as cloud-controlling factors (CCFs).  

Andersen et al. (2022) show a decrease in maritime low clouds due to the increase in SSTs over 

the northeast Pacific, which leads to a weakening of the cooling effects of the clouds. These 

changes are the opposite of those observed in maritime low clouds over the southeastern Pacific 

Ocean using the third edition of CM SAF cLoud Albedo, and surface Radiation dataset (CLARA-

A3; Karlsson et al., 2023), as shown in Figure 1.5. As a result, a better understanding of physical 

processes over this region is useful for improving the accuracy of climate model predictions 

associated with the global warming crisis that we are experiencing now. 
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Figure 1.5: Figure 9 from Karlsson et al. (2023): “Geographical distribution of overall trends in 

the observable CLARA-A3 CFC contributions of low-level clouds (% per decade) from 1979 to 

2020.”  

 

My dissertation investigates long-term changes in clouds over the ocean using Pv6.0 data over 

four decades since 1981. It examines their influences on radiative effects through the CERES 

EBAF dataset and explores the physical processes contributing to these changes, analyzed using 

CCFs from reanalysis data.  

The overarching questions of my Ph. D. work are: 

1) Have clouds changed significantly over the tropical and subtropical ocean since 1981? 

2) How have observed changes in clouds influenced cloud radiative effects? 

3) Can we identify physical processes contributing to regional changes in clouds? 

These research questions are further motivated and expanded upon in the subsequent chapters.  
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Chapter 2 

Have clouds changed significantly over the 

tropical and subtropical ocean since 1981? 
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2.1 Preface 

The purpose of this chapter is to introduce the methodology to make monthly mean cloud 

properties from the Pv6.0 level 2b dataset, which generates two global observations per day per 

satellite, to investigate long-term changes in cloud amounts and properties over the ocean from 

60°S to 60°N since 1981. To validate means and trends of cloud fractions from Pv6.0 and 

investigate similarities and differences with other long-term datasets, two satellite-based CDRs, 

CLARA-A3, and CERES EBAF, and two reanalysis datasets, the European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2020) and Modern-

Era Retrospective analysis for Research and Application Version 2 (MERRA-2) from National 

Aeronautics and Space Administration (NASA), are used. This work was published in Seo et al. 

(2025b). 

 

2.2 Data and Methodology 

2.2.1 PATMOS-x v6.0 

NOAA’s Polar Operational Environmental Satellites (POES) program began with the NASA’s 

launch of TIROS-1 in 1960, which is the world’s first weather satellite, and demonstrated the 

potential of satellite-based weather observation and leaded to the development of operational 

polar-orbiting systems. After that, NOAA-1 was launched in 1970 as the first operational weather 

satellite which has visible and infrared imaging systems for cloud observation as well as 

atmospheric temperature and moisture profile retrievals. Starting in 1980, NOAA transitioned to 

more a sophisticated platform, the NOAA POES system satellite, which spanned 14 satellites, from 
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NOAA-06 to NOAA-19, and onboarded the Advanced Very High Resolution Radiometer 

(AVHRR) and High-Resolution Infrared Radiation Sounder (HIRS).  

With the beginning of the POES system, long-term operational data collection of global satellite 

observations is conducted within the scope of the NOAA and NASA Pathfinder Program. The 

PATMOS project is a National Environmental Satellite, Data, and Information Service (NESDIS) 

component of the NOAA and NASA Pathfinder Program and had produced an extensive achieve 

of daily cloud cover, cloud properties, and surface variables for the period July 1981 to August 

1994 (Stowe et al., 1997, 1999, and 2002; Wetzel and Stowe, 1999). 

As a part of larger Data Stewardship Initiative within the NESDIS Office of Research and 

Applications (ORA), the PATMOS-x project was initiated to improve the AVHRR data and make 

it more useful for climate studies in collaboration with NOAA and CIMSS at the University of 

Wisconsin-Madison (Heidinger et al., 2005). The PATMOS-x project offers more products at a 

higher spatial resolution with well-calibrated radiometric observations compared to the original 

PATMOS dataset, in addition to improved cloud masking using the Clouds from AVHRR 

Extended (CLAVR-x) processing system. The PATMOS-x project focuses on producing a reliable 

satellite-based climate dataset of calibrated radiometric observations and atmospheric variables as 

well as surface products (Heidinger et al., 2014).  

The major components in the PATMOS-x dataset are cloud properties, including cloud mask and 

phase, cloud top assignments and optical properties. This dataset has been developed through many 

efforts in calibration and validation including radiometric consistency (Heidinger et al., 2002; 

Heidinger et al., 2003; Molling et al., 2010), inter-satellite validation (Heidinger et al., 2010; 

Heidinger et al., 2016), sensitivity to ancillary data (Foster et al., 2016), and correction to orbital 

drift of satellites (Foster and Heidinger, 2013). As a result, this dataset has been widely used in 
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many atmospheric research studies such as the investigation of global water and ice cloud 

distributions with climate models (Eliasson et al., 2011), microphysical cloud properties in marine 

boundary layer (Rausch et al., 2010), and the global changes in aerosol (Cermak et al., 2010; Zhao 

et al., 2013) as well as climate studies for regional and global applications (Foster et al., 2019; 

Ackerman et al., 2013; Nielsen et al., 2011; Stubenrauch et al., 2013; Sun et al., 2015; Wu et al., 

2014; Zhong et al., 2016; Norris et al., 2016).  

The latest version of PATMOS-x adopts a fusion methodology by using a combination of AVHRR 

and HIRS to overcome the limitations of the prior PATMOS-x version 5.3 (Foster et al., 2023). 

PATMOS-x version 5.3 provides information from five spectral channels from a single AVHRR 

that may vary dependent on the version of sensor. The Pv6.0 dataset with this new technique shows 

improvement in inter-satellite consistency, as shown in Figure 2.1, cloud detection, accuracy of 

cloud properties and more similarity with more modern sensors such as Visible Infrared Imaging 

Radiometer Suite (VIIRS). Consistency with VIIRS sensor is remarkable in satellite-based climate 

research in the future because VIIRS is the next generation of sensor for the NOAA POES project 

including Soumi National Polar-orbiting Partnership (Soumi NPP), NOAA-20, and NOAA-21. 

Intercomparison and investigation of consistency between AVHRR-based satellite (NOAA-18, 

NOAA-19, MetOp-A, and MetOp-B) and VIIRS-based satellite (NOAA-20) were conducted by 

Seo et al. (2025). 
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Figure 2.1: Figure 6 from Foster et al. (2023): “Seasonal drift-corrected global cloud fraction time 

series for (top) Pv5.3 and (bottom) Pv6.0. Individual satellites are color-coded. The thick black 

line is the all-satellite mean and the dashed black line represents the linear fit.” 

 

In this study, Pv6.0 level2b dataset is used to make monthly mean cloud properties to analyze the 

mean and trend in cloud properties. This dataset provides daily observations with a spatial 

resolution of 0.1° ×0.1° starting from 1981. 
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2.2.1.1 Enterprise Cloud Mask (ECM) algorithm  

Total, water, and ice cloud fractions are derived using cloud masking and phasing products from 

the NOAA/NESDIS Enterprise Cloud Mask (ECM) algorithm (Heidinger et al., 2012; Heidinger 

et al., 2020). This algorithm is based on a Na𝚤v̈e Bayesian method, trained using cloud layer and 

cloud phase products from NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO)/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 

updated ECM algorithm, integrated into Pv6.0, represents an evolution from Pv5.3 by introducing 

two- and three-dimensional classifiers comprised of radiometric observations (0.65, 0.86, 3.75, 

7.3, 11.0, and 13.3 𝜇m), ancillary data (temperature profile) and radiative transfer calculations to 

produce clear, water, and ice cloud probabilities. A 4-level cloud mask is determined by cloud 

probability, categorized as confidently clear, probably clear, probably cloudy, and confidently 

cloudy.  

One of the products from ECM is the cloud type classification, which consists of 10 categories: 

clear, probably clear, fog, water, mixed, supercooled water, opaque ice, cirrus, overlapping, 

overshooting. Cloud type is classified using the 4-level cloud mask, water, and ice probabilities, 

cloud mask uncertainty, radiometric observations such as reflectivity and brightness temperature, 

cloud top temperature, and other ancillary information. Therefore, cloud type is highly related to 

the characteristics of clouds and their radiative effects. The cloud phase/type identification is also 

important to a-prior values for other cloud property retrievals. In this study, the cloud type is used 

to determine cloud phase, which consists of 4 categories: clear, total, water, and ice. For example, 

clear and probably clear are categorized as clear and all other cloud types are cloudy. Fog, water, 

mixed, and supercooled water are grouped as the water cloud phase, while opaque ice, cirrus, 
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overlapping, and overshooting are classified as ice cloud phase. Total clouds are combination of 

water and ice. Total (water and ice) cloud fractions are calculated from the ratio of all (water and 

ice) cloudy counts to all counts within 1° ×1° grid box for a specific hour and month. After that, 

monthly mean total (water and ice) cloud fractions are computed with diurnal correction using the 

backfitting model and observational weighting.  

 

2.2.1.2 GOES-R Algorithm Working Group (AWG) Cloud Height Algorithm 

(ACHA) 

For the cloud top assignments including cloud top height and temperature, the GOES-R Algorithm 

Working Group (AWG) cloud height algorithm (ACHA) is used. This algorithm is based on a one-

dimensional (1D) VAR optimal estimation method (Heidinger and Pavolonis, 2009). Correct cloud 

phase determination is critical to the accuracy of cloud top assignment, because it is required to 

determine which a priori information is used for the forward model. The ACHA applied in Pv6.0 

uses the 11.0 and 13.3 𝜇m channels to estimate cloud top temperature, cloud emissivity, and a 

cloud microphysical index. Subsequently, cloud top height and pressure are derived from the 

estimated cloud top temperature and numerical weather prediction profiles at the pixel level. 

NASA’s MODIS and CALIPSO/CALIOP products were used to validate the ACHA products 

(Young and Vaughan, 2009). In this study, cloud top temperature and height are analyzed using 

map plots, and monthly mean plots as well as zonal mean plots.  
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2.2.1.3 Daytime Cloud Optical and Microphysical Properties (DCOMP) algorithm 

The retrieval of cloud optical properties is carried out using the Daytime Cloud Optical and 

Microphysical Properties (DCOMP) algorithm (Walter and Heidinger, 2012). This method uses a 

standard bispectral approach to estimates optical depth and effective radius, relying on radiometric 

observations from one visible and one near-infrared channel. Because POES satellites have 

different channel capabilities for daytime observations, most of NOAA satellites use the AVHRR 

3.75-µm DCOMP mode, which combines the 0.65 and 3.75 µm, while NOAA-16, NOAA-17, and 

MetOp satellites use the AVHRR 1.6 µm instead of the 3.75 µm. This distinction in DCOMP 

modes leads to significant differences, particularly in cloud effective radius estimates (Foster et 

al., 2023). For this study, cloud optical depth (COD) is examined solely to characterize cloud 

thickness. 

 

2.2.1.4 Orbital drifts and diurnal correction 

In this study, each satellite’s monthly mean values are computed from twice-daily gridded 

observations (Pv6.0 level 2b). Figure 2.2 shows the equatorial local overpass times of ascending 

and descending nodes for all satellites used in Pv6.0. After launch, the orbit of most satellite drifts, 

which changes the local overpass time (Ignatov et al., 2004). This orbital drift must be considered 

when calculating daily and monthly mean values (Foster and Heidinger, 2013). Also note that there 

are no late-morning observations before 2002 (Weaver et al., 2024). As a result, considering orbital 

drifts and different local overpass times between satellites is necessary to make stable long-term 

records from polar orbiting satellite observations (Bojanowski and Musial, 2020). 
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Figure 2.2: a) Equatorial local overpass time of the NOAA and MetOp POES series from the Pv6.0 

level 2b dataset spanning from 1981 to 2023. b) difference between anomaly of mean total cloud 

fraction without/with diurnal correction. c) hourly global mean cloud fraction without diurnal 

correction (black line is a GEO-Ring composite). d) hourly global mean cloud fraction with diurnal 

correction. 
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To correct for orbital drifts and different overpass times, we first diagnose the diurnal cycle for 

each 1° ×1° grid box and month of the year. The basic idea about diurnal correction is that almost 

all hours of the day are observed at some point in the record at shown in Figure 1a. A generalized 

additive model (GAM) is used to isolate the diurnal cycle, even in the presence of interannual 

variability and long-term trends. Using the diurnal parameters from the GAM and actual 

observations, monthly daily mean values are calculated as follows: 
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where j and 𝑦',- are the local time index (0-23 hours) and averaged cloud property values observed 

from satellite on a given hour. 𝑦&'!($ is the modeled diurnal cycle from the GAM. 𝐶𝑜𝑒𝑓),+ is the 

autocorrelation coefficient of the cloud product between model hour (i) and observation hour (j) 

at a specific month and location. The autocorrelation coefficient is derived empirically from all 

observations since 1981. This method can be viewed as a kernel smoother that combines the 

climatological diurnal cycle and observations to impute a full day of observations before averaging 

and the idea about observational weighing using model output and actual observation is suggested 

in Foster et al. (2013). This method is separately applied to cloud fractions and cloud top properties 

depending on the cloud phases (total, water, and ice). 

Figure 2.2b shows differences in total cloud fraction over the ocean from 60°S to 60°N without 

and with diurnal correction using the GAM and observational weighting from 1981 to 2023. 
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Morning-orbit (afternoon-orbit) satellites tend to have lower (higher) cloud fractions without 

diurnal corrections, and the GAM and observations weighting reduce these differences. Notably, 

for NOAA-19, the differences align with changes in equatorial local overpass time (Figure 1a). 

Figure 2.2c and 2.2d show the global hourly mean cloud fraction from Pv6.0 without diurnal 

correction and with diurnal correction. We created a GEO-Ring composite to compare the diurnal 

cycle of global mean cloud fraction (black line in Figure 2.2c and 2.2d). Without diurnal 

correction, the variations between inter-satellites are large due to the different coverage of local 

overpass time depending on orbits and orbital drifting. With diurnal correction, all polar orbiting 

satellites from Pv6.0 show a similar diurnal cycle to the GEO-Ring composite except between the 

hours from 10 to 14. These figures show that the GAM and observational weighting effectively 

reduce inter-satellite variability caused by different local overpass times and orbital drifts.  

 

2.2.2 CERES EBAF 

The primary goals of the CERES EBAF TOA products are to produce integrated global CDRs for 

detecting decadal changes in the radiation budget from the surface to TOA observed by CERES 

instruments onboard Terra, Aqua, Suomi NPP and NOAA-20 satellites in addition to the cloud 

and aerosol properties since 2000 (Loeb et al., 2018). This dataset has been used in many climate 

studies to investigate changes in cloud radiative effects and feedback (Ceppi et al., 2021; Yuan et 

al., 2023; Ghausi et al., 2023; Goessling et al., 2025) and climate sensitivity (Sherwood et al., 2020; 

Loeb et al., 2021) as well as validate results with climate models (Dunne et al., 2020; Döscher et 

al., 2021; Boucher et al., 2020; Smith et al., 2020). In this study, CERES EBAF Edition 4.2 (Ed4.2) 

level 3b dataset is used, which is the monthly mean values with 1° ×1° spatial resolution. 
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2.2.3 CLARA-A3 

The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) provides long-

term cloud, albedo, and surface radiation datasets since 1979 through the CLARA-A3 (Karlsson 

et al., 2023). This dataset is also based on the AVHRR-based satellites. The CLARA-A3 dataset 

provides additional information compared to CLARA-2, including higher spatial resolution 

(0.25° ×0.25°), and shortwave and longwave radiation at surface and TOA, with improvements in 

retrieval algorithms. With these advancements, this dataset has been used in many climate studies 

as satellite-based CDRs (Tselioudis et al., 2024; Myers et al., 2024; Riihelä et al., 2024; Devasthale 

et al., 2023). In this dissertation, the monthly mean of the fractional cloud cover product from 

CLARA-A3 is used for comparison with the Pv6.0 dataset in chapter 2 and net radiation products 

are used in chapter 3.  

 

2.2.4 ERA5 reanalysis dataset 

ERA5 is the fifth generation of atmosphere reanalysis dataset produced by ECMWF (Hersbach et 

al., 2020). By optimally combing observations and models, this dataset provides a continuous and 

consistent record of atmospheric variables, ensuring integrity and coherence in representing key 

Earth system cycles. With a substantial increase in both the horizontal and vertical resolution, 

along with a decade of advancements in model development and data assimilation, ERA5 offers 

an expanded set of output parameters, hourly high-resolution output throughout, and 3-hourly 

uncertainty information. As a result, ERA5 have been used in a wide array of applications in 

atmospheric sciences including improving medium-range global weather forecasting (Lam et al., 

2023; Bi et al., 2023) and studying global climate change (Jones et al., 2023; Seneviratne et al., 
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2021). In this study, we use monthly mean cloud fractions in chapter 2 and atmospheric variables 

in chapter 4 at a spatial resolution of 0.25° ×0.25°. 

 

2.2.5 MERRA-2 reanalysis dataset 

The MERRA-2 is the latest atmospheric reanalysis of the modern satellite era produced by 

NASA’s Global Modeling and Assimilation Office (GMAO) (Gelaro et al., 2017). MERRA-2 

assimilates observation types not available to its predecessor, MERRA, and includes updates to 

the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable 

ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of 

MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth 

system analysis (IESA) currently under development at GMAO. Among the advances in MERRA-

2 relevant to IESA are the assimilation of aerosol observations, several improvements to the 

representation of the stratosphere including ozone, and improved representations of cryosphere 

processes. Other improvements in the quality of MERRA-2 compared with MERRA include the 

reduction of some spurious trends and jumps related to changes in the observing system and 

reduced biases and imbalances in aspects of the water cycle. Consequently, MERRA-2 has been 

used in many atmospheric studies including investigating global precipitations (Maclennan et al., 

2022; Yang et al, 2023; Andrade et al., 2024), analyzing ozone variations (Stauffer et al., 2019; 

Ziemke et al., 2019; Orbe et al., 2020), and studying aerosols interacting with clouds (Zhu et al., 

2022; Bender et al., 2019). In this dissertation, we use monthly mean cloud fractions in chapter 2 

at a spatial resolution of 0.5° ×0.625°. 
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2.3 Cloud Fraction 

Cloud fraction is essential for calculating the net TOA flux of radiation simulated by a model. It 

can be expressed as the sum of two components (Taylor et al., 2007): 

 

𝑅 = (1 − 𝑐)𝑅0$1 + 𝑐𝑅'0 

 

where c is the fraction of the region covered by clouds, 𝑅0$1 is the spatially averaged flux obtained 

by removing all clouds from the region and performing a radiative transfer calculation, and 𝑅'0 is 

the flux averaged over only the overcast portion of the region. Moreover, CREs can be determined 

using following equation: 

 

𝐶𝑅𝐸 = 	𝑅0$1 − 𝑅 = 𝑐(𝑅0$1 + 𝑅'0) 

 

Differences in cloud fraction can contribute to variations in the net TOA flux of radiation and 

influence the uncertainty of radiative effects in climate model simulations. Therefore, obtaining 

accurate cloud fraction estimates and understanding their changes are crucial for climate studies.  
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2.3.1 Map of mean cloud fractions 

Figure 2.3 provides a map of mean and trend for total, water, and ice cloud fractions over the last 

four decades from Pv6.0. The trend is calculated using a linear fit between time and deseasonalized 

anomaly values. In Figure 2.3a, cloud fractions are usually high (>80%) over the ocean including 

Inter Tropical Convergence Zone (ITCZ), marine stratocumulus clouds regimes, and midlatitudes. 

The large-scale subsidence areas near the 20° latitude show relatively low cloud fractions (<40%). 

The trends in total cloud fractions are shown in Figure 2.3b. Figure 2.3c shows statistical 

significance tests for trends. Areas surrounded by a red line are statistically significant, while areas 

that are not statistically significant are left blank. For the statistical significance test of trends, the 

method described in Weatherhead et al. (1998) is used, applying a 95% confidence level. This 

method is useful for detecting long-term linear trends of atmospheric variables, considering 

various factors such as the time span of data, the magnitude of variability, and the presence of 

autocorrelation in the data.  

Decreasing trends in total cloud fractions are dominant from 60°S to 60°N, which is highly related 

to a zonal contraction and a strengthening of the ITCZ regions and expansion of the subtropical 

dry zone (Tselioudis et al., 2024). The Central Pacific Ocean especially shows the remarkable 

decreasing trend of approximately 3% to 4% per decade. The western Pacific Ocean and the west 

coast of South America show slightly increasing trends, even though most of these are not 

statistically significant. The magnitude of trend is smaller than the confidence level because of 

high cloud fractions over these regions, higher than 80%, and high seasonality and variability due 

to changes in global circulation patterns such as the El Ni𝑛"o-Southern Oscillation (ENSO). 
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Figure 2.3: Map of mean cloud fractions (left column), trend of cloud fractions (middle column; % 

per decade), and statistical significance test (right column: areas thar are not statistically significant 

are blanked and are surrounded by a red line is statistically significant) from Pv6.0. 

 

The maps of the mean and trend for water clouds are shown in Figure 2.2d and 2.2e in addition to 

the statistically significant tests in Figure 2.2f. The regions where maritime stratocumulus clouds 

are dominant, including the west coast of North America, South America, and Africa, show high 

fractions of water clouds (>60%). With these areas, increasing trends are dominant over the west 

coast of South America and the southern mid-latitude regions, with a maximum of 3.0% per 

decade. This is related to increases of shallow and maritime low clouds such as stratocumulus and 

trade cumulus, over subtropical ocean due to the increases of atmospheric stability associated with 

global warming (Bony and Dufresne, 2005; Brient et al, 2016). Water clouds are less frequent 
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(<20%) over western Pacific Ocean and the ITCZ due to the dominance of high and thick clouds 

caused by strong convection. Decreasing trends over the ITCZ and northern mid-latitudes are 

about 1.0% to 2.0% per decade. This might be caused by ITCZ intensification (Wodzicki and 

Rapp, 2016) and its migration and expansion to the Northern Hemisphere (Schneider et al., 2014).  

Mean and trend of ice clouds as well as statistical significance test are shown in Figure 2.2g-i. 

Cloud area fractions of ice cloud are high over western Pacific Ocean, the ITCZ (>70%), and 

increasing trends are dominant even though some areas are not statistically significant due to the 

high seasonality and variability. Ice cloud fractions are also high over both the northern and 

southern midlatitude ocean (>60%), although a decreasing trends in ice clouds are observed over 

these areas. This is related to transitions from ice to water cloud particles as temperature warms 

which can result in both larger cloud amounts and larger cloud optical depths through the ’cloud 

phase feedback’ (Tan and Storelvmo, 2016; Frey and Kay, 2017). The significant decreases in 

cloud fraction over the central Pacific Ocean appear to be attributable to ice clouds, which make 

up most of the clouds in that region.  

The changes in albedo, as shown in Weaver et al., (2024), are comparable to the observed changes 

in cloud fractions, highlighting significant regional patterns. For example, albedo increases have 

been observed along the west coast of South America and over southeastern Asia. In contrast, 

decreases in albedo are evident in regions such as the central Pacific Ocean and midlatitudes, which 

could be associated with reduced cloud fractions. Understanding these dynamics helps in assessing 

the impacts of cloud changes on global climate patterns and energy fluxes because clouds play a 

key role in regulating the Earth’s energy balance (Ramanathan et al., 1989; Harrison et al., 1990). 
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To investigate the similarity and difference of trends in cloud fractions with other long-term 

dataset, Figure 2.4 shows the trend of cloud fractions over the ocean from 1981 to 2023 and from 

2000 to 2023. Three satellite-based CDRs, Pv6.0, CLARA-A3, and CERES EBAF, and two 

reanalysis datasets, ERA5 and MERRA-2, are compared. First, Pv6.0 and CLARA-A3 looks 

similar in the trend of total cloud fraction from 1981 to 2023, as introduced in previous research 

(Karlsson et al., 2023; Devasthale and Karlsson, 2023). These show substantial decreasing trends 

in the central Pacific Ocean, as well as in the subtropical and midlatitude ocean, while modest 

increasing trends are observed over western Pacific Ocean and the west coast of South America. 
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Figure 2.4: Map of trend of cloud fractions (% per decade) from 1981 to 2023 (left column) and 

from 2000 to 2023 (right column). a) and b) are from Pv6.0. c) and d) are from CLARA-A3. e) is 

from CERES EBAF. f) and g) are from ERA5. h) and i) are from MERRA-2. 
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Reanalysis datasets show different trends in total clouds compared to satellite-based CDRs from 

1981 to 2023, and the results also differ among the reanalysis dataset themselves. For example, 

MERRA-2 and ERA-5 show dominance of increasing trends, including over the west coast of 

North America and Atlantic Ocean near the Equator. Especially, MERRA-2 shows significant 

increasing trends in the midlatitude ocean even though ERA-5 shows decreasing trend or weak 

increasing trend. The high variations between reanalysis datasets and models due to different 

parametrization and cloud feedback mechanism are investigated in previous research (Loveridge 

and Davies, 2019; Vignesh et al., 2020; Myers et al., 2021). However, decreasing trends in the 

central Pacific Ocean, western Pacific Ocean and the west coast of South America are observed 

for both reanalysis datasets even though the size of area and magnitude differ from observations.  

Even though CLARA-A3 and Pv6.0 apply different algorithms for clouds, they use the same 

platforms and sensors to obtain cloud properties. The CERES EBAF dataset, based on the MODIS 

sensor, provides an independent dataset from a more modern sensor with no orbital drifts, while it 

is only available since 2000 (Figure 2.4e). The CERES EBAF shows comparable trends in total 

cloud fractions as Pv6.0 and CLARA-A3 from 2000 to 2023. The decreasing trends over the 

central Pacific Ocean as well as northern subtropical and midlatitude oceans and increasing trends 

on the west coast of South America are also dominant during this period for all three satellite-

based CDRs. However, differences between satellite-based CDRs over the Southern Ocean are 

observed. Cloud fractions increase in CLARA-A3 and decrease in Pv6.0, with CERES falling 

between them. Differences between observations over the midlatitude Southern Ocean are also 

shown in Tselioudis et al. (2024) and this is also noticeable between climate models 

(Schuddeboom and McDonald, 2021). This would benefit from further investigation. 
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The trends in total cloud fractions from ERA5 from 2000 to 2023 show similar patterns to those 

from satellite-based CDRs, including decreasing trends over the west central Pacific Ocean and 

increasing trends on the west coast of South America and the east central Pacific Ocean. However, 

ERA5 shows opposite trends over the west coast of North America compared to the observations. 

In MERRA-2, increases of cloud fraction are dominant between 2000 to 2023, and it is especially 

noticeable over the midlatitude Southern Ocean. Overall, satellite-based CDRs exhibit similar 

patterns in trends but differ from reanalysis dataset. However, ERA5 show similar trends to 

satellite-based observations from 2000 to 2023. The high similarities between satellite-based 

CDRs have also been shown in other previous studies in terms of timeseries and zonal mean plot 

(Foster et al., 2023; Karlsson et al., 2023). The largest variations between datasets are observed in 

the midlatitude Southern Ocean. These differences may reflect challenges in accurately capturing 

cloud properties in this region, where dynamic weather patterns and low solar angles complicate 

observations and data assimilation, as well as different parameterizations of clouds and cloud 

feedback mechanisms in weather prediction models and climate modeling. 

 

2.3.2 Timeseries of mean cloud fractions 

Figure 2.5 shows timeseries of mean total, water, and ice cloud fractions from 60°S to 60°N over 

the ocean from 1981 to 2023. The fractions of total clouds range from 72.0% to 79.3% (75.3 ± 

1.5%) and show strong seasonality, being highest in December and lowest in March. It has a 

decreasing trend of 0.91% per decade over the last four decades, even though the mean cloud 

fractions appear flat after the early 2000s. The cloud fractions of the water phase range from 28.4% 

to 34.2% (31.2 ± 1.2%). It is highest in July and August, and lowest in February and March. The 
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trend in water cloud fraction is small compared to total and ice cloud fractions, with an increase of 

0.03% per decade. The ice cloud fractions vary from 40.5% to 49.4% (44.1 ± 1.7%). Ice cloud 

fractions are high in December and January, and low in August. It shows a significant decreasing 

trend of 0.91% per decade. Therefore, the decreasing trend in cloud fraction is mainly driven by 

decreases in ice clouds. To investigate seasonal and latitudinal changes in cloud fractions, we will 

analyze monthly and zonal mean plots.  
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Figure 2.5: Timeseries of mean cloud fractions over the ocean from 60°S to 60°N from Pv6.0. a is 

total clouds. b is water clouds. c is ice clouds. Colors represent POES satellites.  

 

Figure 2.6 presents the timeseries of mean cloud fractions over the ocean from 60°S to 60°N since 

1981. As shown in Figure 2.4, ERA5 and MERRA-2 exhibit lower mean cloud fractions compared 

to satellite-based CDRs. The differences between satellite-based CDRs and reanalysis datasets are 

about 5% to 15%. The trends in Pv6.0 and CLARA-A3 are both negative, at −0.85% per decade 

and −0.91% per decade from 1981 to 2023, respectively. However, ERA5 and MERRA-2 show 
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increases in cloud fraction, at 0.31% per decade and 0.70% per decade. Since 2000, the satellites-

based CDRs have continued to show decreasing trends in cloud fraction although the magnitudes 

are reduced. CERES and ERA5 also exhibit decreases in cloud fraction at −0.21% per decade and 

−0.12% per decade, respectively. MERRA-2 still shows an increase in cloud fraction of +0.85% 

per decade. Therefore, the decreasing trends in cloud fraction over the ocean are noticeable 

although the magnitudes differ slightly between satellite-based datasets. 

 

 
Figure 2.6: Timeseries of mean total cloud fractions over the ocean from 60°S to 60°N from various 

datasets (Black curves are Pv6.0. Red curves are CLARA-A3. Green curves are CERES EBAF. 

Blue curves are ERA5. Magenta curves are MERRA-2.) and their trends in total cloud fractions.  

 

2.3.2.1. Statistical Experiment 

Figure 2.7 shows two experiments to investigate consistency of trend in cloud fractions. Figure 

2.7a provides the variations of trends when a single satellite is excluded from the timeseries, in 

order to assess the impact of that satellite to the long-term trend. The results are well-grouped, 

except for NOAA-07 in the case of water and ice clouds, although this difference is not significant. 
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The trends in total clouds in the experiment are similar to the trend in the overall timeseries, 

showing −0.86 ± 0.02% per decade (0.08 ± 0.03% per decade for water clouds and −0.92 ± 

0.04% per decade for ice clouds). 

 

 
Figure 2.7: Trends after excluding single satellite (a) and histogram of trends of randomly sampled 

monthly mean cloud fractions [(b): Black curves are total cloud fractions. Red curves are water 

cloud fractions. Blue curves are ice cloud fractions.]. 

 

The second experiment calculates the trend using randomly sampled monthly mean cloud fractions 

to investigate the impacts of different time spans to the long-term trend, especially sensitivity of 

large-scale modes of variability such as ENSO. The 10% of all monthly mean cloud fractions are 

randomly selected, and the trend is calculated, repeating this process 3,000 times. Figure 2.7b 

shows the histogram of the trends from these 3,000 iterations. The histogram appears to follow a 

normal distribution, and the mean of distribution is similar to the overall timeseries trend, showing 

−0.86 ± 0.12% per decade for total cloud (0.08 ± 0.14% per decade for water clouds and −0.91 

± 0.15% per decade for ice clouds). 

Radiometric consistency between satellites also can impact this analysis of long-term trends. In 

particular, the flatness of the timeseries of total cloud in Figure 2.5a seems to start with the 

beginning of the AVHRR/3 era. Moreover, spectral response functions are slightly different 



 

 

35 

between AVHRR instruments (Foster et al., 2023). To investigate radiometric consistency, an 

anomaly of brightness temperature at 11.0 𝜇m, which is the most important infrared channel for 

cloud mask and cloud top assignments, is compared with anomaly of surface temperature from the 

ERA5 in Figure 2.8. The study area is from 10°S to 0°S and 144°W to 120°W, where the clear 

fraction is higher than the other ocean area so that it is likely to have more clear observations. The 

brightness temperature and surface temperature anomalies align well, except for two spikes in 

surface temperature observed in 1983 and 1998, where it rises by up to 2 K. This coincident with 

two very strong El ni𝑛" o events. As a result, there is no significant difference in brightness 

temperature at 11.0 𝜇m between AVHRR versions over the last four decades.  

 

 
Figure 2.8: Anomalies of surface temperature from ERA5 reanalysis data and brightness 

temperature at 11.0 µm over clear sky from Pv6.0 level 2b dataset (Black curves are anomaly of 

monthly mean brightness temperatures from satellite average. Red curves are anomaly of monthly 

mean surface temperature from ERA5.). The area for calculating mean values ranges from 10°S 

to 0°S and 144°W to 120°W. 

 

 



 

 

36 

Figure 2.9 is last experiment for flatness of the timeseries, showing global maps of total, water, 

and ice cloud fraction trends derived from three groups of satellites. The left column represents 

cloud fraction trends from all satellites. Maps in the middle column are trends from AVHRR/1 and 

2 which are onboard satellites from NOAA-06 to NOAA-14 (from 1981 to 2002). Trends in the 

right column are only from AVHRR/3 satellites, including NOAA-15 to NOAA-19 and MetOp 

satellites (1998 onward). For total cloud, significant decreases over the central Pacific Ocean and 

increases over the west coast of South America are seen in both AVHRR/1 and 2 (Figure 2.9b) 

and AVHRR/3 (Figure 2.9c). Global decreasing trends are more dominant in the AVHRR/3 era 

while AVHRR/1 and 2 shows an increase of cloud fractions over western Pacific Ocean and parts 

of middle latitude regions. The magnitudes of trend from AVHRR/1 and 2 are larger than 

AVHRR/3.  
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Figure 2.9: Map of trends of cloud fractions for different cloud phases (Top is total clouds. Middle 

is water cloud fractions. Bottom is ice cloud fractions.). Left column is from combination of 

AVHRR/1 and AVHRR/2 from NOAA-06 to NOAA-14. Middle column is from AVHRR/3 from 

NOAA-15 to NOAA-19 in addition to MetOp satellites. Right column is from all satellites. 

 

For water clouds and ice clouds, most of ocean areas shows similar the patterns between AVHRR/1 

and 2 and AVHRR/3 except for west coast of North America and Southern Indian Ocean although 

the magnitudes from AVHRR/1 and 2 are larger than AVHRR/3. Increases in water clouds are 

dominant for both AVHRR/1 and 2 (Figure 2.9e) and AVHRR/3 (Figure 2.9f) except for Arabian 

sea and west coast of North America at AVHRR/3. Magnitude of AVHRR/1 and 2 is higher than 

AVHRR/3 and it can contribute to the increase of total cloud fractions over middle latitude. Last, 

ice cloud trends are more similar except for over the western Pacific Ocean and the ITCZ regions. 
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AVHRR1/ and 2 show an increase of ice clouds over western Pacific Ocean while AVHRR/3 show 

an increasing trend in the Eastern Pacific Ocean. It can be caused by ENSO status. As a result, 

over some areas, spatial patterns of trends are similar between AVHRR/1 and 2 and AVHRR/3 

while there is a significant difference in spatial pattern and magnitude in cloud fraction trends 

between from 1981 to 2002 (AVHRR/ 1 and 2) and from 1998 to 2023 (AVHRR/3). This 

highlights the importance of further investigating causes of these issues. 

 

2.3.3 Monthly mean cloud fractions 

Figure 2.10 shows box plots of the monthly mean of total, water, and ice cloud fractions over the 

ocean from 60°S to 60°N and monthly mean trends for the last four decades. Total cloud fractions 

range from 72% in March to 80% in December (Figure 2.10a). The 5-years mean of total cloud 

fractions show a consistent decreasing trend for all months. Specifically, the mean value from 2021 

to 2023 shows the lowest across most months. The water clouds show a strong seasonality from 

29% to 34%, with lower values in the early months of the year and higher values around June to 

August (Figure 2.10b). The variations of water clouds are the smallest and the 5-years mean 

tendency is also not noticeable compared to total and ice clouds. The ice cloud fraction ranges 

from 41% around mid-year (June to August) to 50% at the beginning and end of the year (Figure 

2.10c), which is the opposite shape of water clouds seasonality. The 5-year average shows a strong 

tendency of decrease.  

The trends in monthly mean total, water, and ice clouds are shown in Figure 2.10d. The range of 

trends in total clouds is from −0.81% per decade in June to −0.92% in October. The trends of 

water clouds are always positive from 0.01% per decade in March and 0.23% per decade in 
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September. Last, the trends of ice clouds are highest in September as −1.07% per decade and 

lowest in March as −0.80% per decade. The seasonal variations in trends are not noticeable 

compared to the seasonal variations in mean cloud fractions.  
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Figure 2.10: Box plots of mean cloud fractions (a: total clouds, b: water clouds, and c: ice clouds). 

The colors represent the time span used to calculate mean value. Black curves are the mean for the 

entire period. d) is the monthly trend of mean cloud fractions (Black curves are total clouds. Red 

curves are water clouds. Blue curves are ice clouds.). 
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Figure 2.11 presents the trends in monthly mean cloud fractions across different latitude ranges. 

From 0°N to 20°N, the seasonal variations in trend magnitudes are relatively weak. Ice cloud trends 

range from −0.3% to 0.4% per decade. Total cloud trends are negative throughout the year, 

primarily due to significant decreases in water clouds. From 20°N to 40°N, this region exhibits 

stronger seasonality compared to the equator. Total cloud fraction shows a predominantly 

decreasing trend, ranging from −1.0% to −1.5% per decade. Water clouds increase slightly from 

January to March but reach a maximum decline in August at −0.9% per decade. Ice clouds show 

their largest decrease in February (−1.6% per decade) and the smallest in July (−0.5% per decade). 

From 40°N to 60°N, ice clouds also show significant declines, ranging from −0.8% to −1.5% per 

decade. Water clouds increase throughout the year, except in July and August. The total cloud 

trends remain negative, varying between −0.8% to −1.0% per decade. 

From 0°S to 20°S, all cloud phases show decreasing trends across all months. From 20°N to 40°N, 

water clouds show significant increases, particularly from July to September, likely influenced by 

maritime low cloud regimes. Meanwhile, ice clouds decline during the same period. Overall, total 

cloud fraction decreases throughout the year. From 40°S to 60°S, the trends in all cloud phases are 

constant over the months. Increases in water cloud are observed, as a rate from 0.6% per decade 

to 1.0% per decade, while ice clouds decrease from −1.2% to −1.6% per decade. Total clouds 

decline slightly, ranging from −0.5% to −0.6% per decade. 

 



 

 

42 

 
Figure 2.11: Monthly trend of mean cloud fractions for different latitude ranges (Black curves are 

total clouds. Red curves are water clouds. Blue curves are ice clouds.). 

 

2.3.4. Zonal mean cloud fractions 

Figure 2.12a and 2.12b provide zonal mean fractions of total, water, and ice clouds and zonal mean 

cloud fraction trends over the ocean. Total cloud fractions are highest in the mid-latitudes, ranging 

from 90% to 95%, and lowest at 20°N and 5°S, around 55% (Figure 2.12a). Decreasing trends in 

total cloud fractions are observed across all latitudes, with a maximum of −1.35% per decade 

around 4.5°S, corresponding to significant decreasing trends over the central Pacific Ocean, as 

shown in Figure 2.3. Water clouds are lowest as 15% in the ITCZ and highest as 45% in the 

southern mid-latitudes. From 15°S to 30°N, water clouds decrease, with a maximum of −1.11% 
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per decade around 13.5°N. Above 30° latitude, the magnitude of water cloud fractions increases 

with latitude, reaching a maximum of 1.37% per decade at 60°S. Ice cloud fractions are highest at 

the tropics and mid-latitudes. Increasing trends are observed only at the tropics, while decreasing 

trends are dominant at all other latitudes. Because of different cloud radiative effects depending 

on cloud types and regions as well as latitudes, the impacts of these changes on the Earth’s 

radiation budget should be investigated.  

 

 
Figure 2.12: Zonal mean plot of cloud fractions (a) and zonal mean cloud fraction trend plot (b) 

from 1981 to 2023. The colors represent the cloud phase (Black curves are total clouds. Red curves 

are water clouds. Blue curves are ice clouds.). 
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2.4 Cloud Top Properties 

In the net TOA flux of radiation calculation terms, cloud top properties, especially cloud top 

temperature, influence the amount of longwave radiation. Warm cloud top temperature (low clouds) 

can cool the atmosphere by increasing the downward emission of longwave radiation, while cold 

cloud top temperature (high clouds) warms it by decreasing the upward emission of longwave 

radiation (Slingo and Slingo, 1988). Moreover, cloud top properties have been used in various 

atmospheric applications such as estimating precipitation (Zeng, 1999; Janowiak and Arkin, 1991), 

evaluating a lightning parametrization (Karagiannidis et al., 2019; Wong et al., 2013), and 

investigating direct and indirect effects of aerosol associated with cloud top properties (Koren et 

al., 2010; Sekiguchi et al., 2003; Massie et al., 2007; Yuan et al., 2008). 

 

2.4.1 Map of cloud top properties 

Regional mean and trend of cloud top assignments over four decades from Pv6.0 are shown in 

Figure 2.13. The regional patterns between cloud top assignments are comparable because cloud 

top heights are calculated using cloud top temperature retrieved from ACHA algorithm and 

numerical weather prediction model. In tropical and subtropical regions, changes in cloud phases 

are highly correlated with changes in cloud top assignments. The mean cloud top height is the 

highest over western Pacific Ocean and ITCZ regions, reaching around 10 to 12 km, where ice 

clouds are dominant due to strong convection (Figure 2.13a). These regions exhibit noticeable 

increasing trends in cloud top height, with a maximum of 0.42 km per decade, associated with the 

rise of convective cloud under global warming conditions (Bony et al., 2016). In contrast, the 
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regions dominated by maritime low clouds that cloud top heights are below 3 km, such as the west 

coast of South America, show decreasing trends in cloud top heights. These decreases appear to 

be related to significant increases in water clouds and decreases in ice clouds over these regions. 

Also, decreases in cloud top height are observed over the central Pacific Ocean due to the 

substantial decreases in ice clouds, as shown in Figure 2.2, with a maximum of −0.53 km per 

decade. However, in the midlatitudes, cloud top heights show increasing trends despite increases 

in water clouds and decreases in ice clouds.  

 

 
Figure 2.13: Map of mean cloud top properties (a: cloud top height [km] and d: cloud top 

temperature [K]) and trend (b: cloud top height and e: cloud top temperature) from 1981 to 2023. 

Statistical significance test shows area that are not statistically significant are blanked and area 

surrounded by a red line is statistically significant (c: cloud top height and f: cloud top temperature). 
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The mean cloud top temperature over western Pacific Ocean and ITCZ is approximately 230 K 

and has cooled, decreasing by 3 K per decade. This indicates that the warming effects of high 

clouds could be strengthening over these regions (Weaver et al., 2024). The mean cloud top 

temperatures in regions where water clouds are dominant range from 260 to 280 K. These regions 

show increasing trends in cloud top temperature for the same reason that cloud top height 

decreases. Similar to cloud top height, cloud top temperature shows decreasing trends in the 

midlatitudes while the mean cloud top temperature is around 250 K. 

Figure 2.14 shows the mean and trend of cloud top temperature from three satellite-based CDRs 

(Pv6.0, CLARA-A3, and CERES EBAF). The mean cloud top temperatures are lowest over 

western Pacific Ocean and the ITCZ, but the mean values are different between datasets due to the 

different retrieval methods, spectral information used in algorithm and cloud-conservative 

approaches between datasets. The mean cloud top temperature over these regions ranges from 220 

K to 230 K in Pv6.0, 200 K to 210 K in CLARA-A3, and 230 K to 240 K in CERES EBAF. The 

mean cloud top temperatures are highest over the regions dominated by maritime low clouds, 

including the west coast of South America. The mean values also differ between satellite-based 

CDRs, with CERES EBAF being higher than the others, although the differences are smaller 

compared to the ITCZ regions. Lastly, noticeable differences in cloud top temperatures are also 

observed over the midlatitudes, with CERES showing warmer cloud top temperatures than the 

other datasets.  

Trends in cloud top temperature over the last four decades show similar patterns in Pv6.0 and 

CLARA-A3, including decreasing trends over western Pacific Ocean, where convective clouds are 

dominant. The magnitudes of decreases over this region range from 2 K per decade to 3 K per 

decade. Over the central and eastern central Pacific Ocean, both Pv6.0 and CLARA-A3 show 
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increases in cloud top temperature, with CLARA-A3 exhibiting larger magnitude in trends. Other 

regions, where maritime low clouds are dominant, also show increasing trends in cloud top 

temperature. From 2000 to 2023, the patterns of trends remain consistent with patterns over last 

four decade except for midlatitude regions. Over these two decades, cloud top temperatures in 

these areas have increased.   

 

 
Figure 2.14: Map of mean cloud top temperature from 2000 to 2023 (left column; K) and trend of 

cloud top temperature (middle column; K per decade) from 2000 to 2023. Then trends of cloud 

top temperature from Pv6.0 and CLARA-A3 over last four decades are showing at right column. 
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2.4.2. Timeseries of mean cloud top properties 

Figure 2.15 provides timeseries of mean cloud top height, temperature, and pressure over the ocean 

from 60°S to 60°N. All cloud top assignments show strong seasonality, with average cloud top 

heights being high in April and low in July, and cloud top temperature and pressure being low in 

April and high in July. This is also related to the seasonality of cloud phase fractions mentioned 

above. Cloud top height ranges from 5.5 km to 6.7 km (6.03 ± 0.16 km) and shows an increasing 

trend of 0.056 km per decade (Figure 10a). Cloud top temperature varies between 251 K to 257 K 

(253.90 ± 0.96 K), with a decreasing trend of 0.082 K per decade (Figure 10b). Monthly mean 

cloud top pressure ranges from 520 hPa to 580 hPa (554.06 ± 8.84 hPa) and has a decreasing trend 

of 0.915 hPa per decade (Figure 10c). 

 

 
Figure 2.15: Timeseries of mean cloud top height (a) and temperature (b) over the ocean from 60°S 

to 60°N from Pv6.0. Colors represent POES satellites. 
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2.4.3 Monthly mean cloud top properties 

Monthly mean cloud top assignments over the ocean from 60°S to 60°N are shown in Figure 11a-

c. Mean cloud top temperatures are lowest in April and highest in September (254.1 ± 1.0 K), 

showing a strong seasonality (Figure 2.16b). The shape of seasonality follows the monthly 

variations of cloud phase fractions (Figure 2.10). The 5-year mean trends show a decrease in cloud 

top temperature, although it is not as clear as the trend of cloud fractions. On the other hand, cloud 

top height (pressure) shows identical trends with an increase (decrease) for all month, with a mean 

value of 6.0 ± 0.2 km (556.2. ± 9.3 hPa) and the mean from 2021 to 2023 shows higher (lower) 

values than previous years (Figure 2.16a and 2.16c). 
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Figure 2.16: Box plot of monthly mean cloud top properties from Pv6.0 (a: cloud top height [km] 

and b: cloud top temperature [K]). The colors represent the time span used to calculate the mean 

values. Black curves are the mean for the entire period. The monthly mean trends (c) in cloud top 

height (black) and cloud top temperature (red) are from 1981 to 2023. 
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2.4.4 Zonal mean cloud top properties 

Zonal mean and zonal mean trend plots of cloud top assignments are shown in Figure 2.17. Mean 

cloud top height is highest at 5°N, around 9.8 km, and lowest at the 60°, at approximately 4 km 

(Figure 2.17a). The cloud top heights have increased over the past four decades at all latitudes, 

except between 15°S and 30°S, where maritime low clouds are dominant including off the west 

coast of South America. In the midlatitudes, cloud top heights have increased despite the increase 

in water clouds and decreases in ice clouds. While cloud top height is highest near the equator and 

decrease consistently with latitude, the pattern of mean cloud top temperature is different. Cloud 

top temperatures range from 237 K at the equator to 262 K at 20°S. Above 20°, the mean cloud 

top temperatures increase with latitude. A decreasing trend of cloud top temperature is dominant, 

and it is particularly noticeable at 10°N. The patterns of cloud top temperature are similar to those 

of cloud top heights, ranging from −1 K per decade at 10°N to +0.5 K per decade at 20°S (Figure 

2.17b).  
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Figure 2.17: Zonal mean plot (a) and zonal mean trend plot (b) of cloud top height (black) and 

temperature (red) from 1981 to 2023 from Pv6.0. 

 

2.4.5 Relationship with tropopause heights 

To investigate the relationship between changes in cloud top height and tropopause height, the 

zonal mean and trend of fractions as a function of cloud top height over the ocean from 1981 to 

2023 are shown in Figure 13a and 13b. At the equator, cloud top heights reach up to 12 km and 

gradually decrease toward the mid-latitudes (Figure 2.18a). From 0° to 20°S, the fractions of low 

cloud top heights are higher than at other latitudes due to the presence of marine stratocumulus 
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clouds. Cloud top heights are confined to a very low range of 4 to 6 km from 40° to 60°. Figure 

2.18b provides the trends of fractions of cloud top heights. All latitudes show an increase in 

fractions at higher cloud top heights. Also, there is an increase in fractions over the marine low 

cloud regimes from 0° to 40°S, which is associated with increases in water cloud fraction discussed 

above.  

To compare the changes in cloud top heights, mean and trend of tropopause height along the 

latitude are shown in Figure 2.18c and 2.18b. The tropopause height is obtained from MERRA-2. 

Xian and Homeyer (2019) showed good agreement between radiosondes and MERRA-2 in terms 

of thermodynamic vertical profile and tropopause height. The mean tropopause height ranges from 

16 to 17 km between 20°S to 20°N and gradually decreases with latitude, reaching 9 km at 60°S 

and 60°N. The trends of tropopause height show an increase over the last four decades across all 

latitudes, with the most remarkable increase occurring in the tropics. Especially, over the tropics, 

where convective clouds are dominant, increase in tropopause heights can be associated with 

increases in cloud top heights.  
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Figure 2.18: Zonal plots of frequency of cloud top height from Pv6.0 and tropopause height from 

MERRA-2 data over the ocean from 1981 to 2023. Left column is mean frequency and right 

column is trend of frequency. 

 

2.5 Cloud Optical Depth 

COD, also known as cloud optical thickness, is a measure of how much a cloud attenuates sunlight 

passing through it. It is a dimensionless quantity that quantifies the cloud’s ability to absorb and 

scatter radiation, playing a crucial role in estimating the net TOA shortwave flux. Many 

atmospheric studies have highlighted the importance of COD in various atmospheric applications, 

including its influence on radiative forcing (Ogunjobi et al., 2004; Jensen et al., 1994; Yang et al., 

2010; Curry and Ebert, 1992; Prabhakara et al., 1993), its role in climate feedback (Ceppi et al., 

2017; Gordon and Klein, 2014; Roeckner et al., 1987), and its relationship with cloud drop size 

and precipitation (Yuan et al., 2008; Stenz et al., 2016). Despite its significance, COD remains one 

of the most poorly observed climate variables over the ocean. Satellite observations of COD are 
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therefore essential for atmospheric research, particularly for studies that rely on COD and other 

interrelated climate variables.  

  

2.5.1 Map of cloud optical depth 

Figure 2.19 shows a map of the mean COD and its trend from Pv6.0 and CERES EBAF. The mean 

COD is highest over the ITCZ region due to the strong convection and midlatitude where thick 

stratiform clouds dominate. However, CERES EBAF shows lower mean COD values compared 

to Pv6.0. This discrepancy suggests that absolute COD values may differ between Pv6.0 and 

CERES EBAF due to variations in spectral availability, retrieval method, and local overpass time. 

The trend in COD from Pv6.0 from 1981 to 2023 shows a predominant increase across most of the 

globe, except for certain regions such as the central Pacific Ocean and the east coast of North 

America. The trend in COD from Pv6.0 from 2000 to 2023 exhibits a similar pattern, with 

increasing trends dominating globally. In contrast, the trend in COD from CERES EBAF from 

2000 to 2023 shows decreases in certain regions, particularly over the Northern midlatitudes. 

Despite these differences, both datasets indicate significant increases in COD over the southeastern 

Pacific Ocean, as we discussed in chapter 1.  
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Figure 2.19: a) Map of mean cloud optical depth from 1981 to 2023 from Pv6.0. b) trend of cloud 

optical depth from 1981 to 2023 from Pv6.0. c) trend of cloud optical depth from 2000 to 2023 

from Pv6.0. d) mean cloud optical depth from 2000 to 2023 from CERES EBAF. e) trend of cloud 

optical depth from 2000 to 2023 from CERES EBAF.  
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Chapter 3 

How have observed changes in clouds influenced 

cloud radiative effects? 
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3.1 Introduction 

Clouds play a critical role in Earth’s radiation budget by modulating incoming solar radiation 

(shortwave) and outgoing longwave radiation from the surface and cloud. This modulation, known 

as the CRE, represents the difference in radiative fluxes between all-sky and clear-sky conditions 

at the top of the atmosphere. CRE serves as a key diagnostic for understanding how clouds 

influence climate by exerting both cooling effects through the reflection of solar radiation and 

warming effects by trapping outgoing longwave radiation. The magnitude and sign of CRE vary 

spatially and temporally depending on cloud type, altitude, optical properties, and regional 

atmospheric conditions. Accurate quantification of CRE is essential for detecting climate feedback, 

evaluating model performance, and improving projections of future climate change. The large 

variability of net CRE across climate simulations is shown in Appendix A. In this chapter, we 

analyze the characteristics of CRE using satellite observations over the southeastern Pacific Ocean, 

with a focus on identifying key cloud properties associated with changes in CRE. This work has 

been submitted as part of Seo et al. (2025c). 

 

3.2 Outgoing Radiation 

3.2.1 Outgoing shortwave radiation 

Outgoing shortwave radiation (OSR) represents the portion of solar radiation that is reflected back 

into space by the Earth’s surface, atmosphere, and clouds. Clouds are highly reflective and 

contribute significantly to OSR over the ocean because the ocean’s albedo is generally low, 

ranging from 2% to 10%. Figure 3.1 shows the mean OSR for clear sky, all sky, and CRE. The 
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mean OSR for clear sky conditions remains constant across all latitudes, except in certain regions 

where ice cover is present during winter. The mean OSR for all sky conditions is high in area with 

a high cloud fraction. The CRE values are all negative due to the higher albedo of clouds compared 

to the ocean surface, indicating the cooling effect of clouds except in certain area where cloud 

fractions are low.  

 

 
Figure 3.1: Map of mean outgoing shortwave radiation (W∙m-2) for (a) clear sky, (b) all sky, and 

(c) CRE from 2000 to 2023 based on CERES EBAF dataset. 

 

3.2.2 Outgoing Longwave Radiation 

Outgoing longwave radiation (OLR) refers to the thermal infrared radiation emitted by the Earth 

and its atmosphere that escapes into space. Warmer regions emit more OLR, while colder regions 

emit less. High altitude clouds, being colder, emit little OLR and trap heat below them, 

contributing to the greenhouse effect. Figure 3.2 shows the mean OLR for clear sky, all sky, and 

CRE conditions. The mean OLR for clear sky conditions is highest at the equator and decrease 

toward the poles due to variations in sea surface temperature. The mean OLR for all sky conditions 

is higher in regions where low clouds are prevalent. CRE values are all positive due to the 

greenhouse effect of clouds, with significant impacts observed in the ITCZ, western Pacific Ocean, 
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and midlatitudes. However, areas dominated by low clouds exhibit a relatively weak warming 

effect. 

 

 
Figure 3.2: Map of mean outgoing longwave radiation (W∙m-2) for (a) clear sky, (b) all sky, and 

(c) CRE from 2000 to 2023 based on CERES EBAF dataset. 

 

3.2.3 Net Radiation 

In this study, net radiation is defined as the sum of outgoing shortwave and longwave radiation. 

Figure 3.3 shows the mean outgoing net radiation from 2000 to 2023 for clear sky, all sky, and 

CRE conditions. The mean outgoing net radiation for clear sky is highest at the equatore due to 

the strong emission of  longwave radiation. For all sky conditions, the mean outgoing net radiation 

is highest over maritime low cloud regions, where both shortwave and longwave radiation are 

strongly reflected or emitted. As a result, the net CRE has the strongest cooling effects over these 

regions and midlatitudes.  
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Figure 3.3: Map of mean outgoing net radiation (W∙m-2) for (a) clear sky, (b) all sky, and (c) CRE 

from 2000 to 2023 based on CERES EBAF dataset. 

 

Figure 3.4 shows the trends in outgoing net radiation for clear sky, all sky, and CRE from 2000 to 

2023, based on CERES EBAF dataset. The trends are calculated after subtracting the monthly 

mean values to account for seasonal variations in solar radiation and sea surface temperature. The 

trends for clear sky are relatively weak, as the main factors influencing changes are sea surface 

temperature, solar intensity and ice cover at midlatitudes. In contrast, trends for all sky show a 

predominant decrease due to the decline in cloud fraction, as seen in Figure 2.3, which reflects a 

reduction in the albedo effect of clouds. Consequently, net CRE exhibits an increasing trend, 

contributing to surface warming by allowing more solar radiation to reach the surface. However, 

the southeastern Pacific Ocean shows significant decreasing trends, indicating a strengthening of 

cloud induced cooling effects, as discussed in Chapter 1. The increasing cooling effects of clouds 

are particularly important in the context of global warming. Therefore, we will focus specifically 

on these regions (from 30°S to 10°S, and from 120°W to 70°W). 
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Figure 3.4: Map of trend in outgoing net radiation (W∙m-2) for (a) clear sky, (b) all sky, and (c) 

CRE from 2000 to 2023 based on CERES EBAF dataset. 

 

Figure 3.5 shows a map of trends in CRE for shortwave, longwave, and net radiation. The 

shortwave CRE shows an overall increasing trend due to reduced reflected solar radiation caused 

by a decrease in cloud fraction. This trend is particularly notable over the central Pacific Ocean 

and midlatitudes. In contrast, a decreasing trend is observed in certain regions, including western 

Pacific Ocean and southeastern Pacific Ocean, where cloud fractions have increased. The 

longwave CRE shows a decreasing trend for the same reason as the shortwave CRE. Over the 

southeastern Pacific Ocean, changes in longwave CRE are minimal due to presence of low altitude 

clouds with warm cloud top temperature, which are similar to the sea surface temperature. 

Therefore, the strengthening of cooling effects in the study area is primarily driven by decreases 

in shortwave CRE. 
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Figure 3.5: Map of trend in CRE (W∙m-2) for (a) shortwave, (b) longwave, and (c) net radiation 

from 2000 to 2023 based on CERES EBAF dataset. 

 

3.3 Relationship between CRE and cloud fractions 

Figure 3.6 shows the trends of net CRE and cloud fractions for total, water, and ice clouds from 

2000 to 2023 over the study area. A decreasing trend in net CRE, or a strengthening of cooling 

effects, is observed in regions dominated by water clouds. In these areas, total cloud fractions are 

also increasing, mainly due to a rise in water cloud fractions and a decline in ice cloud fractions. 

This suggests that the enhanced cooling effects are primarily driven by changes in cloud fractions, 

particularly the increase in water clouds.  
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Figure 3.6: Map of trend in (a) net CRE (Wm-2) from CERES EBAF dataset and cloud fraction for 

(a) total clouds, (b) water clouds, and (c) ice clouds from Pv6.0 dataset. 

 

Figure 3.7 provides timeseries plots of normalized anomalies for cloud fractions across different 

cloud phases and net CREs, along with scatter plots depicting the relationships between these 

anomalies. To account for strong seasonal variations in cloud fractions and CREs, anomalies are 

calculated by subtracting the respective monthly mean values. Since cloud fractions and CREs 

have different units, a normalization process is applied to the timeseries plots by subtracting the 

mean anomaly value and dividing by the standard deviation. The mean and standard deviation are 

derived separately for cloud fraction and CRE anomalies to ensure consistency. This normalization 

allows for direct comparability between cloud fraction and CRE anomalies, facilitating a more 

meaningful analysis of their variations and correlations.  
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Figure 3.7: (a) timeseries plot of normalized cloud fraction (black) from Pv6.0 dataset and net CRE 

from CERES EBAF dataset and (b) scatter plots between anomaly of cloud fraction and net CRE 

for different cloud phases (top: total clouds, middle: water clouds, and ice clouds). 

 

Normalized anomalies of total cloud fractions show a strong inverse relationship with the 

normalized anomalies of CREs, indicating a negative correlation between cloud fractions and 

CREs. The correlation coefficient between total cloud fractions anomalies and CRE anomalies is 

−0.74, with a slope of −1.18 Wm2 per %. Similarly, water cloud fractions show an even stronger 

negative correlation with CREs, with a correlation coefficient of −0.76 and a slope of  −0.99 Wm2 

per %. Both total (+0.97% per decade) and water (+1.63% per decade) cloud fractions have 

increased over the study area since 2000. In contrast, ice cloud fractions show a weak positive 

correlation with CREs (correlation coefficient: 0.23, slope: 0.42 Wm2 per %), contributing the 
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warming effect of ice clouds. These results indicate that the strengthening of the cooling effects of 

CREs over the study area is primarily driven by the increases in cloud fractions, particularly water 

clouds. 

Figure 3.8 shows the timeseries of mean cloud fraction over the study area for different cloud 

phases since 2000. Total cloud fraction ranges from 60 to 85%, with an increasing trend of 0.97% 

per decade. It exhibits show strong seasonality, with higher cloud fractions observed from August 

to October and lower cloud fractions from January to March.  Similarly, water clouds also show 

pronounced seasonality, also ranging from 60 to 85% with a mean increase of 1.63% per decade. 

In contrast, ice clouds show relatively weak seasonality, ranging from 10 to 25%, and show a 

decreasing trend at a rate of 0.70% per decade.  
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Fig. 3.8 Timeseries of mean cloud fraction over the study area for different cloud phases (total 

clouds: top, water clouds: middle, and ice clouds: bottom). 
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Figure 3.9 shows the timeseries of mean shortwave, longwave, and net CREs over the study area 

since 2000. The mean shortwave CRE ranges from −30 to −80 Wm2, following seasonality of 

total and water cloud fractions. High cloud fractions, particularly the large proportion of water 

clouds, contribute to strong cooling effects of CREs over the study area. The cooling effect has 

strengthened at a rate of −1.45 Wm2 per decade. The mean longwave CRE ranges from 11 to 20 

Wm2 and shows weak seasonality. The warming effects of clouds has weakened at a rate of  −0.46 

Wm2 per decade. The net CRE, which is the sum of shortwave and longwave, ranges from −20 to 

−60 Wm2, with a significant decreasing trend of −1.91 Wm2 per decade. 
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Fig. 3.9 Timeseries of CREs from CERES EBAF over the study area (shortwave: top, longwave: 

middle, and net: bottom).  
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Chapter 4 

Can we identify physical processes contributing 

to regional changes in clouds? 
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4.1 Introduction 

The CCFs framework is widely used in many studies to better understand the mechanisms behind 

cloud formation and to investigate the atmospheric factors that drive variations in clouds 

characteristics (Grise and Tselioudis, 2024; Naud et al., 2023; Jian et al., 2021; Klein et al., 2018; 

Kawai et al., 2017). This framework helps identify key processes, such as temperature, moisture, 

and other atmospheric variables that influence cloud development and behavior. For example, 

surface temperature, a well-known CCF, plays a crucial role in cloud formation by influencing 

evaporation and moisture supply, convective uplift, and atmospheric stability (Ramanathan and 

Collins, 1991). Another important CCF with a strong positive correlation to maritime low cloud 

fractions is the estimated inversion strength (EIS; Wood and Bretherton, 2006), which is used to 

characterize the strength of the inversion at the top of the boundary layer (Naud et al., 2023). In 

this chapter, we investigate the role of CCFs in influencing cloud fractions over the southeastern 

Pacific Ocean using satellite observations and reanalysis datasets and identify the main drivers of 

changes in clouds. This work has been submitted as part of Seo et al. (2025c). 

 

4.2 Cloud Controlling Factors 

In this research, we use 14 CCFs, including surface temperature, humidity, heat flux, atmospheric 

stability, and vertical/horizontal wind velocities, that have been widely used in previous CCFs 

framework studies. These variables are used to comprehensively evaluate the atmospheric 

conditions influencing cloud formation in both water and ice phases. For the analysis of the 14 

meteorological CCFs, we use the ERA5 reanalysis dataset, produced by the ECMWF, at a monthly 
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resolution. Table 4.1 provides a list of the CCFs along with their physical explanations, 

highlighting the key atmospheric processes that influence cloud formation. 

 

Table 4.1. Cloud controlling factors used in this study, physical explanations connecting them to cloud formation, 

and key studies supporting them. 

Cloud Controlling Factors Physical Explanations Key Studies 

Surface temperature (Tsfc) 

Warmer surfaces enhance convection 

and increase atmospheric instability, 

while cooler surfaces support formation 

of low-level stratus clouds.  

Klein et al., 2018; Zelinka and 

Hartmann, 2011; Bony et al., 1997 

Temperature advection (Tadv) 

Warm air advections increase instability 

and enhance lift. Cold advections 

suppress deep convection and generate 

low clouds in moist convection.  

Grise et al., 2021; Klein, 1997 

Estimated inversion strength 

(EIS) 

Strength of EIS in the boundary layer 

inhibits convection and favors extensive 

stratocumulus clouds over ocean 

regions. 

Wood and Bretherton, 2006; Andersen 

et al., 2022 

Wind speed at 10m (WS10m) 
Surface wind speeds influence surface 

moisture fluxes and impact the depth of 

MBL.  

Scott et al., 2020; Boutle et al., 2010 

Surface sensible heat flux 

(SSHF) 

Characterized the energy exchange 

between the ocean and the atmosphere. 

Low sensible heat fluxes maintain stable 

stratocumulus layers, favoring the 

occurrence of low-level clouds.  

Naud et al., 2023; Boutle et al., 2010 

Total column water vapor 

(TCWV) 

High TCWV increases the likelihood tha 

the air will reach its saturation point, and 

it is associated with the development of 

thicker and more extensive clouds.  

Henken et al., 2015 

Upper tropospheric stability 

(UTS) 

UTS controls the vertical motion of air 

at high altitude so that it is robustly 

correlated with upper-level clouds such 

as tropical anvil cloud formation. 

Kemsley et al., 2024; Saint-Lu et al., 

2022; Bony et al., 2016  
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Upper-tropospheric wind shear 

between surface and 300 hPa 

(UTWS300hPa) 

Affect the structure of convective storms 

and mesoscale convective systems, 

enhancing cloud-top turbulence and 

causing clouds to spread and stretch 

horizontally through the advection of air 

at different levels and speeds.  

Kemsley et al., 2024; Anber et al., 2014; 

Jensen et al., 2011; Lin and Mapes, 2004 

Relative humidity at 300, 500, 

and 700 hPa (RH300hPa, RH500hPa, 

and RH700hPa)  

Upper-tropospheric relative humidity is 

associated with large-scale distribution 

of tropical deep clouds and lower free-

tropospheric relative humidity regulates 

the mean height of convective outflow. 

Kemsley et al., 2024; Sherwood et al., 

2004; Sherwood et al., 1999; Bony et al., 

1997 

Vertical velocity at 300, 500, 

and 700 hPa (w300hPa, w500hPa, 

and w700hPa) 

Indicates regions of air rise and descent. 

Enhanced upward motion encourages 

the development of high and thick 

clouds. 

Ge et al., 2021; Grise et al., 2021; Klein 

et al., 2018 

 

 

4.3 Multilinear regression fit 

To model the multilinear relationship between the CCFs and cloud fractions, we apply the ridge 

regression technique (Ceppi and Nowack, 2021). This method is particularly effective in 

addressing common issues in multilinear regression models, such as multicollinearity and 

overfitting. Ridge regression is especially suitable for this analysis, given the high degree of 

correlation among the CCFs, as it helps stabilize coefficient estimates and enhances the model’s 

ability to generalize to observations. Due to the varying ranges and different units of the CCFs, all 

variables are normalized using their mean and standard deviation values to ensure consistency and 

comparability. The models are computed for each grid box with a resolution of 1° ×1°.  
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4.3.1 Experiment for model performance 

Figure 4.1 represents the R-squared values of individual CCFs for water clouds, which quantify 

how well the model replicates observed cloud fractions by measuring the proportion of total 

variation in observations explained by the regression model. The R-squared value is calculated 

using the following equation: 

 

R-squared = 1 −	∑ (%.4%/5 )0.
∑ (%.4%7)0.

 

 

where 𝑦) represents cloud fractions from satellite-based observations, 𝑦* is the mean cloud fraction, 

and  𝑦#H  denotes the cloud fraction estimated by the model. An R-squared value of 1 indicates a 

perfect fit, meaning the model fully explains the observed variations. For water clouds, EIS shows 

the highest R-squared values, followed by humidity such as relative humidity and total precipitable 

water vapor. Surface temperature and wind speed also show relatively high R-squared values. 

Dynamical and surface flux factors are less consistently explanatory on their own, but still 

contribute within the full model. Overall, the R-squared values from all CCFs are high over most 

ocean regions, except for some part of the Southern Ocean.  
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Figure 4.1: Map of R-squared values of individual CCFs from 1981 to 2023 for water cloud phases. 

 

Figure 4.2 shows R-squared values of individual CCFs for ice clouds using multilinear regression 

model from 1981 to 2023. The R-squared values for ice clouds from all CCFs are also high over 

most ocean area except for the Southern Ocean. The results indicate that upper-tropospheric 

humidity, total column water vapor, and vertical motion show the strongest relationships with ice 

cloud variability, especially over tropical deep convective regions such as the western Pacific and 

Indian Ocean. The spatial patterns of R-squared values for vertical velocity and relative humidity 

are similar so that an additional experiment is conducted in Appendix C. In contrast, SSHF and 

surface wind speed show weak correlations across most regions, suggesting limited direct 

influence on high cloud processes.  
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Figure 4.2: Map of R-squared values for individual CCFs from 1981 to 2023 for ice cloud phases. 

 

To assess the feasibility of simulating cloud fractions using a multilinear regression model, we 

trained the model with cloud fraction data from Pv6.0 and corresponding CCFs from 1981 to 2010 

to determine the regression coefficients. These coefficients were then applied to CCFs from 2011 

to 2023 to estimate cloud fractions. Figure 4.3 shows R-squared and RMSE values from 2011 to 

2023, obtained using the multilinear regression model trained from 1981 to 2010. For total clouds, 

the model performs well across most regions, especially within the study area, except for a small 

section along the west coast of South America. For water clouds, the model demonstrates strong 

predictive capability, as indicated by consistently high R-squared values across all regions. In the 

cast of ice clouds, R-squared values remain high overall, except for a small central area within the 

study region where ice cloud fractions are very low. These results suggest that the multilinear 

regression model using CCFs is particularly effective in capturing variations in specific cloud types. 

Globally, R-squared values are high across most of regions, except for the midlatitude Southern 

Ocean for all cloud phases, with a particularly notable decrease for total clouds. This is due to 
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consistently high cloud fractions exceeding 90%. As a result, the low variation in the denominator 

of the R-squared equation leads to relatively lower model predictions compared to the other 

regions. 

 

 
Figure 4.3: Map of R-squared values (top) and RMES (bottom) of cloud fraction between Pv6.0 

dataset and multilinear regression model from 2011 to 2023 for different cloud phases (left: total 

clouds, middle: water clouds, and right: ice clouds). 

 

Figure 4.3 also shows RMSE values for total, water, and ice clouds. The RMSE of total clouds is 

high along the west coast of North America, where water clouds dominate, and in the ITCZ region, 

where convective high clouds are prevalent, reaching 10%. In these regions, R-squared values are 

also lower than in other areas. Additionally, the RMSE is lower over the Southern Ocean, despite 

the R-squared values are low. Across the study area, the RMSE of total clouds is approximately 

5%, which is significantly lower than the RMSE between Pv6.0 and climate models, as shown in 
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Appendix A. The mean RMSE of water clouds over the study area is also around 5%, while the 

mean RMSE of ice clouds is below 4%. This suggests strong performance in estimating cloud 

fractions using CCFs and a multilinear regression model compared to observations. 

Figure 4.4 shows the mean cloud fractions from Pv6.0 and the multilinear regression model. The 

mean cloud fractions for total, water, and ice clouds estimated by multilinear regression model 

using CCFs closely resemble the observed values.  

 

 
Figure 4.4: Map of mean cloud fractions from Pv6.0 dataset (top) and multilinear regression model 

(bottom) from 2011 to 2023 for different cloud phases (left: total clouds, middle: water clouds, 

and right: ice clouds). 

 

Figure 4.5a and 4.5b show the trends in cloud fractions from 2011 to 2023 based on Pv6.0 and 

model estimates. During this period, total cloud fractions increased, with a maximum observed 

rate of 5.7% per decade. The model also indicates an increasing trend in total cloud fractions over 
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the study area, though the affected region is smaller, and the rate is lower at 3.5% per decade. 

Water cloud fractions from the model show better agreement with observations than total clouds, 

although the observed magnitudes remain higher. Observations indicate a maximum increase in 

water cloud fractions of 7.3 % per decade, while the model estimates a slightly lower rate of 4.8% 

per decade. Conversely, ice cloud fractions exhibit a decreasing trend, with maximum rates of 

−6.2 % per decade in observations and −4.3% per decade in model estimates. Overall, the model 

successfully captures the spatial patterns of cloud fraction trends, particularly for water and ice 

clouds, though it underestimates their magnitude compared to observations. While the model 

performs well when trained on the first three decades of data, it is ultimately trained using the full 

observational dataset for this study.   

 

 
Figure 4.5: Map of trend in cloud fractions from Pv6.0 dataset (top) and multilinear regression 

model (bottom) from 2011 to 2023 for different cloud phases (left: total clouds, middle: water 

clouds, and right: ice clouds). 

 



 

 

80 

4.3.2 Model estimates 

Figure 4.6 shows the mean cloud fractions from Pv6.0 and the multilinear regression model from 

1981 to 2023. As shown in Figure 4.4, the mean cloud fractions for total, water, and ice clouds 

estimated by multilinear regression model using CCFs closely resemble those from Pv6.0 and 

show greater similarity to observations compared to climate models.  

 

 
Figure 4.6: Map of mean cloud fractions from Pv6.0 dataset (top) and multilinear regression model 

(bottom) from 1981 to 2023 for different cloud phases (left: total clouds, middle: water clouds, 

and right: ice clouds). 

 

Figure 4.7 shows the R-squared values and RMSE between Pv6.0 and the multilinear regression 

model from 1981 to 2023. Similar to the R-squared values in Figure 4.3, the model performs well 

across most regions, except for the Southern Ocean, although it performs better than in the period 
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from 2011 to 2023. Water and ice clouds also show high R-squared values globally including in 

the Southern Ocean. The RMSE between Pv6.0 and the multilinear regression model also shows 

similarity in the period from 2011 to 2023. Most RMSE values for cloud fractions are below 5%, 

except in contain areas such as the ITCZ region and west coast of North America for total clouds 

and water clouds, and near the equator for ice clouds. 

 

 
Figure 4.7: Map of R-squared values (top) and RMES (bottom) of cloud fraction between Pv6.0 

dataset and multilinear regression model from 1981 to 2023 for different cloud phases (left: total 

clouds, middle: water clouds, and right: ice clouds). 

 

Figure 4.8 shows maps of trends in total, water, and ice cloud fractions from Pv6.0 and model 

estimates from 1981 to 2023. For total clouds, model estimates show a trend pattern similar to 

observations, although the magnitudes are lower. They indicate a significant decreasing trend over 

the central Pacific Ocean and global declines, except for the southeastern Pacific Ocean and 
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Southeast Aisa. Trends in total clouds from model estimates over the midlatitudes remain close to 

0%. For water clouds, both Pv6.0 and model estimates show increasing trends over the 

southeastern Pacific Ocean and midlatitude, while decreasing trends are observed over the ITCZ, 

western Pacific Ocean, and subtropical subsidence regions. Lastly, increases in ice cloud fractions 

from both Pv6.0 and model estimates are observed over the ITCZ and western Pacific Ocean, while 

decreases are seen in other regions, with the most notable decline over the central Pacific.  

 

 
Figure 4.8: Map of trend in cloud fractions from Pv6.0 dataset (top) and multilinear regression 

model (bottom) from 1981 to 2023 for different cloud phases (left: total clouds, middle: water 

clouds, and right: ice clouds). 

 

To connect with the changes in CREs, Figure 4.9-4.11 show the mean, R-squared, RMSE, and 

trends of cloud fractions estimated by the multilinear regression model and CCFs over the study 

area from 2000 to 2023. Figure 4.9 presents the mean cloud fractions from Pv6.0 and model 
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estimates. As shown in Figure 4.6, the mean cloud fractions for total, water, and ice clouds 

estimated by the multilinear regression model using CCFs closely resemble those from Pv6.0. The 

regions that experience a strengthening of cooling effects, as shown in Figure 3.6, are dominated 

by water clouds.  

 

 
Figure 4.9: Map of mean cloud fractions from Pv6.0 dataset (top) and multilinear regression model 

(bottom) over study area from 2000 to 2023 for different cloud phases (left: total clouds, middle: 

water clouds, and right: ice clouds). 

 

Figure 4.10 shows the R-squared and RMSE values between Pv6.0 and model estimates from 2000 

to 2023. For total clouds, the R-squared values remain high across most regions, except for a small 

area along the west coast of South America, where the values are comparatively lower. The RMSE 

is generally below than 10%, although higher RMSE values are observed over the ITCZ. In regions 

dominated by water clouds, the RMSE is relatively low, ranging from 4% to 5%. For water clouds, 
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the R-squared values exceed 0.6 across all regions and approach 1 in most areas, indicating a strong 

correlation. However, high RMSE values are observed over the ITCZ, similar to total clouds, while 

RMSE values along the west coast of South America remain below 6%. For ice clouds, most 

regions show high R-squared values, close to 1, except for some areas where water clouds 

dominate. Model estimates for ice clouds show good agreement with observations, with RMSE 

values generally lower than 6%. 

 

 
Figure 4.10: Map of R-squared values (top) and RMES (bottom) of cloud fraction between Pv6.0 

dataset and multilinear regression model over study area from 1981 to 2023 for different cloud 

phases (left: total clouds, middle: water clouds, and right: ice clouds). 

 

Figure 4.11 shows trends in cloud fractions over the study area from Pv6.0 and model estimates. 

Both trends show similar patterns of increases, particularly where water clouds dominate along the 

west coast of South America. For water clouds, Pv6.0 and model estimates show significant 
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increases over this region, except for the ITCZ, with spatial patterns align with the strengthening 

of cooling effects in CREs.  For ice clouds, most area show a decrease in cloud fractions, while an 

increase is observed over the ITCZ. Overall, the multilinear regression models using CCFs capture 

the spatial patterns and magnitudes of trends in cloud fractions well compared to observations. 

 

 
Figure 4.11: Map of trend in cloud fractions from Pv6.0 dataset (top) and multilinear regression 

model (bottom) over study area from 1981 to 2023 for different cloud phases (left: total clouds, 

middle: water clouds, and right: ice clouds). 
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4.3.3 Impacts of individual cloud controlling factors 

Using the coefficients from the multilinear regression models and variations in CCFs, the 

contributions of individual CCFs to trends in cloud fractions over the study area can be quantified, 

as shown in Figure 4.12. Given the dominance of maritime stratocumulus clouds in this region, 

key drivers of low clouds such as EIS, surface temperature, wind speed at 10m, surface temperature 

advection, and relative humidity at 700 hPa play significant roles in shaping changes in total cloud 

fractions. For ice clouds, surface temperature and relative humidity at 700 hPa contribute to 

increasing ice cloud fractions, whereas EIS, TCWV, and relative humidity at 300 hPa are linked 

to decreases in ice cloud fractions. Among these factors, EIS has the strongest influence on in 

water cloud fraction increases, reaching a maximum of 1.6% per decade. This finding contrasts 

with Andersen et al. (2022), that reported a decline in low cloud cover over the Northeastern 

Pacific. Other CCFs have relatively weaker effects on changes in water cloud fractions.  
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Figure 4.12. Box plot showing the contributions of individual CCFs to trends in clouds over the 

study area from 1981 to 2023 for different cloud types: (a) total clouds, (b) water clouds, and (c) 

ice clouds. 
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4.4 Estimated Inversion Strength 

The EIS, as described by Wood and Bretherton (2006), is a measure of the stability of the lower 

atmosphere. It takes into account the vertical temperature gradient, which is another key 

component in determining atmospheric stability, in addition to the lower troposphere stability 

(LTS; Slingo 1987; Klein 1997). EIS can be calculated using the following equation: 

 

𝐸𝐼𝑆	 = 	𝐿𝑇𝑆 −	Γ&89:(𝑧;:: − 𝑧<=<) 

 

where the LTS is the difference in potential temperature between 700 hPa and the surface, Γ&89: is 

the moist adiabatic lapse rate at 850 hPa, and 𝑧;:: and 𝑧<=< are the height of the 700 hPa level and 

the lifting condensation level relative to the surface, respectively. A higher EIS value corresponds 

to a stronger inversion, resulting in reduced entrainment of dry air from the free troposphere, which 

prevents cloud breakup and contributes to a larger fraction of low cloud fractions. 

  

4.3.1 relationship with cloud fractions 

Figure 4.13 shows timeseries and scatter plots of anomalies in mean water cloud fractions from 

Pv6.0, model estimates, and mean EIS from ERA5 over the study area. Due to differences in units, 

the anomalies are normalized by subtracting the mean value and dividing by the standard deviation. 

The trend in water cloud fractions from Pv6.0 is 1.22 % per decade, while the trend from the model 

is 0.96% per decade. EIS has increase at a rate of 0.28 K per decade. Variations in water cloud 
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fractions and EIS are strongly correlated from 1981 to 2023. The correlation coefficient between 

the anomaly in water cloud fractions from Pv6.0 and EIS is 0.73, with a slope of 3.66 % per K. 

The correlation coefficient between the anomaly in water cloud fractions from the model and EIS 

is higher, at 0.88, with a same slope of 3.66 % per K when compared to those from the observations. 

These slopes are lower than 6 ± 1% per K derived by Wood and Bretherton (2006), that calculated 

the slope using the National Centers for Environmental Prediction-National Center for 

Atmospheric Research (NCEP−NCAR) reanalysis dataset (Kistler et al., 2001). Other studies also 

report a slightly lower slope in the relationship between low cloud fractions and EIS, with values 

generally less than 6 % per K (Cutler et al., 2022; Wang et al., 2023; Kawai et al., 2017). 
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Figure 4.13. a. Timeseries of normalized anomaly of water cloud fraction and EIS over the study 

area from 1981 to 2023. b. Scatter plot of anomaly of water cloud fraction from Pv6.0 and EIS. c. 

Scatter plot of anomaly of water cloud fraction from model and EIS. Colors in scatter plot represent 

the date (blue: 1981 to red: 2023). 
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4.3.2 Timeseries plots 

Figure 4.14a presents the timeseries of the mean EIS and its components used to calculate EIS 

over the study area. The mean EIS ranges from 2.6 to 9.1 K and shows a positive trend of 0.30 K 

per decade. The mean LTS ranges from 16.4 to 22.2 K and shows a similar positive trend of 0.31 

K per decade, aligning with trend observed in EIS. The second term in the EIS equation ranges 

from 12.6 to 14.3 K, with a negligible trend of 0.01 K per decade. This indicates that changes in 

EIS are primarily driven by increases in LTS. The timeseries of the mean LTS and potential 

temperature at the surface and 700 hPa is shown in Figure 4.14b. The potential temperature at the 

surface ranges from 289 to 296 K. and shows a decreasing trend of 0.10 K per decade. In contrast, 

the potential temperature at 700 hPa ranges from 309 to 315 K and shows an increasing trend of 

0.21 K per decade. Therefore, the strengthening of lower tropospheric stability over study area is 

primarily driven by the combined effects of a decrease in surface temperature and an increase in 

temperature at 700 hPa. 
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Figure 4.14. a. Timeseries of mean EIS, LTS, and second term over the study area from 1981 to 

2023. b. Timeseries of mean LTS and potential temperature at the surface and 700 hPa from 1981 

to 2023.  
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4.3.3 Map plots 

Figure 4.15 shows map plots of the mean and trends of EIS and its components from 1981 to 2023. 

EIS ranges from 0 to 12, with spatial patterns closely resembling those of water cloud fractions. 

Higher EIS values are associated with higher water cloud fractions. Over the past four decades, 

EIS has increased at a maximum rate of 0.44 K per decade. LTS, ranging from 14 to 24, show 

similar spatial patterns and trends as EIS, with a maximum increase of 0.47 K per decade. The 

second term of EIS varies with latitude and shows no significant trend. Thus, the increase in EIS 

is primarily driven by the rise in LTS. LTS is defined as the difference between the potential 

temperature at 700 hPa and the surface. The potential temperature at the surface ranges from 280 

to 300 K and has decreased as a maximum rate of 0.20 K per decade. In contrast, the potential 

temperature at 700 hPa, ranging from 300 to 315 K, has increased at a maximum rate of 0.35 K 

per decade. As a result, changes in EIS are driven by the combination of decreasing surface 

temperature and increasing atmospheric temperature at 700 hPa. This decreasing trend of surface 

temperatures are also observed from the extended-reconstructed (ERSST) and Hadley Center 

(HadISST) sea surface temperature dataset from 1979 to 2006 (Falvey and Garreaud, 2009). 

Among the several large-scale modes of natural variability including the ENSO, the Pacific 

decadal oscillation, and the southern annular mode, which are known to strongly influence 

temperatures in this region, the influence of ENSO on these temperature changes is investigated 

in Appendix B.  
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Figure 4.15: Map of mean (left) variables (a: EIS, b: LTS, c: Γ&89:(𝑧;:: − 𝑧<=<), d: 𝜃->0 and e: 

𝜃;::?@") and trend (right) in variables from ERA5 reanalysis dataset from 1981 to 2023.  
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Chapter 5 

Summary 

Clouds play a critical role in regulating the Earth’s radiative balance through their radiative 

characteristics, known as cloud radiative effects (CREs). These effects include heat exchange 

between the atmosphere and the surface via absorption and emission, as well as the regulation of 

solar energy through reflection and scattering (Arking, 1991; Chen et al., 2000). Recent studies 

indicate that the observed reduction in planetary albedo is primarily driven by a decline in global 

cloud fractions (Tseliouds et al. (2024), Weaver et al. (2024), Loeb et al., (2024)). However, certain 

regions have exhibited an increase in albedo, which enhances the reflection of solar radiation and 

mitigates surface warming. One prominent example is the southeastern Pacific Ocean, where 

enhanced cloud cover has contributed to higher albedo (Karlsson et al., 2023). Therefore, gaining 
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a more comprehensive understanding of the physical processes that drive cloud formation in this 

region is essential for improving the accuracy of climate model predictions, especially in the 

context of the ongoing global warming crisis.  

In this dissertation, several satellite-based observations (PATMOS-x, CLARA-A3, and CERES 

EBAF), reanalysis datasets (MERRA-2 and ERA-5), and climate models (14 CMIP6 AMIP 

climate simulations) are used to analyze changes in cloud properties and CREs and investigate 

physical processes over the southeastern Pacific Ocean.  

This dissertation has thoroughly investigated the changes in cloud properties including fraction, 

top temperature, and optical thickness since 1981 and their influence on changes in CREs since 

2000 and find physical processes driving these changes using multilinear regression methods and 

14 CCFs. In this final chapter, we summarize the key findings in relation to the research questions 

introduced in Chapter 1. Additionally, we propose directions for future research on this topic.  

 

5.1 Revisiting Research Questions 

1. Have clouds changed significantly over the tropical and subtropical 

ocean since 1981 using PATMOS-x v6.0? (Focus area for Chapter 2) 

In this chapter, PATMOS-x version 6.0 dataset is used to investigate long-term changes in cloud 

properties, including fractions, top properties, and optical thickness, over the ocean from 60°S to 

60°N along with other satellite-based dataset (CLARA-A3 and CERES EBAF) and two reanalysis 

datasets (ERA-5 and MERRA-2). Monthly mean cloudiness is calculated using generalized 

additive model backfitting and observational weighting to consider orbital drifts of satellites and 
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different local overpass times between satellites using Pv6.0 level2b dataset. The results show that 

mean cloud fraction is decreasing by 0.86% per decade, with maximums over the central Pacific 

Ocean near the equator at 3% per decade and midlatitudes. Over the southeastern Pacific Ocean, 

the west coast of South America, and the midlatitudes, it shows increasing trends in water clouds. 

Water clouds are decreasing over the western Pacific Ocean and the subtropical ocean. Ice clouds 

are decreasing over most ocean areas, except over the western Pacific Ocean. Changes in cloud 

fractions associated with cloud phase are connected to changes in cloud top heights. Cloud top 

heights increase over western Pacific Ocean at 0.4 km per decade. Decreases in cloud top heights 

happen over the southeastern Pacific Ocean as well as at other regions where marine stratocumulus 

clouds are dominant. These changes in cloud fraction and cloud top assignments both contribute 

to cloud radiative effect so that changes in radiative transfer process and Earth’s radiation budget 

should be investigated. Both AVHRR-based CDRs (PATMOS-x and CLARA-A3) show 

noticeable drops in mean cloud fractions beginning in 2000 and stabilizing in 2003. This decrease 

was not seen in the reanalyzes or CERES records, suggesting there may be an instrumental cause 

for this shift. It coincides roughly with the transition from the AVHRR/2 to AVHRR/3 instrument, 

as well as the introduction of the mid-morning orbit, though we have failed to identify a root cause. 

Further work is needed to better characterize this shift if we want to take full advantage of the 20 

years of data provided by the AVHRR cloud records in the 80s and 90s.  
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2. Have changes in clouds influenced cloud radiative effects? (Focus 

area for Chapter 3) 

Recent studies suggest that ongoing global warming is linked to a reduction in planetary albedo, 

primarily driven by a decline in global cloud fractions (Tseliouds et al. (2024), Weaver et al. (2024), 

Loeb et al., (2024)). However, certain regions, such as the southeastern Pacific Ocean, have shown 

an increase in albedo, which enhances the reflection of solar radiation and mitigates surface 

warming. This increases is driven by an increase in low cloud fractions, contributing to higher 

albedos (Karlsson et al., 2023). In this chapter, two satellite-based observations (PATMOS-x v6.0 

and CERES EBAF) are used to analyze how changes in clouds influence variations in CREs over 

the southeastern Pacific Ocean (from 30°S to 10°S, and from 120°W to 70°W). The results show 

an increase in cloud fractions (0.97% per decade), particularly a rise in water clouds (1.63% per 

decade), which is strongly correlated with the strengthening of the cooling effects from clouds in 

this region. The mean cooling effect in the study area has strengthened at a rate of −1.45 Wm2 per 

decade. The mean longwave CRE ranges from 11 to 20 Wm2 and shows weak seasonality. The 

warming effects of clouds has weakened at a rate of  −0.46 Wm2 per decade. The net CRE ranges 

from −20 to −60 Wm2, with a significant decreasing trend of −1.91 Wm2 per decade. 

 

3. Can we identify physical processes contributing to regional changes 

in clouds? (Focus area for Chapter 4) 

To investigate the physical processes driving changes in clouds, the CCF framework is applied 

using the ridge regression method, a type of the multilinear regression technique, along with 14 

CCFs from ERA5, including thermodynamic properties, wind speed, vertical velocity, and stability 

indices. The estimated cloud fractions derived from this framework show good agreement with 
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satellite-based observations (Pv6.0). Specifically, the water cloud fractions from the CCF 

framework show a strong correlation with EIS, with a correlation coefficient of 0.88 and a slope 

of 3.66 % per K. The box plot showing individual impacts of CCFs suggest that the increase in 

water clouds is primarily driven by an increase in EIS (0.30 K per decade). The enhanced 

atmospheric stability is attributed to a combination of decreasing in surface temperature (−0.10 K 

per decade) and increasing atmospheric temperature at 700 hPa (0.21 K per decade) over the study 

area.  

 

5.2 Future work 

In the future, we plan to investigate the role of clouds in CRE changes, as well as the relationships 

between cloud fractions and CCFs in different cloud regimes that have shown significant changes 

over last four decade, including the central and western Pacific Ocean, as shown in Figure 2.3. 

Especially, the results in Appendix C suggests the importance of investigation of individual role 

and impacts of CCFs to the model performance. Cloud fractions derived from the CCF framework 

using the ridge regression technique show strong agreement with observations, as shown in 

Chapter 4. In contrast, as shown in Chapter 2, climate models show large differences in the mean 

and trends of cloud fractions, in addition to high variability among them. We will focus on regions 

with the largest variability between climate models and examine the feasibility of simulating cloud 

fractions using multilinear regression coefficients derived in this study, along with CCFs in climate 

models. Additionally, we will explore cloud sensitivity and feedback mechanisms based on these 

results. 
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Appendix A 

Variability in climate simulations. 

Net CRE is strongly influenced by cloud fraction and cloud properties such as temperature 

and thickness. Therefore, challenges in accurately simulating clouds contribute to the high 

variability in radiative effects across different climate models. To investigate, 14 Coupled Model 

Intercomparison Project Phase 6 (CMIP6; O’Neill et al., 2016; Eyring et al., 2016) AMIP climate 

simulations are used. Specifically, purpose of CMIP6 AMIP simulation is to isolate the 

atmospheric response to observed sea surface temperature and sea ice using atmosphere-only 

models including both natural and anthropogenic forcings such as greenhouse gases, aerosols, 

solar variability, volcanic eruptions, etc. Due the using atmospheric model only, it reduces 

uncertainty from ocean model biases. Therefore, CMIP6 AMIP climate simulations have been 

used widely for attribution studies and evaluation of atmospheric studies ().  

Figure A1 shows maps of mean net CRE from 14 CMIP6 AMIP climate simulations for 

the period from 2000 to 2014. The strongest cooling effects of clouds are observed along the west 

coast of South America, driven by the prevalence of maritime stratocumulus clouds in this region. 

Additionally, the ITCZ exhibits highly negative net CRE due to the presence of strong convective 

clouds. However, the magnitude and spatial features differ between climate models and show low 

similarity with CERES EBAF. For example, GISS-E2-1-G and GISS-E2-2-G underestimate the 

cooling effects along the west coast of South America. IPSL-CM6A-LR and IPSL-CM6A-MR1 

show different spatial pattens of cooling effects in the same region. Lastly, most climate 

simulations overestimate the cooling effects over the ITCZ region compared to CERES EBAF. 
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Figure A1: Map of mean net CRE (W∙m-2) from CERES EBAF dataset and CMIP6 AMIP climate 

simulations. 

 

Figure A2 shows maps of root mean squared error (RMSE) of net CRE between CERES EBAF 

and CMIP6 AMIP climate simulations for the period from 2000 to 2014. The RMSE values 

between CERES EBAF and climate simulation are calculated using following equation: 
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𝑅𝑀𝑆𝐸 = Q∑ R𝑦0(1(-,) − 𝑦&'!($,)S
.A

)
𝑁  

 

where 𝑦0(1(- is net CRE from CERES EBAF and 𝑦&'!($ is net CRE from climate simulation. All 

climate simulations show high RMSE values over the study area, with a maximum RMSE 

exceeding 50 Wm-2. Specifically, CESM2-FV2, CESM2-WACCM-FV2, IPSL-CM6A-LR, 

IPSM-CM6A-MR1, and MPI-ESM-1-2-HAM show high RMSE values over the ITCZ regions. 

Most climate simulations, including IPSL-CM6A-LR, IPSL-CM6A-MR1, MPI-ESM1-2-LR, and 

GFDL-CM4, show high RMSE values over the southeastern Pacific Ocean along the coast of 

South America.  
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Figure A2: Map of RMSE of net CRE (Wm-2) between CERES EBAF dataset and CMIP6 AMIP 

climate simulations. 

 

Figure A3 shows maps of net CRE trends from CERES EBAF and CMIP6 AMIP climate 

simulations for the period from 2000 to 2014. According to CERES EBAF, the dominant trend 

during this period is a decrease in net CREs, indicating a strengthening of the cooling effects of 

clouds. This trend is consistent with the patterns observed from 2000 to 2023 in the study area. 

However, climate simulations reveal different spatial patterns of net CRE trends, with notable 
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variations among them. Many CMIP6 simulations show a predominant increase in net CREs, with 

a significant rise. Net CRE is closely linked to Earth’s energy budget and has a significant impact 

on surface and atmospheric temperature. Therefore, validation and evaluation climate simulations 

using observations are crucial for future projections. 

 

 
Figure A3: Map of trend in net CRE (Wm-2) between CERES EBAF dataset and CMIP6 AMIP 

climate simulations. 
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Figure A4 shows maps of mean cloud fraction, a crucial component of CRE, from Pv6.0 and 

CMIP6 AMIP climate simulations for the period from 2000 to 2014. Overall, climate simulations 

tend to underestimate cloud fractions compared to observations over the study area, particularly in 

regions dominated by maritime stratocumulus clouds. Additionally, magnitudes and spatial 

features of mean cloud fractions vary across different climate models.  

 

 
Figure A4: Map of mean cloud fraction (Wm-2) from Pv6.0 dataset and CMIP6 AMIP climate 

simulations. 
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Figure A5 shows maps of RMSE of cloud fraction for total clouds between Pv6.0 and CMIP6 

AMIP climate simulations for the period from 2000 to 2014. Due to the underestimation of cloud 

fraction in climate simulations, as shown in Figure A4, RMSE is especially high over the 

southeastern Pacific Ocean. Most clime models have a maximum RMSE exceeding 50 to 60%. 

This indicates that net CRE, especially for shortwave, from climate models can differ with 

observations due to the role of maritime stratocumulus clouds over this area.  
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Figure A5: Map of RMSE of cloud fraction (Wm-2) between Pv6.0 dataset and CMIP6 AMIP 

climate simulations. 

 

Figure A6 shows maps of the trend in cloud fraction from Pv6.0 and CMIP6 AMIP climate 

simulations for the period from 2000 to 2014. Observations shows increases in total cloud fraction 

over the ITCZ region and some parts of the southeastern Pacific Ocean. However, most climate 

models differ from observations from each other in both the magnitude and spatial pattern of 

increases and decrease. It represents the high uncertainties of estimating cloud fraction from 
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climate simulations because of that clouds must be parametrized to represent physical processes 

in climate simulations (Myers and Norris, 2016). 

 

 
Figure A6: Map of trend in cloud fraction (Wm-2) from Pv6.0 dataset and CMIP6 AMIP climate 

simulations. 
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Appendix B 

Investigate influence of ENSO on these temperature changes over the 

southeastern Pacific Ocean. 

The ENSO is the primary predictor for global climate distortions. These can persist over several 

seasons and thereby produce severe regional effect. The bi-monthly Multivariate ENSO index 

(MEI.v2) is the timeseries of the leading combined Empirical Orthogonal Function (EOF) of five 

different variables (sea level pressure (SLP), sea surface temperature (SST), zonal and meridional 

components of the surface wind, and outgoing longwave radiation (OLR)) over the tropical Pacific 

basin (30S-30N and 100E-70W), as shown in Figure A1. From 1980 to 1998, El Nin"o events were 

more frequent, while La Nin"a have been more dominant since 1999. Key features of composite 

positive MEI events (warm, El Nin"o) include anomalously warm SSTs across the east-central 

equatorial Pacific, anomalously high SLP over Indonesia and the western tropical Pacific and low 

SLP over the eastern tropical Pacific, reduction or reversal of tropical Pacific easterly winds (trade 

winds), suppressed tropical convection (positive OLR) over Indonesia and Western Pacific and 

enhanced convection (negative OLR) over the central Pacific. Key features of composite negative 

MEI events (cold, La Nin"a) are of mostly opposite phase.  
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Figure B1: a) timeseries of MEI.v2 from https://psl.noaa.gov/enso/mei/. b) correlation between 

MEI.v2 and sea surface temperature from https://psl.noaa.gov/data/timeseries/month/DS/MEIV2.   

 

Figure A2 shows the correlation coefficient between MEI.v2 and temperature at the surface and 

700 hPa from the ERA5 reanalysis dataset from 1981 to 2023. In the southeastern Pacific Ocean, 

the correlation between surface temperature and MEI.v2 is positive north of 25°S, indicating an 

increase in surface temperature during positive MEI.v2 phases (El Nin"o). Conversely, a negative 

correlation is observed south of 25°S, where surface temperature decreases during El Nin"o events. 

Similarly, the correlation between atmospheric temperature at 700 hPa and MEI.v2 shows a pattern 

similar to that of surface temperature. 

 

https://psl.noaa.gov/enso/mei/
https://psl.noaa.gov/data/timeseries/month/DS/MEIV2
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Figure B2: a) map plot of correlation coefficient between MEI.v2 and surface temperature from 

ERA5. b) map plot of correlation coefficient between MEI.v2 and temperature at 700 hPa from 

ERA5.  (Top: Global scale from 60°S to 60°N, Bottom: southeastern Pacific Ocean). 

 

Figure A3 shows map of trends in temperature at the surface and 700 hPa from ERA5, along with 

trends derived using a linear regression method based on the relationship between ERA5 and 

MEI.v2 from 1981 to 2023. The trends in surface temperature derived using a linear regression 

also show decreases, but with a smaller magnitude compared to ERA5. Also, North of 5°S, the 

trends in surface temperature continue to show decreases, whereas trends from ERA5 indicate an 

increase. This discrepancy requires further investigation. The trends in atmospheric temperature 

at 700 hPa derived using a linear regression also show decreases, whereas trends from ERA5 show 

significant increases. Consequently, ENSO events can partially contribute to the decrease in 
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surface temperature, but they alone cannot fully explain the trends in surface temperature and 

atmosphere temperature at 700 hPa observed in ERA5.  

 

 
Figure B3: a) map plot of trends in surface temperature (a) and atmospheric temperature at 700 

hPa (b) from ERA5, along with surface temperature (c) and atmospheric temperature at 700 hPa 

(d) derived using a linear relationship between MEI.v2 and ERA5.  
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Appendix C 

Additional cloud controlling factor framework experiment. 

This additional experiment was suggested by the Ph.D. committee members during the defense. 

Vertical velocity is particularly closely associated with relative humidity in high cloud processes 

over the tropical ocean. As shown in Figure 4.2, the spatial patterns of R-squared values for vertical 

velocity are similar to those for relative humidity, although the magnitudes are generally lower. 

Therefore, the main objective of this experiment is to evaluate the performance of the multilinear 

regression model without vertical velocity variables, in comparison to the model that includes all 

CCFs.  

Figure C1 compares the performane of the multilinear regression model using all CCFs with a 

modified version that excludes vertical velocity, focusing on the R-squared values, mean cloud 

fraction, and their trends from 1981 to 2023 for water clouds. The left panels show results from 

the full model including vertical velocity, while the middle panels show the outputs without 

vertical velocity, and the right panels display the differences between the two. Removing vertical 

velocity results in a slight decrease in R-squared values across much of the tropics and subtropics, 

particularly over the midlatitudes.  
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Figure C1: a) map plots of R-squared, mean, and trend of water cloud fractions from the multilinear 

regression model using all CCFs, all CCFs excluding vertical velocity, and their differences.  

 

The mean cloud fraction fields remain nearly identical between the two models, with differences 

generally below 1%, implying that vertical velocity does not strongly affect the spatial distribution 

of average cloud cover. In contrast, the trends in water cloud fraction show more noticeable 

sensitivity to vertical velocity. The difference map highlights regions, such as the southeastern 

Pacific and western Indian Ocean, where omitting vertical velocity alters the estimated decadal 

trend by more than 0.2% per decade. These results suggest that while vertical velocity has a limited 
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impact on mean cloud fraction, it is more influential in capturing regional cloud fraction trends 

and improving model performance, particularly in dynamically active regions. 

Figure C2 presents the R-squared values, mean cloud fractions, and their trends derived from the 

multilinear regression model using all CCFs, compared to a model excluding vertical velocity, for 

the period from 1981 to 2023 for ice clouds. The difference maps in the right column highlight the 

impact of excluding vertical velocity. The R-squared values slightly decrease when vertical 

velocity is removed, particularly in convectively active regions such as the western Pacific, Indian 

Ocean, and South America, indicating that vertical motion contributes to explaining ice cloud 

variability, though its influence is modest compared to moisture-related factors.  
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Figure C2: a) map plots of R-squared, mean, and trend of ice cloud fractions from the multilinear 

regression model using all CCFs, all CCFs excluding vertical velocity, and their differences.  

 

The mean ice cloud fraction fields from both models remain nearly identical, with minimal 

differences under 1%, suggesting that vertical velocity has little effect on the average spatial 

distribution of ice clouds. However, the trend maps show more pronounced differences. Regions 

over the tropical Indian Ocean, the Maritime Continent, and parts of the Pacific exhibit changes in 

the trend magnitude exceeding ±0.2% per decade. These discrepancies imply that vertical velocity 

plays a more significant role in modulating temporal changes in ice clouds, likely through its 

connection to deep convection and large-scale vertical ascent. Overall, while the exclusion of 
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vertical velocity has a limited effect on mean state estimates, it slightly reduces model performance 

and affects trend estimates in dynamically active regions. 
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Appendix D 

Implementation of CCF frameworks in climate simulations. 

Climate simulations are widely used to validate our understanding of atmospheric processes and 

to investigate future climate changes. They are useful for studying changes in clouds and their 

impact on Earth’s radiation budget under different scenarios. Figure B1 shows a comparison 

between the satellite-based total cloud fraction from Pv6.0 and the corresponding outputs from the 

14 CMIP6 AMIP climate simulations over the period from 1981 to 2014. The top-left panel shows 

the mean total cloud fraction from Pv6.0, while the middle-left panel presents the ensemble mean 

from the 14 climate simulations. The spatial distributions are broadly similar, capturing key large-

scale patterns. The bottom-left panel shows the RMSE between the ensemble mean of the climate 

simulations and Pv6.0, highlighting regions of significant model-observation disagreement. RMSE 

values are particularly high over the maritime stratocumulus cloud regimes including the 

southeastern Pacific Ocean. This comparison underscores the importance of observational 

benchmarks for evaluating and constraining cloud simulations in climate models, particularly 

given the substantial spread in model performance across different regions. 
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Figure D1: Maps of mean cloud fraction from Pv6.0 and ensemble mean from 14 CMIP6 AMIP 

climate simulations. Maps of RMSE between Pv6.0 and individual and ensemble mean from 14 

climate simulations.  

 

Figure D2 compares the CMIP6 AMIP climate simulations with the highest (Figure D2a) and 

lowest (Figure D2b) RMSE in total cloud fraction relative to the Pv6.0 dataset. Each colored region 

represents the model that contributes the most to the RMSE in that area, allowing for the 

identification of models with systematically poor or strong performance across different regions. 
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Figure D2a highlights the regions where individual models contribute most strongly to the highest 

RMSE simulation. Notably, the MPI-ESM1-2-HAM model frequently appears across the tropical 

oceans and the midlatitude storm tracks, indicating its relatively poor performance in capturing 

observed cloud fractions in these regions. 

In contrast, Figure D2b shows the distribution of dominant model contributions in the simulation 

with the lowest RMSE. Here, models such as CESM2 and GFDL-ESM4 dominate large areas, 

particularly in the tropics and subtropics, suggesting their improved ability to replicate observed 

cloud distributions. These results emphasize the spatial heterogeneity in model performance and 

underscore the importance of model selection and evaluation when interpreting simulated cloud 

responses in climate projections. The identification of model-specific strengths and weaknesses 

can guide future model development and help prioritize regions for targeted improvements in cloud 

representation. 

 

 
Figure D2: Maps of the CMIP6 climate simulation with the highest (left) and lowest (right) RMSE 

among the 14 climate simulations.  
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Figure D3 presents the spatial distribution of dominant CCFs influencing water and ice cloud 

fractions. Figure B3a and B3b show the CCFs that yield the highest coefficient of determination 

(R²) in the multilinear regression models for water and ice clouds, respectively. Figure 3c and 3d 

display the individual CCFs with the largest absolute contributions to the predicted cloud fractions 

for water and ice clouds. In Figure B3a, estimated inversion strength (EIS, shown in dark blue) 

emerges as the dominant explanatory factor for water cloud variability across extensive regions, 

particularly over the subtropical eastern oceans and midlatitudes. This aligns with the well-

established role of atmospheric stability in supporting low-level stratiform clouds. Similarly, 

Figure 3c confirms EIS as the most influential factor in water cloud fractions in these regions, 

highlighting its consistent importance both statistically (R²) and dynamically (via contribution 

magnitude). Other influential factors include sea surface temperature (Tsfc, red) and lower-

tropospheric stability (e.g., vertical velocity, green), particularly over the western Pacific and 

Indian Oceans. 

For ice clouds (Figure D3b and D3d), water vapor and upper-tropospheric stability (UTS, dark 

blue) play major roles in both explanatory power and contribution magnitude. In tropical and 

midlatitude convective regions, ice cloud variability is often linked to thermodynamic conditions 

and large-scale ascent, as reflected by strong influences from vertical velocity and upper-

tropospheric variables. This figure underscores the regional variability in dominant cloud-

controlling factors and highlights distinct physical mechanisms shaping water and ice cloud 

distributions. These insights are essential for improving cloud representation in climate models 

and understanding cloud feedback in a warming climate. 
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Figure E3: Maps of the CCF with the highest R-squared value (top) and the largest contribution to 

cloud fraction (bottom) for water clouds (left) and ice clouds (right). 

 

Figure D4 evaluates the performance of a multilinear regression model in estimating cloud 

fractions based on CCFs from ten CMIP6 AMIP climate simulations, using Pv6.0 as the 

observational reference. Figure D4a shows the spatial distribution of the mean cloud fraction 

produced by the regression model, capturing key climatological patterns such as elevated 

cloudiness in the ITCZ, midlatitude storm tracks, and subtropical stratocumulus regions. Figure 

D4b presents the RMSE between the regression-based estimates and the observed Pv6.0 cloud 

fractions. Lower RMSE values are observed over subtropical and midlatitude oceanic regions, 

indicating that the regression model—driven by physically based CCFs—can effectively 
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reproduce observed cloud distributions in many areas. However, higher RMSEs appear over 

convective zones such as the western Pacific and Indian Ocean, suggesting limitations in the linear 

framework for representing complex cloud dynamics in those regions. 

The time series in Figure D4c further compares the temporal variability and trends in cloud 

fractions. The regression-based ensemble mean (red) more closely follows the Pv6.0 observations 

(black) than the direct CMIP6 AMIP climate simulations ensemble mean (blue), indicating that 

using CCFs within a regression framework can enhance agreement with observed climatology. 

The individual realizations (grey for direct CMIP6 output, yellow for regression estimates) show 

the spread in model variability, which remains large but is partially constrained by the regression 

approach. Overall, this figure highlights the potential of CCF-based statistical models to bridge 

gaps between climate model output and satellite observations, improving both spatial and temporal 

consistency in cloud fraction estimation. 
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Figure D4: Maps of the mean cloud fraction (a) estimated using the multilinear regression model 

and CCFs from 14 CMIP6 AMIP climate simulations and RMSE (b) relative to Pv6.0. c: timeseries 

of mean cloud fraction over the ocean from 60°S to 60°N (Black: Pv6.0, Yello: individual mean 

cloud fraction estimated using the multilinear regression model and CCFs from 14 climate 

simulations, Red: ensemble mean of the cloud fraction estimated from the multilinear regression 

model and CCFs from 14 climate simulations, Blue: ensemble mean of the cloud fraction from the 

14 climate simulations, Grey: individual mean cloud fractions from the 14 climate simulations). 
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