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1. Introduction 

Ice clouds play an important role in the modulation of Earth’s upper tropospheric and 

overall radiation budget. They can vary in their ice crystal morphology (habit) based on 

temperature, moisture, and other characteristics in the developmental life cycle of the cloud 

(Heymsfield et al. 2017). Ice clouds also have different radiative effects on the global climate 

depending on the physical characteristics of the cloud such as optical thickness and cloud top 

height. Optically thin ice clouds generally have an overall warming effect because the absorption 

of outgoing longwave radiation is larger than the cooling effect due to the reflection of incoming 

solar radiation. In contrast, optically thicker ice clouds generally have a larger shortwave 

reflectance component than longwave absorption. The International Commission on Clouds and 

Precipitation Commission states that we currently have an overall lack of understanding in how 

ice clouds’ geographic distribution, properties, lifetimes, and cloud top heights will respond to 

anthropogenic climate change (ICCP, 2021).  

Ice clouds also remain one of the more difficult components to represent in global climate 

models making accurate long-term satellite observation records of these parameters important for 

understanding climate change-related feedbacks. A misrepresentation of ice clouds in global 

climate models can lead to errors in climate and weather forecasting and is a source of 

uncertainty for climate change projections (Waliser et al., 2009). Furthermore, observational data 

records on the order of three decades or more are required for accessing climate change signals 

in clouds (Wielicki et al., 2013), highlighting the importance of inter-satellite data records.  

Ice cloud optical thickness (IOT) is an especially important parameter for understanding 

the radiative impact of thin cirrus, however, it is a challenging parameter to retrieve from passive 

satellite instruments due to their extensive spatial scales, retrieval assumptions, and opaqueness. 
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Visible imagers must account for the scattering properties of the cloud as well as the reflective 

properties of the underlying surface to obtain an IOT measurement. Infrared radiometers must 

consider the height of the cloud as well as the emissive properties of the underlying surface. A 

historical lack of direct in-situ measurements motivates a validation and examination of the 

accuracy of passive IOT retrieved products. Recent advancements in geo-stationary earth orbit 

(GEO) capabilities with the launch of next generation imagers such as the Advanced Baseline 

Imager (ABI) and the Japanese Advanced Himawari Imager (AHI) provide new opportunities to 

leverage ground-based measurements due to greatly increased sampling over individual ground-

based data collection sites within the field of view of the GEO satellite compared to individual 

low earth orbit (LEO) satellites. The geostationary spectroradiometers’ advantage of increased 

sampling over individual validation sites is advantageous for validating satellite retrievals of 

cloud properties and obtaining a better understanding how they can be improved.  

The goal of this thesis is to create an ice cloud property retrieval for the HSRL with 

uncertainty estimates to validate two inter-satellite IOT retrieval algorithms processed on AHI; 

the NASA Cloud Property Algorithm (NASA CLDPROP) and NOAA Enterprise IOT retrievals 

as well as examine the validity of some of the retrieval assumptions. To accomplish this goal, we 

utilize data collected by the University of Wisconsin High Spectral Resolution Lidar (HSRL) 

during the Cloud-Aerosol and Monsoon Process Philippines Experiment (CAMP2EX) (Reid et 

al., 2023) in Manila, Philippines and the Propagation of Intra-Seasonal Tropical Oscillations 

(PISTON) (Sobel et al., 2021) mission in the Philippines Sea and the resources of the Science 

Investigator-led Processing System (SIPS) to process the cloud retrieval algorithms on AHI.  The 

data collected by the HSRL during the PISTON campaign provides a unique over-ocean dataset 

that can be used in conjunction with the CAMP2EX urban dataset to examine the validity of the 
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assumptions in the retrieval pertaining to the ice scattering models as well as the surface 

independently. We then expand on the HSRL-AHI validation results by comparing the NASA 

CLDPROP retrieval processed on AHI during the CAMP2EX and PISTON campaigns to co-

located MODIS and VIIRS CLDPROP IOT CLDPROP observations in the PISTON domain. 

The AHI-MODIS-VIIRS comparison will then be used to examine if the HSRL-AHI validation 

effort can be translated to MODIS and VIIRS. To summarize, the objectives and goals of this 

work are as follows 1) Develop an HSRL ice cloud optical thickness retrieval. 2) Validate the 

NASA CLDPROP and NOAA Enterprise ice cloud optical thickness retrievals processed on AHI 

with the HSRL ice cloud optical thickness retrieval and examine the validity of the ice scattering 

and surface assumptions in the retrieval. 3) Compare the HSRL-validated NASA CLDPROP 

retrieval processed on AHI to the NASA CLDPROP retrieval processed on MODIS and VIIRS 

to determine if the HSRL-based validation effort can be translated to the LEO imagers. 

The order of this thesis is as follows: In section 2, we discuss the characteristics and 

importance of ice clouds as well as the significance of passive remote sensing cloud datasets. In 

section 3, we examine the Advanced Himawari Imager, provide a brief description of the 

physical theory behind visible and infrared cloud optical thickness retrievals as well as introduce 

the NASA CLDPROP and NOAA NOAA Enterprise retrievals. In section 4, we introduce the 

High Spectral Resolution Lidar; its advantages over traditional lidars and the methods to obtain 

geophysical parameters of interest such as optical thickness, backscatter cross-section, 

depolarization ratio and the signal to noise ratio. In section 5 we propose an ice cloud optical 

thickness retrieval for the HSRL specifically developed for this validation effort that enhances 

the dynamic range and reduces uncertainty of HSRL IOT measurements through selective 

vertical averaging of raw photon counts before the forward model inversion process. The HSRL 
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IOT retrieval also includes uncertainty quantification using a Poisson bootstrapping 

methodology. In section 6, the constructed HSRL IOT retrieval is used to validate the two 

operational NASA and NOAA optical thickness products over an oceanic and urban 

environment. The thesis is concluded in section 7 with a discussion and conclusion. 

The order of this thesis is as follows: In section 2, we present the necessary background 

information to understand why this research is important. The 2.1 subsection briefly describes 

the distribution of ice clouds on this planet as well as their diversity in terms of optical thickness, 

microphysical properties and radiative impacts. The above considerations are important because 

the HSRL’s dynamic range limitation and fixed regional position in this study result in a specific 

subset of ice clouds being considered for retrieval evaluation. Without directly validating the full 

diversity spectrum of ice clouds with different microphysical properties and optical thickness 

values, it is unclear how the results in this thesis would translate to ice clouds excluded from this 

dataset. Section 2.1 also introduces the significance of long-term satellite observations as well as 

a brief history of the instruments providing inter-satellite data records. The construction of inter-

satellite data records such as that of the NASA CLDPROP and NOAA Enterprise products 

motivates the validation of these retrieval algorithms. Section 2.2 introduces the Advanced 

Himawari Imager, a simplification of its optical design and data collection system as well as the 

recent advancements in geostationary spectroradiometer technology. The recent advancements in 

GEO technology such as an on-board calibrator and improvements in the number and position of 

its spectral channels facilitate the ability to accurately run stable inter-satellite cloud optical 

property retrieval algorithms such as NASA CLDPROP and NOAA Enterprise on AHI for 

retrieval evaluation. 
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Section 2.3 and 2.4 provide a brief theoretical description of the visible (NASA 

CLDPROP and NOAA Entperise visible) and infrared (NOAA Entperise infrared) retrievals 

used in this thesis with a focus on the assumptions within each retrieval as well as the 

methodology employed. The purpose of these sections is to provide a foundation to understand 

how we are able to make conclusions about specific retrieval assumptions in the results section 

of this paper (section 4). Section 2.5 introduces the UW-HSRL and describes why this 

instrument is currently the best in-situ lidar for measuring ice cloud optical thickness. Section 2.6 

introduces the CAMP2EX and PISTON field campaigns. The section also outlines the validation 

methodology and why the HSRL is the best available tool to construct this comparison.  

Section 3 is the methods section. Section 3.1 described the HSRL ice cloud optical 

thickness retrieval developed specifically for this study. It goes over the technique used to 

calibrate the HSRL data (section 3.1.1) and the forward model equations implemented in the 

retrieval (section 3.1.2). The section also outlines the algorithm used to retrieve an IOT 

measurement developed specifically for this study (section 3.1.3) and the methodology for 

estimating the uncertainty of those IOT measurements (section 3.1.4). Section 3.2 outlines the 

co-location of the AHI pixels with the ground-based HSRL and the quality control performed on 

both the NASA CLDPROP and NOAA enterprise products as well as on the HSRL ice cloud 

optical thickness retrieval. 

Section 4 shows the results of this thesis. The first major subsection (4.1) outlines the 

evaluation of the NASA CLDPROP and NOAA Enterprise (visible and infrared) retrievals 

processed on AHI by the HSRL ice cloud optical thickness retrieval during the CAMP2EX and 

PISTON field campaigns. The retrieval algorithms assumptions are investigated relating ice 

scattering model used as well as the surface assumption employed. This is performed by the 
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approach outlined in section 2.6.2. The second section (4.2) uses the validation results in section 

4.1 and determines if the AHI based validation effort for the NASA CLDPROP retrieval can be 

transferred to the same retrieval processed on MODIS and VIIRS. The thesis is concluded with 

summary and conclusions. 

 

 

2. Background 

2.1 Characteristics of Ice Clouds 

2.1.1 Distribution and Climatology 

 

In this section, we examine the physical climatology of ice clouds to show the frequency 

of ice clouds examined in the GEO-LEO comparison (full range of IOT) in section 4.2 as well as 

the subset of ice clouds validated by the HSRL (cirrus) in section 4.1. The reasoning for 

examining the climatology of ice clouds and their optical thickness frequencies are for the 

following reasons. 1) Provide an introduction to ice clouds and their global climatology, 2) 

contextualize their frequency in the validated region,  3) introduce how optical thickness impacts 

the ice cloud radiative effects and 4) examine the subset of ice clouds to be validated (within the 

dynamic range of the HSRL) and their radiative effects.  

There are several works of literature that report different global ice cloud frequencies. 

These statistics are variable based on the optical thickness ranges, instrument/dataset 

sensitivities, and filtering criteria, as well as the metric in which they are reported (e.g. 

percentage reported relative to all sky conditions or percentage reported relative to cloudy 

conditions). One of the most effective methods for detecting ice clouds, especially cirrus, is by 

using an active lidar such as the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite 
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Observations (CALIPSO) (Sassen, Wang and Liu, 2008). Sassen et al. 2008 were the first to 

derive the global frequency distribution of cirrus clouds based on combined active CALIPSO 

and CloudSAT measurements. Using a variety of threshold conditions aimed at isolating only 

cirrus clouds (IOT < 3) as would be visible from a surface observer (i.e., multi-layered ice over 

water clouds not considered), they determined a global cirrus cloud frequency of 16.7%. Hong et 

al. 2015 estimated the global ice cloud frequency using the CloudSat Data Processing Center and 

radar/lidar product (DARDAR) measurements over a broad range of optical depth values for all 

ice clouds and found the frequency to be 53% for all clear and cloudy pixels globally. The 
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frequency of occurrence of all ice clouds is shown in Figure 1.

 

Figure 1- The frequency distribution of ice clouds by optical thickness(). The weighted 

frequency (ex: 0.06 for (a)) relative to the total frequency (ex: (1) for (a1)) (Adapted from Hong 

et al. 2015) 

  
It can be observed that large ice cloud frequency of occurrence is associated with climate 

regimes; for example, in the tropics, they are prevalent due to deep convection from the Inter-

Tropical Convergence Zone (ITCZ) and/or monsoonal activity. Examples of locations that 

experience deep convection as described above include the Pacific warm pool as well as the 

(a1) Frequency x1.0
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Congo and Amazon basins. Ice clouds are also common in the mid-latitudes over the Southern 

Ocean in the southern hemisphere and the North Pacific and Atlantic in the northern hemisphere. 

Ice clouds are less common in the eastern portion of the southern hemisphere oceanic basins and 

regions of midlatitude upwelling. Vertically, ice clouds are commonly found above 10 km in the 

tropics and as low as 5 km in the mid-latitudes. The validation region in this study as will be 

outlined in section 2.6.1 is over the western Pacific near southeast Asia and over the maritime 

continent. The frequency of ice clouds in that region is very high approximately 85% by the look 

of Figure 1a. The study of Matus et al. 2016 further showed using combined 

CloudSAT/CALIPSO measurements that this region has some of the highest frequencies of 

multi-layered scenes on the planet, with multi-layer cloud scenes being as high as 50% in the 

region (Matus and L'Ecuyer, 2017).  

Although ice cloud frequency is an important metric, the ice cloud property such as ice 

cloud optical thickness is an important parameter for determining ice cloud radiative effects. The 

optical thickness and distribution of clouds are also important for regional heating rates. For this 

study, we are mostly concerned with ice clouds within the dynamic range of our HSRL 

observations ( Max  < ~1.5), however, we do compare a larger range of optical thickness values 

in the GEO-LEO comparison in section 4.2. The global distribution of optical thickness values in 

the Hong et al. 2015 study are shown in Figure 1a-e. The overall distribution of ice cloud optical 

thickness is skewed towards optically thinner clouds, with approximately 79% having an optical 

thickness less than 3.0 and 40% having an optical thickness less than 0.3. Thin ice clouds (Figure 

1b;  ~ 0.03-0.3) are uniformly distributed over the tropics and are also present in northern 

hemisphere polar regions. Opaque ice clouds (Figure 1c;  ~ 0.3 - 3) are the most common group 

and have high occurrence in convective regions such as the Pacific warm pool and over large 
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forest basins. Optically thicker ice clouds (Figure 1d;  ~ 3 - 20) are most prevalent over mid-

latitude terrestrial surfaces and the Southern Ocean while the optically thickest group (Figure 1e; 

 > 20) occurs in regions of deep convection, mid-latitude storm tracks, and the Southern Ocean.  

 The distribution and optical thickness characteristics displayed in the above climatology 

figures combined with the dynamic range of the HSRL stress that a specific subset of ice clouds 

are being considered for retrieval evaluation. In regards to the region of interest for this study 

(west pacific and Southeast Asia), these are all thin and most opaque ice clouds. Without directly 

validating the full diversity spectrum of ice clouds with different microphysical properties and 

optical thickness values, it is unclear how the results in this thesis would translate to ice clouds 

excluded from this dataset. In the next section, we will examine the variety of different 

microphysical properties of ice clouds and state why the microphysical properties of the ice 

cloud are important.  

 

2.1.2 Microphysical Properties  

As the name implies, ice clouds are composed of ice particles which can take on a variety 

of shapes, sizes, orientation, and surface textures. The ice crystal morphology in turn influences 

the single scattering properties of a cloud, especially at the solar wavelengths and is important in 

determining its radiative effect along with other cloud macrophysical properties (Fu, 2007; 

Stephens et al., 1990; Zhang, Macke and Albers, 1999). There have been many modeling, 

observational and laboratory studies investigating ice crystal morphology as well as the 

formation parameters and magnitudes that ultimately determine them. (Bailey and Hallett, 2009) 

were able to bring their laboratory results into an agreement with direct observations from a 

Cloud Particle Imager that images the ice crystals directly from aircraft and allows for later 
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categorization by shape and size by manual or automated methods (Xiao et al., 2019). Figure 2 

(Bailey and Hallett 2008), shows the impact of temperature and super saturation on ice crystal 

habit from laboratory studies. It is evident from the figure that there is a large variety of size and 

shapes of ice crystals that could be contained within an ice cloud, many of which are irregular. 

Furthermore, there may be inter-cloud ice crystal variability stratified by height, with the crystals 

near the cloud top being on the order of 10 um and crystals near the base being on the order of 

Figure 2 -Ice cystal morphology variation by temperature and super-saturation from (Bailey and 

Hallet 2008) 
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thousands of microns (Baran, 2012). Despite the many irregularities, there appears to be distinct 

regimes within the diagram such as columnar crystals at very cold temperatures (~ - 60 C) and 

singular crystals at warmer temperatures and higher ice saturation. Nevertheless, as the habit of 

the ice cloud has a profound effect on the scattering phase function it is of utmost importance for 

radiation budget applications and passive cloud optical thickness retrievals, such as those in the 

visible and infrared, to correctly approximate the scattering associated with the ice crystal 

morphology. 

 

2.1.3 Radiative Importance 

Ice clouds have competing warming and cooling effects due to their reflection of solar 

radiation and the absorption of terrestrial radiation (Stephens et al., 1990; Liou, 1986). The 

properties of the cloud such as cloud top height, optical thickness as well as the microphysical 

properties are important parameters for estimating their radiative effect. Using the passive 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder 

(AIRS) data in conjunction with a radiative transfer model, it was determined that thin tropical 

oceanic cirrus (optical depths between 0.02-0.3) have a net radiative forcing at the top of the 

atmosphere (TOA) between 0-20 Wm-2, with the radiative forcing increasing semi-linearly with 

optical depth in that range (Lee et al., 2009). More recently a larger spectr um of optical depth 

(0.01 - ~100) values were analyzed for the year of 2008 using combined CALIPSO/CloudSAT 

measurements as inputs into a radiative transfer model and were shown to have a net warming of 

~5.1 +/- 3.8Wm-2 (Hong, Liu and Li, 2016). Figure 3 is borrowed from Hong et al. 2016 to show 

the significance of optical depth on ice cloud radiative effect.  
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Figure 3- Radiative Effect of Ice Clouds by Optical Thickness (Hong et al. 2016). The redline is 

the longwave warming effect, the blue is the shortwave cooling effect and the black line is the 

net radiative effect. The green dashed lines overlayed on the authors figure shows the mean 

difference in radiative forcing between 0.5 and 1 optical depth units. 

 

Ice clouds with  < 4.6 have a warming effect, with the largest warming contribution coming 

from    Of significance is the increase in slope of the longwave warming component 

relative to the shortwave cooling between optical depths from about ~ 0.2 – 1.1, which results in 

the peak of the warming contribution. Previous studies such as Holz et al. 2016 have shown 

visible retrieved optical depths, such as from the MODIS C5 retrieval, can have biases on the 

order of 2:1 relative to the CALIPSO unconstrained retrieval. By the results of Hong et al. 2016, 

the 2:1 bias would result in approximately a ~8Wm-2 disagreement in net ice cloud radiative 

forcing between the two products if the MODIS retrieved IOT was 1 and the unconstrained 

TOA Mean Net Radiative Effect by Optical Depth

DICRE ~ 8 Wm-2
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CALIPSO IOT was 0.5. It should however be mentioned that this is a mean approximation based 

on the figure and when the error bars are considered the uncertainty is larger than the 

disagreement (~14W/m2), meaning they are within the bounds of uncertainty for this optical 

depth. In addition, optical depth does not soley control radiative forcing and cloud altitude would 

also play a role in the radiative forcing of the cloud. This disagreement highlights the need to 

independently validate individual optical thickness products so they can be used to accurately 

quantify cloud radiative effects. Of particular importance are bringing legacy sensors that utilize 

visible channels for cloud property retrievals into an agreement with a validation standard such 

as the HSRL to enable the construct of accurate long-term climate data records. 

 

2.1.4 Significance of Satellite Observed Ice Cloud Optical Thickness Products 

The representation of ice clouds in global climate models (GCMs) are crucial for climate 

and weather forecasting as well as climate change projections (Waliser et al., 2009; Liou et al., 

2008). However, ice clouds are one of the more difficult components to represent in GCMs 

(Jiang et al., 2012). Currently, ice cloud mass is underestimated in climate models relative to 

observations (Waliser et al., 2009) and GCM future simulations of ice clouds are not 

automatically applicable to the real climate system (Cesana and Storelvmo, 2017). Determining 

historical and future trends in the magnitude of ice cloud radiative effect which is related to 

regional and global cloud cover, cloud height, and cloud optical thickness is an important factor 

for climate sensitivity studies and the potential change of ice clouds can contribute to the 

sensitivity of our planet to increased warming due to greenhouse gasses. Due to the current 

deficiencies in GCM future simulations, historical and future remote sensing observations are 

crucial datasets to answer questions related to changes in ice cloud radiative impact. 
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Passive low earth orbit instruments have a long history of cloud remote sensing. The 

Advanced Very High-Resolution Radiometer (AVHRR) has been part of the NOAA satellite 

series going back to NOAA-1 in 1979, with last AVHRR launch taking place in 2019. The 

radiometer was designed for cloud top and surface temperatures as well as imaging applications. 

It has a visible channel at 0.64  um, as well as an 11- um surface window channel. The AVHRR 

however, has several disadvantages such as a limited n umber of channels, poor spectral 

resolution, and course spatial resolution. Furthermore, AVHRR relied on scene-based calibration 

methods (Nagaraja Rao and Chen, 1995; Vermote and Kaufman, 1995; Heidinger, Sullivan and 

Rao, 2003) which can result in large discrepancies between instruments for derived cloud 

products (Heidinger, Cao and Sullivan, 2002). In 1999, the TERRA MODIS instrument (Pagano 

et al., 1996a; Barnes, Pagano and Salomonson, 1998; Pagano et al., 1996b) launched from the 

Vandenburg Air Force Base in southern California ushering in a new age of passive cloud 

remote sensing. The launch of MODIS on TERRA was followed by a second MODIS instrument 

in 2002 on board the Aqua spacecraft. The MODIS instrument is capable of preforming the bi-

spectral reflectance method (Nakajima and King, 1989) as it also has a 2.15 um channel that 

provides sensitivity to cloud particle size. The bi-spectral reflectance method will be described in 

more detail in section 2.3.1. In addition, it contains a variety of channels that provide other 

spectral information for cloud masking and cloud top height. The most important advancement 

for MODIS over AVHRR is the on-board calibrator, which contains a solar diffuser stability 

monitor, a blackbody and a spectral radiometric calibration assembly which all allow for the 

postlaunch implementation of radiometric calibration algorithms (Pagano et al., 1996a). The two 

MODIS instruments have been providing high quality stable cloud products for over two decades 

as of the writing of this doc ument. However, to observe climate change feedbacks and trends 
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related to clouds, observations on the order of three decades or more are required (Wielicki et al., 

2013). 

 In 2011, NOAA committed to a new passive cloud imager, the Visible Infrared Imaging 

Suite (VIIRS) (Johnson et al., 2010). Although the VIIRS instrument was an advancement over 

the already decade old MODIS instrument in many ways, such as having a higher spatial 

resolution, VIIRS lacked key spectral channels and had slightly different positions of other 

spectral channels utilized in the MODIS cloud retrieval algorithm and cloud mask. This poses 

challenges for creating a continuous cloud data product. One example is the CO2 slicing channels 

that give sensitivity to cloud top height, as it was planned that the Cross-track Infrared Sounder 

(CrIS) instrument would provide additional infrared information. Another challengeis the 

spectral position of the 2.2  um channel in VIIRS relative to the 2.1  um channel in MODIS, due 

to the differential absorption of ice and water in that spectral region. The necessity to create a 

highly accurate inter-decadal cloud optical property record facilitated the development of the 

NASA MODIS-VIIRS Continuity Cloud Optical Properties Products known here after as NASA 

CLDPROP (Platnick et al., 2021). This product aims to merge the data record of MODIS with 

current and future VIIRS data records. The hope is to create a data record long enough to observe 

climate-related changes in cloud frequency and/or optical properties. From these cloud property 

estimates, changes in cloud radiative effect can be determined. The NOAA Clouds from the 

AVHRR extended system (NOAA Enterprise) also aim to accomplish this goal. Both inter-

satellite retrieval products (NASA CLDPROP and NOAA NOAA Enterprise) will be 

independently evaluated in this thesis using direct in-situ measurements from the HSRL 

deployed during the CAMP2EX and PISTON field campaigns. Unique to this study is the 

evaluation of the operational NASA CLDPROP and NOAA Enterprise daytime products 



 

 

23 

23 

processed by AHI and validated by the HSRL over an extremely well-behaved surface 

Bidirectional reflectance distribution function (BRDF) environment: the ocean. This unique 

aspect enables the evaluation of retrieval assumptions such as the scattering phase function as 

well as the impact of different surface environments on the retrieval when compared to the over 

ocean measurements. The results of this evaluation will provide a snapshot into the validity of 

the assumptions and techniques used in the two retrieval algorithms. 

 

2.2. Advanced Himawari Imager 

 

2.2.1 Basic Description 

The Advanced Himawari Imager (AHI) instrument on board the Himawari-8 satellite was 

launched on October 7th, 2013 and is a visible and infrared imager in geostationary orbit. AHI 

and the Advanced Baseline Imager (ABI) have heritage from the previous GEOS instruments 

(Schmit et al., 2008; Hillger, Schmit and Daniels, 2003; Menzel et al., 1998) , as well as 

adoption of spectral channels from the Moderate Resolution Imaging Spectroradiometer 

(MODIS). The Himawari-8 spacecraft’s orbit altitude is at 35,786 kilometers and it is centered at 

140.7 degrees longitude. It has sixteen spectral bands with a spectral range from 0.47 um to 13.3 

um and has onboard calibration capabilities for all reflective and emissive bands. The spatial 

resolution ranges from 0.5 km for the 0.64  um channel to 2 km for the IR channels (Da, 2015). 

In the next section, we will take a closer look at the design and data collection system of AHI. 

 

2.2.2 Simplified Optical Design and Data Collection 

The AHI and ABI optical system consists of three major components that are used to 

collect observations of the earth, space and calibration targets (Kalluri et al., 2018). Figure 4 

from Kalluri et al. 2018 displays these components.  
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The first are two scan mirrors that operate independently and that control the north-south and 

east-west line of sight respectively. They are responsible for performing the scans for the full 

disc and CONUS views. Photons collected by the two scan mirrors from the earth are sent to the 

second component, the four mirror anastigmat (FMA) telescope. The FMA telescope consists of 

four reflective mirrors that focus the energy onto the detectors and aim to reduce spherical 

aberrations. By using an FMA instead of a lens, chromatic aberrations are eliminated. The last 

major component of the system are the three focal plane modules (FPM). The outgoing photon 

rays from the FMA are separated by several beam splitters then passed through spectral filters 

and finally imaged onto three different FPMs: The Visible/Near Infrared (0.47 um – 2.25 um), 

mid-wave infrared (3.9 um – 8.5 um), and the longwave infrared (9.61 – 13.3 um). Each focal 

Figure 4- Simplified design of the AHI data collection system (Kalluri et al. 2018) 
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plane module consists of a linear detector array; each detector corresponds to an AHI channel. 

When enough photons are incident on the detector, electrons are emitted (photoelectric effect) 

corresponding to the sensitivity of the detector. The raw signal counts determined from the 

emitted electrons are then converted into radiances in accordance with the calibration equations. 

These calibration equations are derived using two onboard calibration targets: a blackbody for 

the thermal bands and the solar diffuser for the reflective bands, both of which are also present in 

MODIS (Kalluri et al., 2018). The AHI/ABI system also utilizes observations of space and lunar 

irradiances for calibration purposes. The radiances can then be used to determine brightness 

temperatures using Planck’s equation. Spectral radiances can then be used to construct retrieval 

products, such as the NASA CLDPROP and NOAA Enterprise products.  In the next section, we 

will outline the improvements in the number of spectral channels as well as the increase in 

spatial and temporal resolution. 

 

2.2.3 Improvements Over Previous Generation Geostationary Imagers 

 
Table 1 and 2 shows the spatial, spectral, and temporal advancement of the GEOS-16 and 

Himawari-8 satellite channels over previous generations of the GEOS series. The information for 

Himawari-8 was compiled from Japanese Meteorological Agency webpage: 

https://www.data.jma.go.jp/ . 

https://www.data.jma.go.jp/
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Table 1 - Comparison of spectral channels from the previous GEOS series and the AHI/GEOS 

16 series 

 

Table 2 - Spatial and temporal resolution improvements from the previous GEOS series and the 

AHI/GEOS 16 series 

 

The combination of the onboard calibration system and the improvements in the n umber and 

position of spectral channels over previous generations of GEOS series allows for MODIS and 

GOES 12-15

Central 

Wavelength (um)

GOES-16/ Himawari-8 

Central 

Wavelength (um)

Purpose

---- 0.45 Blue

0.63 0.64 Red

---- 0.86 Veggie

---- 1.37 Cirrus

---- 1.6 Snow/Ice

---- 2.2 Cloud particle size

3.9 3.9 Shortwave window

---- 6.2 Upper-level water vapor

6.48 6.9 Midlevel water vapor

---- 7.3 Lower-level water vapor

---- 8.4 Cloud-top phase

---- 9.6 Ozone

---- 10.3 “Clean” longwave 

window

10.7 11.2 Longwave window

---- 12.3 “Dirty” longwave 

window

13.3 13.3 CO2 longwave

Resolution GOES 12-15 GOES-16/ Himawari-8 

Spatial (VIS / IR) 1km / 4km 0.5km / 2km

Temporal 30 mins 10 mins
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VIIRS-like cloud optical property retrievals from geostationary orbit, such as that of the NASA 

CLDPROP and NOAA NOAA Enterprise algorithms. More specifically, the AHI instrument has 

all the spectral channels necessary to perform the bi-spectral reflectance method (0.64, 0.86 and 

2.2 um) and the split window method (11.2 um and 12.3 um), both of which will be introduced in 

more detail in the following sections. In addition, the spatial resolution increased from 4km to 

2km for the infrared channels and the temporal resolution is finer at 10 minutes relative to the 

previous 30-minute measurements. Collectively, these advancements facilitate the investigation 

of the assumptions required in cloud retrieval algorithms that have been applied consistently 

across geostationary and polar observations. The spectral channels and calibration of the 

instrument facilitate the use of these retrieval products on the GEO instruments, while the spatial 

and temporal resolution allow for a more precise co-location with in-situ surface-based 

measurements and an increase in the n umber of GEO-HSRL match ups. The HSRL on board the 

ship-based PISTON field campaign provides a unique opportunity to independently examine the 

validity of the retrieval assumptions under a well quantified surface albedo environment. 

 

2.3 Visible Ice Cloud Optical Thickness Retrievals and Theory 

2.3.1 The Bi-Spectral Reflectance Method 

The bi-spectral reflectance method utilizes the relationship between reflected sunlight, 

cloud optical depth and the scattering properties of the cloud (Twomey and Seton, 1980). The 

method utilizes a visible non absorbing channel (ex: 0.64 or 0.86 um) that is a primarily a 

function of optical thickness and a weakly absorbing shortwave IR channel (ex: 2.25 um) that 

has additional sensitivity to particle size to simultaneously determine both parameters. The 

premise of this two channel approach is that the backscatter signature of the cloud can be 

described by the amount of radiation being scattered (optical thickness) and the direction in 
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which the radiation is scattered (effective radius) (Walther, 2013). The method was first 

proposed for terrestrial clouds by (Twomey and Seton, 1980) and was popularized by Nakajima 

and King 1989 when they applied the technique to airborne MODIS simulator data (Nakajima 

and King, 1989). They preformed radiative transfer calculations for water clouds with a variety 

of optical thickness and effective radius over different zenith angles to simulate top of the 

atmosphere spectral reflectance values. These spectral reflectance values for the two spectral 

channels of interest (one non absorbing and one weakly absorbing channel) were stored in a look 

up tables and compared to the observed spectral reflectance functions.  

There are several retrieval assumptions that may be a potential source of uncertainty if 

not correctly parameterized that must be acknowledged when retrieving an IOT measurement 

using the bi-spectral reflectance approach. Equation 1 shows the reflectance function of a non-

absorbing wavelength from King et al. 1987. 

 

(1) 𝑅(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙) =  𝑅𝑎𝑡𝑚(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙) + 
𝑨𝒈

1−𝑨𝒈𝑟𝑎𝑡𝑚 ̅̅ ̅̅ ̅̅ ̅̅ (𝜏𝑐)
𝑡𝑎𝑡𝑚(𝜏𝑐, 𝜇) 𝑡𝑎𝑡𝑚,𝑜(𝜏𝑐, 𝜇𝑜) 

Where 

𝑅𝑎𝑡𝑚(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙)  = 𝑅∞(𝜇 𝜇𝑜 , 𝜙) - 
4𝐾(𝜇)𝐾(𝜇𝑜)

3(1−𝑔)(𝜏𝑐+2𝑞𝑜)
 

And  

𝑡𝑎𝑡𝑚(𝜏𝑐; 𝜇 𝜇𝑜 , 𝜙) =  
4𝐾(𝜇)𝐾(𝜇𝑜)

3(1 − 𝑔)(𝜏𝑐 + 2𝑞𝑜)
 

 

The reflection function (𝑅(𝜏𝑐 ,  𝜇 𝜇𝑜 , 𝜙)) observed at the sensor is primarily a function of the 

atmosphere contribution (𝑅𝑎𝑡𝑚(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙)) and the surface contribution modified by the 

transmission of the atmosphere. 𝑅𝑎𝑡𝑚 is primary a function of cloud optical thickness (𝜏𝑐) and 
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the asymmetry parameter (𝑔), while 𝑞0 is the extrapolation length and 𝐾(𝜇) is the escape 

function. The asymmetry parameter (𝑔) is the first Legendre moment of a phase function, which 

describes the directional intensity of scattered radiation. This parameter is directly tied to ice 

crystal morphology; size, shape, texture, etc. If the phase function is incorrectly modeled the 

reflectance value observed at the sensor will correspond to an incorrect optical thickness, with 

higher asymmetry parameters than the true value corresponding to more forward scattering and a 

high bias in optical thickness relative to the true value. Thin cirrus are more sensitive to small 

deviations in reflectance due to surface/ocean BRDF and phase function related errors than 

optically opaque clouds. This can be seen in the NASA CLDPROP look up table in Figure 7 in 

the section 2.3.4 which describes that retrieval. The surface reflectance is the second term in 

Equation 1 and is largely a function of ground albedo (𝐴𝑔) and the atmospheric transmission 

(𝑡𝑎𝑡𝑚). Again, the uncertainties associated with this term are largest for optically thinner clouds 

and smallest for optically thick clouds. As the surface reflected outgoing shortwave radiation 

travels through an optically thicker cloud layer the radiation will be attenuated and atmospheric 

transmission decreases. The larger 𝜏𝑐 will result in a smaller 𝑡𝑎𝑡𝑚 and a smaller overall surface 

reflectance contribution to the satellite observed reflectance.  

In addition to the assumptions made within the retrieval for scattering or surface 

properties there are several other uncertainties. One such uncertainty is that large vertical 

inhomogeneity in ice particle size for thin cirrus can impact the determination of effective radius 

and optical thickness (Zhang et al., 2010). Another is that the spectral dependencies of cloud 

heterogeneity and cloud 3-D effects can induce uncertainties in a multi-channel approach for 

thicker ice clouds (Fauchez et al., 2018). This effect increases at higher spatial resolution; 

however, these are less apparent for uniform thin cirrus. Lastly, as discussed in the previous 
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paragraph, the surface reflectance and scattering phase function assumptions must be 

appropriate. 

Despite uncertainties in the bi-spectral reflectance approach to solving for IOT, there are 

several advantages compared to other methods. The first advantage is that in contrast to lidars, 

the bi-spectral reflectance method has a large dynamic range and can obtain optical properties for 

opaque and thick ice clouds. In addition, as with all passive imagers, sampling is greatly 

increased compared to lidar and radar observations due to a large swath (LEO) instruments, or a 

full CONUS view in GEO instruments. Spaceborne visible imagers can also be cheaply 

manufactured allowing for numerous instruments in orbit. Lastly as discussed in previous 

sections, there is a large historical cloud dataset obtained from current and legacy instruments 

using the bi-spectral reflectance method that allow for cloud continuity studies (Platnick et al., 

2021; Wind et al., 2021). However, radiometric consistencies between analogous channels for 

different instruments must be accounted for otherwise there may be differences in high ice cloud 

frequency and properties and uncertainties may arise (Meyer et al., 2020). In the next section we 

will examine one of the retrieval assumptions of interest the asymmetry parameter (g) as shown 

in equation 1.  

 

2.3.2 Ice Scattering Models for Retrievals 

One of the major assumptions required for passive observations of ice cloud optical thickness 

using the bi-spectral reflectance method as well as infrared methods (although scattering is far 

weaker in the IR than in the visible for ice crystals) is that of the ice scattering phase function. 

The importance of the ice scattering phase function to account for ice crystal morphology was 

briefly stated at the end of the microphysical properties section. In the previous section, the 
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asymmetry parameter (g) represents this scattering component. Due to the impossibility of 

measuring the exact shape (habit), surface texture and size of all ice crystal particles within a real 

cloud, many studies have been conducted to better understand the single scattering properties for 

the purpose of more consistent retrievals. One such study by (Yang et al., 2013), compared 11 

crystal habits from 0.2 to 100m with 3 different roughness for texture at random orientations 

using a combination of geometric models (Amsterdam Discrete Dipole Approximation, T-matrix 

method and Improved Geometric Optics Method) to calculate the scattering properties while 

incorporating the edge effect for larger particles. From these results, a library was constructed for 

the use of a look up table for the asymmetry pattern (g), extinction efficiency (s) and the single 

scattering albedo () for each crystal habit. Libraries such as the one developed by Yang et al. 

2013, containing the bulk scattering properties of ice crystals, are used as a look up tables to 

infer ice cloud optical thickness and particle size from remote sensing observations (King et al., 

2004; Platnick et al., 2003; Platnick et al., 2021; Walther, 2013). An example of the impact of 

ice crystal habit on the asymmetry parameter for a given effective radii at wavelengths used in 

the bi-spectral reflectance method is shown in Figure 5. The figure is borrowed from Holz et al. 

2016, where the Yang et al. 2013 database is utilized and compares 3 ice crystal habits as well as 
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the previous MODIS C5 ice scattering database. 

 

Figure 5- The sensitivity of ice crystal morphology on the asymmetry factor for the a) 0.67 um 

and b) 2.13 um channels (Holz et al., 2016). 

 

The figure shows different asymmetry parameters for the 3 example habits and how they vary 

with size and wavelength. In addition to the constructed library by Yang et al. 2013, a significant 

result from this study is the assumption of homogeneous severely roughened crystals outperform 

their smoother counterparts for reflective wavelengths. This result agrees with laboratory 

experimentation showing that high crystal complexity, or severe roughness, dominates the 

microphysics of a simulated cloud with the available vapor playing a key role in growth 

(Schnaiter et al., 2016). Furthermore, the work of Holz et al. 2016 determined that the scattering 

characteristics of severely roughened aggregate columns within Yang et al. 2013 database 

brought the MODIS C6 visible retrievals into agreement with an infrared retrieval. The severely 

roughened aggregate columns from the Yang et al. 2013 database is the scattering assumption 
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used in the NASA CLDPROP and NOAA Enterprise visible retrievals and the validity of this 

assumption will be examined in the validation section (4.1) of this thesis. 

 

2.3.3 NOAA Enterprise visible (VIS) 

The NOAA Enterprise VIS retrieval utilizes an optimal estimation approach to 

statistically determine the optical thickness value within a given pixel. All equations and the 

optimal estimation approach shown in this section can be attributed to (Walther and Heidinger, 

2012). The general approach is as follows: a radiative transfer model is used to simulate the top 

of atmosphere spectral reflectance at these channels for a variety of atmospheric conditions using 

the bi-spectral reflectance method. These simulated radiances and atmospheric conditions are 

stored in look up tables and are used as the basis for the forward model inversion during the 

optimal estimation process. The forward model output operator is shown in equation 2 

 

(2)  𝐹(𝑥) = 𝑅𝑐(𝑥) +
𝐴𝑣𝑡𝑎𝑡𝑚,0(𝑥)𝑡𝑎𝑡𝑚(𝑥)

1−𝐴𝑣𝑆(𝑥)
+ 𝑅𝑒(𝑥) 

 

 Where 𝑅𝑐(𝑥) is the reflection function of the cloud, 𝐴𝑣 is virtual surface albedo parameter, 𝑡(𝑥) 

is the transmission of the atmosphere and 𝑆(𝑥) is the albedo of the cloud. The optimal estimation 

iterates over the atmospheric states (x) within the look up table until the cost function criteria as 

shown in equation 3 is met (J < 3) and outputs the corresponding optical thickness (x).  

 

(3)   𝐽 = [𝑦 − 𝐹(𝑥, 𝑏)]𝑇𝑆𝑦
−1[𝑦 − 𝐹(𝑥, 𝑏)] + (𝑥𝑎 − 𝑥)𝑇𝑆𝑎

−1(𝑥𝑎 − 𝑥) 
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The cost function is minimized when there is good agreement between the measured radiances 

(y) and the forward model output (F(x,b)) as well as the state vector (x) and the a priori (xa) both 

weighted by the corresponding error covariance matrices (Sy and Sa). The variance between the 

forward model and the observation vector (Sy) is constructed by s umming up variance terms 

related to the parallel plane, calibration, forward model, spatial heterogeneity errors weighted by 

the measured reflectance in each channel and other uncertainties. Sa is the variance in the optical 

thickness and effective radius between the a priori and the state vector. An example of the output 

satellite product as observed in figure 6. 

 

Figure 6- NOAA Enterprise visible optical depth product as observed on UW-SSEC worldview 

webpage for November 29th, 2019 at 23:50 UTC over the Northern Philippines. 

 

The asymmetry parameter assumption in the NOAA Enterprise VIS retrieval is ass umed 

to be 0.75 globally. This value has been shown to be a globally average through an IR radiative 
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closure approach using MODIS and CALIOP (Holz et al., 2016), polarimeter experiments using 

POLDER and MODIS (van Diedenhoven et al., 2020) and modeling experiments (Yang et al., 

2013). The surface albedo assumption is also a potential source of uncertainty and is taken from 

the MODIS white sky albedo ancillary dataset (Schaaf et al. 2011)   

 

2.3.4 NASA Cloud Property  

The NASA CLDPROP retrieval (Platnick et al., 2021) was originally designed for 

MODIS-VIIRS cloud continuity products and processed on AHI using the SSEC/NASA 

Atmosphere SIPS specifically for this CAMP2EX and PISTON validation efforts. The algorithm 

only utilizes analogous spectral channels common to both instruments and has a direct heritage 

to the MODIS optical property retrievals (MOD06 and MYD06). NASA CLDPROP uses the bi-

spectral reflectance method as outlined in section 2.3.1(King, 1987; Nakajima and King, 1989; 

Platnick et al., 2003; Walther, 2013) to simultaneously retrieve optical thickness and effective 

radius. The bi-spectral reflectance method in CLDPROP is implemented by first performing 

forward radiative transfer calculations using the discrete ordinates radiative transfer model 

(DISTORT) for a variety of cloudy (ice and water) atmosphere scenarios and solar/viewing 

geometries. From these simulations, the top of the atmosphere reflectance values convolved to 

the spectral response of the instrument are produced for the 0.64um (0.86um) channel over land 

(ocean) and the 2.2um channel. The cloud optical thickness (COT) and effective radius (CER) 

values as well as the resulting reflectance values from these sumulations are stored in look-up 

tables to determine cloud optical properties from spectral reflectance measurements. Figure 7 

from Platnick et al. 2021 shows the look-up table for the VIIRS instrument on SNPP, which is 

more AHI than MODIS due to the spectral position of the NIR cloud-effective radius channel. 
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Figure 7 - NASA CLDPROP look up table for SNPP VIIRS (Platnick et al. 2021). The blue 

shows the solution space for ice phase, while red is the solution space for water clouds and the 

overlap is ambiguous. 

The retrieval has a thermodynamic phase algorithm that chooses a given solution space with 

heritage from previous MODIS optical property retrievals (Platnick et al., 2017). If the observed 

reflectance values by the sensor are within the solution space of the look-up table, then a 

corresponding cloud optical thickness and effective radius measurement are output. If the 

solution is not within the solution space of the lookup table, no retrieval value is given. 

The retrieved optical thickness and effective radius values are dependent on the retrieval 

assumptions in the forward model to generate the look-up tables as well as the inputs into the 

retrieval. The inputs into the NASA CLDPROP algorithm for this specific processing version are 

the Enterprise Cloud Mask (ECM) (Heidinger, 2020) as COT and CER values are determined 

only for cloudy pixels, the AHI level 1-B data and NCEP GDAS for surface temperature and 

emissivity. The assumptions made are the surface BRDF from the white sky maps (Schaaf et al., 
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2011), NCEP GDAS for surface temperature and emissivity, and the assumption of a single habit 

severely roughened aggregated columns (Yang et al., 2013; Holz et al., 2016), which replaced 

previous C5 version of the size-dependent multi-habit ice scattering model (Baum et al., 2005).  

 

2.4 Infrared Ice Cloud Optical Thickness Retrieval and Theory 

2.4.1 The Split Window Method 

Cloud retrieval methods utilizing the emission of infrared radiances for thin ice clouds 

are typically formulated as surface radiation being attenuated through a single cloud layer with a 

given emission temperature. The split window method is based on the differential absorption and 

emission of ice or water between two channels, typically a window channel (e.g., ~11 um) and a 

weakly absorbing (dirty window) channel (~12 um). The difference between observed brightness 

temperatures is then related to optical depth differences at those wavelengths with particle size 

sensitivity. This method was first utilized by (Inoue, 1985) to calculate cloud emissivity and 

temperature using AVHRR radiances and (Prabhakara et al., 1988) to determine cirrus cloud 

optical properties from the high-resolution infrared inter-ferrometer spectrometer (IRIS) aboard 

the Nimbus-4 satellite. Modern applications of the split window method typically involve the use 

a radiative transfer model to generate top of the atmosphere radiances that can then be utilized in 

an optimal estimation framework to determine optical depth (Cooper, L'Ecuyer and Stephens, 

2003). Figure 8a from (Stephens and Kummerow, 2007) borrowed from (Cooper, L'Ecuyer and 

Stephens, 2003) shows the theoretical relationship between the split window temperature 

difference  (Tb = T10.8 um – T12 um) and the window channel (T10.8 um ) generated using a radiative 

transfer model for three different cloud emitting temperatures.  
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Figure 8 - a) Theoretical relationship between the split window difference (Tb ) and the window 

channel (T10.8 um ) for 3 emitting cloud temperatures. b) As above, but for a single cloud 

emission temperature with two different ice crystal habits (Stephens and K ummerow 2007) 

 

A relationship between optical depth Tb and T10.8 um is clearly shown for a given cloud 

emission temperature. It can be observed that warmer a window channel per a given cloud 

emission temperature is related to a smaller cloud optical depths as more surface radiation from 

the underlying surface is partially transmitted through the cloud layer contributing to the top of 

the atmosphere radiances. As the optical depth increases beyond unity, the cloud emissivity also 

increases and Tb approaches zero as the window channel temperature approaches the cloud 
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emission temperature at that wavelength. The surface radiance contribution to the top of the 

atmosphere radiances decreases with increasing optical depth. Particle size also modifies the 

idealized arches with smaller effective radii increasing the Tb. Ice crystal morphology further 

modifies the relationship as seen in Figure 8b. 

The use of infrared channels provides several advantages. One such advantage is that this 

technique does not utilize solar reflection (0.64 or 0.86 channel or equivalent) allowing for 

sampling to be extended into nighttime observations. Another advantage is that the strong 

absorption in the IR region results in the retrieval being less sensitive to assumptions relating to 

the phase function (Yang et al., 2005). It has been shown that the split window channel method 

is advantageous for investigating optically thin cirrus under known surface emissivity conditions 

(Heidinger and Pavolonis, 2009). A well-known surface emissivity and temperature result in a 

well-constrained surface emission (𝐼𝑐𝑙𝑟) term and if the surface is warm, it can provide good 

thermal contrast to the cold ice cloud allowing for an accurate cloud emissivity calculation. 

Furthermore cloud vertical location is an important parameter for the split window method as no 

knowledge of the cloud top height can result in errors between 60-80% (Miller et al., 2000). 

Disadvantages include a decrease in accuracy in geometrically or optically thick ice clouds due 

to a difference in emission from the cloud base and cloud top. It also becomes more difficult to 

retrieve an optical thickness value under cold surface conditions. 

 

2.4.2 NOAA Enterprise Infrared (IR)  

The NOAA Enterprise IR retrieved optical depth product is an optimal estimation-based 

retrieval that uses satellite-measured infrared radiances to combine information on cloud top 

height from the CO2 slicing method with the sensitivity of the split window approach to cloud 

microphysics and optical properties (Heidinger, 2015). The CO2 slicing method utilizes the 
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spectral opacity of the atmosphere between the 13 – 15-micron region, allowing for the emitted 

radiances to have sensitivity at different layers (Menzel et al., 2008; Chahine, 1974). This 

method allows for the determination of a temperature profile and cloud top pressure and helps 

constrain the cloud emissivity. The split window approach in this retrieval utilizes the emissivity 

at the 11- and 12-micron channels to construct the beta parameter () which is a proxy for 

particle size, with smaller beta values implying smaller particles (Inoue, 1985). The differential 

absorption of the two wavelengths also aids in the calculation of optical thickness. All equations 

in this section are credited to Heidinger and Pavolonis 2009 or (Heidinger, 2015) unless 

otherwise stated. As in the visible retrieval, a forward model shown in equation 4 simulates a 

variety of atmospheric conditions which is used to construct a state vector to be utilized in the 

optimal estimation. 

 

(4)  𝐼𝑐𝑎𝑙𝑐 = 𝜖𝑐𝐼𝑎𝑐 + 𝑇𝑎𝑐𝜖𝑐𝐵(𝑇𝑐) + 𝐼𝑐𝑙𝑟(1 − 𝜖𝑐) 

 

Where  𝐼𝑐𝑎𝑙𝑐  is the simulated top of the atmosphere spectral radiances to compare to the observed 

radiances at the sensor, 𝐼𝑐𝑙𝑟  is the emitted clear sky radiances (surface contribution), 𝜖𝑐  is the 

emissivity of the cloud, 𝐵(𝑇𝑐) is the emitted radiances by the cloud from the Planck function and 

𝐼𝑎𝑐  is the above cloud radiance contribution. The optimal estimation uses the brightness 

temperatures at the 11, 12 and 13 microns with the forward model to converge on a solution for 

the cloud top temperature, 11-micron emissivity, and the beta parameter. The cloud emissivity 

and the scattering characteristics determined from the beta parameter are then used to calculate 

the optical thickness as shown in equation 5. 
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(5)  𝜏𝑣𝑖𝑠 =
𝜎𝑣𝑖𝑠

𝜎11𝜇𝑚
[

−𝜇𝑙𝑛 (1−𝜖𝐶)

1−𝜔11𝜇𝑚𝑔11𝜇𝑚
] 

 

Where 𝜇 is the cosine of the view angle, 𝜎𝑣𝑖𝑠 is the extinction coefficient at the visible 

wavelength, 𝜎11𝜇𝑚 is the extinction coefficient at 11 m, 𝜔11𝜇𝑚is the single scattering albedo at 

11m and 𝑔11𝜇𝑚 is the asymmetry parameter at 11m. In s ummary, the 11-micron cloud 

emissivity is used to calculate optical thickness in the IR, while the extinction ratio and scattering 

parameters modify the calculated IR optical thickness to what would be observed at the visible 

wavelengths.  An example of the output satellite product is shown in Figure 9.  

.  

Figure 9 - NOAA Enterprise IR optical depth product from GEO Worldview for November 29th, 

2019 at 23:50 UTC for the Northern Philippines. 

 

2.5. The High Spectral Resolution Lidar  
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GEO Worldview CLAVR-x COD ACHA – November 29th, 2019
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2.5.1 Traditional Lidar Principles 

Lidars are powerful tools for atmospheric science research and validation due to their 

ability to directly profile the atmosphere. A lidar works by transmitting a pulse at a given central 

wavelength through an atmospheric col umn. If positioned vertically upwards, the beam at any 

given level may be transmitted, absorbed, or scattered as it ascends to higher altitudes. When the 

beam interacts with a cloud or aerosol particle a portion of the radiation will be scattered 

according to the phase function which will depend on the microphysical properties of the 

substance (size, phase, shape, refractive indices, etc). The energy received at the receiver on the 

ground will correspond to the 180-degree phase function. Because the time from the initial pulse 

and the speed of light is known, you can infer the amount of power incident on the receiver at 

each vertical bin level which translates to altitude. The traditional lidar equation is show in 

equation 6 and obtained from http://lidar.ssec.wisc.edu/. 

 

(6)  𝑃(𝑟) = 𝐸𝑜
𝑐𝐴𝑟

2𝑟2 (𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
+ 𝛽𝑚(𝑟)

3

8𝜋
)𝑒−2𝜏(𝑟) 

where 

𝑃 = Received power 

𝐸𝑜= Laser Pulse energy 

c = Speed of light 

𝐴𝑟= Collection area of receiver 

R = Range to scattering vol ume 

𝛽𝑎 = Aerosol back scattering cross section 

𝛽𝑚 = Molecular back scattering cross section 

𝑃(𝜋,𝑟)

4𝜋
 = Backscatter phase function 

http://lidar.ssec.wisc.edu/
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3

8𝜋
 : Molecular backscatter phase function 

𝜏(𝑟) = Optical Thickness 

The optical thickness is simply the range dependent integral of extinction as shown in equation 7. 

 

(7)  𝜏 =  ∫ 𝛽𝑒(𝑟)𝑑𝑟
𝑟

0
 

 

For traditional lidars, the unknown quantities in equation 6 are the aerosol backscatter cross 

section, the backscatter phase function, and the extinction. It should be noted however that the 

backscatter cross-section and extinction are related by the backscatter phase function. This 

means there is an insufficient amount of information to independently retrieve the optical 

thickness/extinction and the particulate backscatter cross section without making assumptions. 

The Klett method has been used to solve the lidar equation by ass uming a power law 

relationship between the backscatter and attenuation (Klett, 1981), however, this method does 

induce uncertainty as it assumes an a priori lidar ratio which can be highly variable (Holz et al. 

2002).  

 

2.5.2 HSRL Lidar Principles  
The University of Wisconsin High Spectral Resolution Lidar is a ground, ship or aircraft 

based lidar that operates in the visible and near IR part of the spectr um at 532nm and 1064nm. 

The current Atmospheric Observing System ((AOS) formerly ACCP (Aerosols Clouds 

Convection Precipitation)) is considering a satellite based HSRL to improve estimations of 

aerosols and optically thin ice clouds. The HSRL is designed to overcome the limitations of a 

traditional backscatter lidar and does so by not only having a combined and cross-polarization 
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channel, but also molecular channel. Unlike traditional lidar instruments, the molecular channel 

has an iodine molecular filter that allows the instrument to separate particulate and molecular 

signals (Eloranta, 2005). The separation of the molecular signal is possible because thermal 

molecules travel at thermal velocities while aerosols, which generally travel with atmospheric 

flow are far slower. Because the wavelength of the lidar pulse is known, when the laser interacts 

with a molecule and is backscattered, there is an offset in wavelength/frequency due to doppler 

broadening, whereas aerosols have negligible Doppler broadening. Figure 10 shows the 

frequency offset from the known lidar pulse frequency (Goldsmith, 2016). 

 

Figure 10 - Frequency offset of HSRL return signal due to aerosols and molecules (Goldsmith 

2016)  

 

The gaussian like distribution shows the doppler broadening due to thermal molecules, while the 

sharp peak in the center is the non Doppler broadened aerosol signal. The HSRL laser is then 

Particulate 

Signal

Molecular 

Signal
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tuned to the iodine absorption line and the molecular signal is cropped from the aerosol signal. 

With a molecular and combined channel, the lidar equation can be broken down from the 

traditional lidar equation (equation 6) to the aerosol/particulate and molecular components 

(equation 8 and 9).The physical separation of these signals by the iodine filter is significant 

because this eliminates assumptions that must be made for traditional lidars that allow for the 

separation of the aerosol and molecular return components in the traditional lidar equation. The 

following equations in this section are from http://lidar.ssec.wisc.edu/. 

 

(8)  𝑃𝑚(𝑟) = 𝐸𝑜
𝑐𝐴𝑟

2𝑟2 𝛽𝑚(𝑟)
3

8𝜋
𝑒−2𝜏(𝑟) 

 

(9)  𝑃𝑎(𝑟) = 𝐸𝑜
𝑐𝐴𝑟

2𝑟2 𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
𝑒−2𝜏(𝑟) 

 

The two unknowns in the equation 8 are 𝜏 and 𝛽𝑚, while in equation 9 the unknowns are 

𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
 and 𝜏 .Due to the exponential decay of atmospheric molecules with height the 

molecular back scattering cross section can be explained by Rayleigh scattering theory and 

atmospheric density as shown in equation 10. This is typically done using radiosonde data. 

 

(10)  𝛽𝑚 = 𝐶𝜌(𝑟) 

 

(11)  𝑆𝑚(𝑟) =  
𝑃𝑚(𝑟) 𝑟2

𝐸𝑜
 

 

http://lidar.ssec.wisc.edu/
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Optical depth 𝜏 can then be determined by combining equations 8, 10 and 11 and the optical 

depth of a layer can be found by taking the difference between two optical depth ranges: 

 

(12)  𝜏(𝑟) −   𝜏(𝑟𝑜) =  
1

2
𝑙𝑛(

𝜌(𝑟)

𝜌(𝑟𝑜)
) −  

1

2
𝑙𝑛(

𝑆𝑚 (𝑟)

𝑆𝑚 (𝑟𝑜)
) 

 

This displays the potential of HSRL to utilize the molecular signal to determine the optical depth 

of the cloud with minimal prior assumptions. The optical depth is also the time range integral of 

extinction. 

(13)  𝜏 =  ∫ 𝛽𝑒(𝑟)𝑑𝑟
𝑟

0
 

 

The aerosol backscatter cross-section can be determined by combining equations 8 and 9 to 

determine the backscatter ratio  

 

(14)  𝑅(𝑟) =  
𝑃𝑎(𝑟)

𝑃𝑚(𝑟)
 

And isolating the aerosol backscatter cross-section 

 

(15)  𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
= 𝑅(𝑟)𝛽𝑚(𝑟)

3

8𝜋
 

 

The ability for the HSRL to filter its signal into a molecular component allows for the calculation 

of optical thickness/extinction without prior assumptions. It also allows for the determination of 

the aerosol backscatter cross-section when utilizing information from the two lidar equations. In 

the next section, we will introduce the two field campaigns that carried the HSRL and explain 
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the advantages the ground/ship-based HSRL has for IOT retrieval evaluation relative to other 

validation methods used in previous studies. 

 

2.6 HSRL as a Validation Tool 

 

2.6.1 Relevant CAMP2EX and PISTON Field Campaign Information 

 Data collected by the UW-HSRL during the CAMP2EX and PISTON field campaigns 

are used to evaluate the NASA CLDPROP and NOAA Enterprise IOT retrievals processed on 

AHI. The CAMP2EX field campaign (Reid et al., 2023) officially took place in late summer of 

2019 with a plethora of instrument platforms mounted on a Learjet 35 aircraft, which flew around 

the maritime continent of the Philippines. More crucially for the validation effort in this thesis, 

the UW-HSRL was positioned at the Manila observatory (14.6361° N, 121.0775° E) in support 

of the program, and was deployed from December 2018-2020. The concept of CAMP2EX was to 

utilize multiple passive and active ground, airborne and space-based sensors to better 

characterize aerosol-cloud interactions, cloud microphysics and quantify the radiative 

environment over and around the Philippines during the southwest monsoon. The scientific sub-

objectives beyond these overall primary goals stated above are beyond the scope of this thesis as 

the objective of this work is to simply utilize the HSRL data collected during this campaign to 

evaluate the NASA CLDPROP and NOAA Enterprise IOT retrievals. However, it should be 

stated that the region has heavy cirrus cloud cover and thus the quantification of ice cloud 

radiative effects and optical thickness would be a major observable to accurately quantify the 

radiative environment in and around the Philippines. The UW Lidar program supports several 

HSRL instruments designed to collect autonomous measurements. The UW-HSRL positioned at 

the Manila observatory is the Artic HSRL (AHSRL) system which will provide IOT information 

in this urban environment. 



 

 

48 

48 

 Also utilized in this thesis is data from the PISTON 2018 field campaign (Sobel et al., 

2021). The PISTON 2018 field campaign took place from August - October 2018 and consisted 

of two cruises by the R/V Thomas G. Thompson in the Philippine sea. The original purpose of 

the campaign was to target the Boreal Summer Intraseasonal Oscillation, however, the HSRL 

carried during this field campaign provides a unique opportunity to evaluate satellite retrieved 

IOT in an oceanic environment. The UW-HSRL deployed in this field campaign is the 

BagoHSRL and was originally designed to be a trailer-mounted system to be used in 

combination with other instruments. Figure 11 from Sobel et al. 2021 shows the ship paths that 

carried the BagoHSRL during the PISTON field campaign and thus the spatial region in which 

the NASA CLDPROP and NOAA Enterprise IOT retrievals will be evaluated over the ocean.  
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Figure 11 – PISTON 2018 ship tracks in the Phillipine sea from Sobel et al. 2021. These tracks 

show the regions in which the HSRL collected over ocean data and where the AHI IOT retrievals 

will be validated. The red line shows the AHI longitudinal position in GEO 

2.6.2 Advantage of the HSRL deployed during CAMP2EX and PISTON for Validating Satellite 

Retrieved IOT   

 
The HSRL deployed during the CAMP2EX and PISTON campaigns provides a unique 

opportunity to evaluate satellite-based IOT retrievals using both urban and oceanic 

environments. Section 2.5.2 showed that the HSRL has a distinct advantage for retrieving IOT 
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compared to traditional backscatter lidars due to the system’s ability to directly measure 

extinction and particulate backscatter without making erroneous assumptions. To re-iterate, the 

HSRL advantage comes from physically separating the molecular signal with an iodine 

absorption filter, allowing for the lidar equation to be separated and solved. Furthermore, 

accurate estimates of uncertainty can be determined as will be seen in the methods section in 

3.1.4. Because the HSRL is the most accurate lidar system for retrieving IOT, it is one of the best 

retrieval evaluation tools currently available. Past literature suggest that the NOAA Enterprise IR 

retrieval will have high sensitivity to ice clouds within the dynamic range of the HSRL (thin ice 

clouds)(Heidinger and Pavolonis, 2009), while the retrieval of thin ice clouds has historically 

been a challenge (Holz et al., 2016). As was seen in the visible and infrared IOT retrieval theory 

sections (2.3 and 2.4), an IOT measurement from space-borne sensors requires an accurate 

surface BRDF in the visible and surface emissivity and temperature in the infrared. When 

refrencing the “surface assumption” we are refering to the surface BRDF in the visible and the 

surface emissivity and temperature in the infared. In addition, the ice crystal scattering 

assumption must be valid to correctly model the directional intensity of radiation as it interacts 

with the cloud layer. Due to these retrieval constraints, and the HSRL’s ability to directly 

measure extinction/optical thickness, an HSRL over a well-quantified surface BRDF 

environment such as the ocean is the most optimal method to evaluate IOT. This is optimal for 

two reasons: 1) The ocean’s BRDF and emissivity is well quantified over the ocean negating the 

impact of the surface contributions to the satellite-observed reflectances and/or radiances. 2) Due 

to the absence of the surface contribution, the validity of the assumptions about the cloud such as 

the ice scattering assumption can be independently examined from the surface. These optimal 

retrieval evaluation conditions are provided by the HSRL deployed during the 2018 PISTON 
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campaign. 3) The over-ocean satellite retrieval evaluation results can then be compared with the 

same experiment over land to examine the impact of surface as well as the validity of the surface 

assumptions within the satellite-derived IOT retrievals. In this study, we use the HSRL deployed 

at the Manila observatory in support of the CAMP2EX campaign. Because both field campaigns 

are positioned within the AHI’s field of view, and the AHI can run accurate high-quality stable 

cloud retrievals (section 2.2) such as the NASA CLDPROP (section 2.3.1) and NOAA Enterprise 

algorithms (section 2.3.2 – 2.3.2), the combination of these two datasets provides a unique 

opportunity to leverage AHI’s superior co-location frequency with these HSRL observations to 

evaluate these IOT products.  

Unfortunately, before this work ocean-based co-located satellite-HSRL measurements 

have been historically limited due to operational logistics and the cost of a ship-based HSRL for 

an extended period. That constraint hindered the crucial oceanic dataset required to implement 

this study's validation strategy. Furthermore, the advancements in geostationary technology as 

stated in section 2.2allows for the first time MODIS-like cloud retrievals from geostationary 

orbit. Previously, co-locating ship-based HSRL measurements with LEO spectroradiometers for 

IOT retrieval evaluation was not possible due to limited single-layer ice cloud co-location 

opportunities during the time duration of the field campaign. Past efforts to evaluate passive ice 

cloud optical thickness retrievals have largely centered on utilizing CALIPSO, such as the 

retrieval evaluation work performed on MODIS (Holz et al., 2016; Heidinger et al., 2015; Wang 

et al., 2016). The wealth of validation work involving MODIS and CALIPSO is because 

CALIPSO once flew in the A-Train with MODIS on Aqua, providing numerous co-located 

measurement opportunities. 
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Past efforts to evaluate passive ice cloud optical thickness retrievals have largely centered 

on utilizing CALIPSO, such as the retrieval evaluation work performed on MODIS (Holz et al., 

2016; Heidinger et al., 2015; Wang et al., 2016). However, CALIPSO has several disadvantages 

that the ground-based HSRL does not share. CALIPSO works best for infrared retrieval 

evaluation as the performance of its extinction measurement and thus IOT product is diminished 

during the daytime. CALIOP’s daytime signal-to-noise ratios (SNRs) are significantly lower due 

to required changes in the calibration coefficients of the 532 nm channel from solar radiation, 

complicating daytime validation of visible cloud optical property retrievals. Another 

disadvantage is that CALIOP also must assume a lidar ratio for their IOT retrieval and multiple 

scattering regardless of day or night status, while the HSRL does not share these disadvantages 

as was shown in sections 2.5.1 and 2.5.2. Lastly, in-situ-based measurements such as that from a 

ground-based lidar also have the advantage of typically having higher SNR values than space-

borne lidars due to great distances between the atmospheric target and the spacecraft, onboard 

power limitations, as well as a combination of relatively low pulse rates and high speeds across 

the target (Hlavka et al., 2012).  

In this thesis, we utilize an in-situ-based (ground and ship) HSRL to evaluate the NASA 

CLDPROP and NOAA Enterprise daytime retrievals processed on the AHI instrument. The 

GEO-in-situ-based combination allows for superior continuous colocation and sampling relative 

to an LEO-in-situ combination because the in-situ measurements are always within the field of 

view of the GEO. Analogous past literature for GEO-HSRL retrieval evaluation is that of Kox et 

al. 2014, who utilized data collected from an HSRL on the airborne FALCON campaign over 

continental Europe to validate an infrared machine learning cloud optical thickness retrieval run 

on SEVERI and trained on CALIOP data. However, unique to this study is the evaluation of the 
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operational NASA CLDPROP and NOAA Enterprise daytime products by the HSRL over an 

extremely well-behaved surface Bidirectional reflectance distribution function (BRDF) 

environment: the ocean. This unique aspect enables the evaluation of retrieval assumptions such 

as the scattering phase function as well as the impact of different surface environments on the 

retrieval when compared to the over-ocean measurements. The results of this evaluation will 

provide a snapshot of the validity of the assumptions and techniques used in the two retrieval 

algorithms. 

 

3. Methods 

3.1 HSRL Ice Cloud Optical Thickness Retrieval 

 As seen in section 2.6, the HSRL provides several distinct advantages relative to past 

validation efforts. The material contained in the methods section is no longer background 

material and was used to produce the HSRL Ice Cloud Optical Thickness retrieved product that 

was used to validate the NASA CLDPROP and NOAA Enterprise IOT retrievals. Section 3.1.1 will 

show how the HSRL is calibrated while section 3.1.2 show the forward model equations used in 

the algorithm. These two sections are directly implemented into the HSRL IOT retrieval but are 

borrowed from past work and are referenced. Section 3.1.3 shows the algorithm developed by 

the author of this thesis and is unique to this work. Section 3.1.4 shows the method in which is 

used to quantify uncertainty, and was developed by working with the HSRL lidar group.  

 

3.1.1 Calibration of HSRL Data 

Before geophysical variables can be calculated from the return signal, the raw photon 

counts received by the avalanche photodiodes (APDs) must be corrected for after pulsing (i.e., 

the internal scattering of photons within the instrument). Figure 11 shows a visual timeline of the 
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APD pulse timing for the HSRL, which contain important photon counting correction 

information.  

 

 

 

 

The first correction is for the background photon counts (𝑁𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑). The background photon 

counts are determined by exposing the detectors to background solar radiation and detector dark 

current for approximately 7e-06 seconds. After the background photon counts are quantified, the 

laser pulse is transmitted from the HSRL, and data collection begins. There are initially photons 

scattered from the laser pulse that saturate the APDs (𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) (Razenkov, 2010), however 

good usable photon counts begin 0.25e-06 seconds later. The photon counts collected during this 

time are binned into ranges corresponding to the collection rate of the detector that defines the 

native resolution of the HSRL (7.5m). The background counts and baseline correction are then 

subtracted from the photon counts in each bin range as shown in equation 16. 

 

APD Pulse Timing 

7e-06s

The HSRL 

lidar begins 

collects 

background 

counts. 

7.25e-06s

7.75e-06s

The laser pulse is 

transmitted and data 

begins to be collected. 

APDs are saturated

Good usable photon 

counting can begin

0s

Background 

photon 

counting is 

complete

~2.0835e-04s

Profile data 

collection ends

Figure 11- Data collection and calibration timeline for the avalanche photodiodes 
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(16) 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =   𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑁𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  

 

Now that the photon counts have been corrected at the detector level, we must consider 

the attenuation and leakage of photons as they travel through the optical system. For the 

molecular channel there are two calibration coefficients corresponding to the transmission and 

leakage of photons through the iodine absorption filter onto the detector. The correction from 

Razenkov 2010 is used for the molecular and combined signals to obtain the molecular 𝑁𝑚𝑜𝑙 and 

particulate 𝑁𝑎 calibrated photon counts. The molecular signal is: 

 

(17) 𝑆𝑚𝑜𝑙 = 𝐶𝑎𝑚𝑁𝑎 + 𝐶𝑚𝑚𝑁𝑚𝑜𝑙 

 

𝐶𝑚𝑚 corrects for the attenuation of the molecular photons through the iodine filter, while 

𝐶𝑎𝑚 corrects for the leakage of aerosol photons that are not removed by the iodine filter. The 

signal in the combined channel is:  

 

(18) 𝑆𝑐𝑚𝑏 = 𝐶𝑎𝑐𝑁𝑎 + 𝐶𝑚𝑐𝑁𝑚𝑜𝑙 

 

Where 𝐶𝑎𝑐 is the relative contribution of the aerosol onto the combined channel and 𝐶𝑚𝑐  is the 

relative contribution of molecules onto the combined channel. These coefficients are 

precomputed (Eloranta, 2005). The calibrated corrected photon counts are then found by 

inverting equations 17 and 18. 

 

(19) 𝑁𝑚𝑜𝑙 =
𝑆𝑚𝑜𝑙−𝑆𝑐𝑚𝑏𝐶𝑎𝑚

𝐶𝑚𝑚−𝐶𝑎𝑚𝐶𝑚𝑐
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(20) 𝑁𝑎 =
𝑆𝑐𝑚𝑏𝐶𝑚𝑚−𝑆𝑚𝑜𝑙𝐶𝑚𝑐

𝐶𝑚𝑚−𝐶𝑎𝑚𝐶𝑚𝑐
 

 

3.1.2 HSRL Atmospheric Measurements and Inverted Forward Models Equations 

Geophysical variables of interest must be calculated from the raw photon counts before 

ice clouds can be identified and their optical properties calculated for validation purposes. Due to 

the Poisson bootstrapping methodology outlined in the uncertainty quantification section in 

3.1.4, the level 2 products produced on the HSRL website cannot be used and the geophysical 

parameters must be demined from the photon counts using the HSRL forward model equations. 

The HSRL has 3 forward model equations, one for each channel that are inverted to obtain the 

optical thickness, backscatter cross-section and depolarization ratio (Marais, 2021; Holz, 2002). 

These equations slightly differ from the more simplified HSRL lidar principles section as they 

include calibration, polarization considerations, and other important information related to HSRL 

processing (Marais 2021). Below are the equations used to calculate the geophysical variables 

used in the ice cloud optical thickness retrieval: 

 

The depolarization (𝛿𝑝) is 

(21) 𝛿𝑝 =
𝑁𝑝𝑜𝑙

𝑁𝑐𝑚𝑏
 

 

Where 𝑁𝑝𝑜𝑙  is the calibrated photon counts in the cross-polarization channel. 

 

(22)  𝑁𝑝𝑜𝑙 = 𝐺(𝑆𝑝𝑜𝑙 − 𝐶0𝑆𝑐𝑚𝑏) − 𝐶𝑚𝑐𝑁𝑚𝑜𝑙𝛿𝑚 
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𝐺 is the combined to cross polarization gain ratio, 𝐶0 is the polarization cross talk and 𝛿𝑚 is the 

molecular depolarization. The particulate backscatter cross-section (𝑣𝑎) is:  

 

(23)  𝑣𝑎 =
𝑣𝑚𝑜𝑙

∥ (𝑁𝑐𝑚𝑏𝐶𝑚𝑚−𝑁𝑚𝑜𝑙𝐶𝑚𝑐)

𝑁𝑚𝑜𝑙−𝑁𝑐𝑚𝑏𝐶𝑎𝑚
(1 + 𝛿𝑝) 

 

Where 𝑣𝑚𝑜𝑙
∥  is the molecular backscatter. The optical thickness is: 

 

(24) 𝜏 =  −
1

2
log(

(𝑁𝑐𝑚𝑏𝐶𝑎𝑚−𝑁𝑚𝑜𝑙)𝑟2

0𝑣𝑚𝑜𝑙
∥ (𝐶𝑎𝑚𝐶𝑚𝑐−𝐶𝑚𝑚)𝑒−2𝑡𝑚

) 

 

 

The signal to noise ratio is 

(25)  𝑆𝑁𝑅 =  
𝜇

𝜎
 

 

Photon counting noise follows a Poisson distribution and thus the standard deviation is: 

 

(26)  𝜎(𝑁)  = √𝑁 

 

The molecular signal to noise ratio is: 

 

(27) 𝑆𝑁𝑅𝑚𝑜𝑙 =
𝑁𝑚𝑜𝑙

𝜎(𝑁𝑚𝑜𝑙) 
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The photon counting noise in each channel utilized for the calculation of the particulate 

backscatter cross-section must be considered, therefore the law of error propagation is used to 

determine the total uncertainty as shown in equation 28. 

 

(28)  𝜎(𝑣𝑎)2 =

√(
𝜕𝑣𝑎

𝜕𝑁𝑐𝑚𝑏
)

2
𝜎(𝑁𝑐𝑚𝑏)2 + (

𝜕𝑣𝑎

𝜕𝑁𝑚𝑜𝑙
)

2
𝜎(𝑁𝑚𝑜𝑙)2 + (

𝜕𝑣𝑎

𝜕𝑁𝑝𝑜𝑙
)

2

𝜎(𝑁𝑝𝑜𝑙)
2
 

 

Where the partial derivatives of the geophysical with respect to the photon counts for each 

channel are solved and multiplied by the photon counting noise determined by equation 26. The 

particulate SNR is then: 

 

(29) 𝑆𝑁𝑅𝑝𝑎𝑟𝑡 =
𝑣𝑎

𝜎(𝑣𝑎)
 

 

3.1.3 Algorithm Description 

To examine the validity of the AHI NASA CLDPROP and NOAA Enterprise retrieved 

products an HSRL ice cloud optical thickness retrieval (HSRL ICOTR) was created to calculate 

the IOT. The HSRL data was downloaded from the HSRL web interface at 

http://hsrl.ssec.wisc.edu/ and the raw photon counts generated from these files are used in the 

HSRL IOT retrieval. The inverted HSRL forward model equations shown in the previous section 

are utilized to output backscatter cross-section, depolarization ratio, signal to noise ratios and 

optical thickness from the photon counts. There are three main parts of the retrieval algorithm, 

the first determines all vertical levels that contain an ice or water cloud with adequate signal, the 

second confirms that the detected ice layers belong to an ice cloud structure and determines 

where the attenuation level occurs and attempts to determine cloud boundaries, while the third 
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calculates the optical thickness and averages the signal vertically if necessary to increase SNR. A 

flow chart of the algorithm is shown in figure 12. 

 

 

Figure 12 - HSRL Ice Cloud Optical Thickness Retrieval Flowchart 

 

The first part of the algorithm utilizes thresholds to define a potential cloud in each layer. We 

seek vertical levels with adequate backscatter signal and SNR. To achieve this, a hard threshold 

of greater than 10-6 m-1sr-1 with a molecular and particulate SNR > 1 is used to define potential 

cloud layers. These parameters where determined through personal communication with the 

UW-HSRL team earlier in the development of the algorithm. To determine if the layers are 

composed of ice, we use the knowledge that spherical particles such as suspended cloud droplets 

generally have low depolarization ratios (less than 5%), whereas ice particles have a relatively 

larger depolarization ratio (Turner and Eloranta, 2008). Although the minim um depolarization 

ratios for ice cloud detection may vary by region, for the subtropics we use a value of 0.27. This 
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value was determined by visual examination of ice clouds throughout the PISTON and 

CAMP2EX datarecords. The detected ice levels are shown in Figure 16b-d with red dots, with 

the thresholds for each geophysical indicated by the red dashed vertical line.  

The potential ice cloud levels then advance to the second phase of the algorithm where 

they are examined to ensure they are part of a larger cloud structure, and the first quick check 

attenuation condition is performed. For each profile, if the molecular signal is attenuated (SNR < 

1) before 15km, the algorithm moves onto the next profile. The 15km altitude threshold on SNR 

is implamented because ice clouds can be found as high as 17km in this region. If this check is 

passed, the detected ice cloud layers from the previous phase of the algorithm move onto the 

next phase where they must be continuous for at least 3 vertical levels or 450m, yielding a 

continuous cloud for a minim um vertical geometric thickness. This approach also establishes the 

cloud boundaries if the signal is not attenuated within the cloud structure. The cloud base height 

and cloud top height are labeled as one vertical level before and one level after the first and last 

vertical levels in this continuous structure to ensure the optical thickness is calculated through 

the whole of the cloud structure. If the signal is attenuated within the cloud, a special condition is 

initiated to optimize the dynamic range of the HSRL. The signal is averaged over 3 vertical bins 

to improve SNR and the threshold conditions are applied again with an additional constrain of 

the SNR > 1 at 17.5km to determine if the cloud top can be found. 

Once the boundaries of the cloud have been determined, the calculation of the IOT is 

initiated. The lower bound of the IOT calculation is the optical depth recorded at the cloud base 

height (cbh). The upper bound (atten_level) is determined by taking all vertical levels (minim um 

of 3) above the cloud top height that are not attenuated (molecular SNR > 1) and calculating the 

signal-averaged above-cloud optical thickness. This is The above cloud running optical thickness 
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is determined by averaging the photon counts from the cloud top height to attenuation level, then 

running the averaged photon count value through the inverted forward model equation for optical 

depth. 

 

(30) 𝜏𝑎𝑏𝑣_𝑐𝑙𝑑 =  −
1

2
log(

𝑚𝑒𝑎𝑛(𝑟2(𝑁𝑐𝑚𝑏𝐶𝑎𝑚−𝑁𝑚𝑜𝑙)[𝑐𝑡ℎ:𝑎𝑡𝑡𝑒𝑛_𝑙𝑒𝑣𝑒𝑙])

𝑚𝑒𝑎𝑛(0𝑣𝑚𝑜𝑙
∥ (𝐶𝑎𝑚𝐶𝑚𝑐−𝐶𝑚𝑚)𝑒−2𝑡𝑚 [𝑐𝑡ℎ:𝑎𝑡𝑡𝑒𝑛_𝑙𝑒𝑣𝑒𝑙])

) 

 

Where the calibration coefficients are defined in the calibration of HSRL data section. This is 

done because the optical thickness recorded by the HSRL is an increasing function with the 

variation at levels corresponding to higher altitudes being caused by noise as shown in figure 13. 

These levels are averaged together therefore gaining higher SNR to get a more certain cloud top 

height optical thickness value as shown by the solid vertical red line in the figure. The ice cloud 

optical thickness is then calculated by taking the difference between the above cloud OD 

Figure 13 - Ice cloud optical thickness profile - Shows the detected ice cloud levels (red dots) as well as the 

above cloud averaged optical thickness value used to calculate IOT 
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calculated value from equation 30 (𝜏𝑎𝑏𝑣_𝑐𝑙𝑑) and the OD value at the recorded cloud base height 

using equation 24. 

(31) 𝐼𝑂𝑇 = 𝜏𝑎𝑏𝑣_𝑐𝑙𝑑 − 𝜏𝑐𝑏ℎ  

  

If there is more than one ice cloud in the profile, the boundaries of each cloud is logged and the 

cloud base of the lowest ice cloud is used as the lower bound to calculate the total IOT. Detected 

ice cloud boundaries for a case study on November 29th, 2019, are shown in figure 14C, and can 

be compared to the calculated backscatter cross section in figure 14A and the linear 

depolarization ratio in figure 14B. 

 The presence of a water cloud is detected in a similar way to the first phase of the 

algorithm. Although not the focus of this research, water cloud contamination can impact the 

satellite retrievals making the detection important. Therefore, the layer with the largest 

backscatter in the profile with a depolarization less than 0.27 is logged for later QC screening. In 

addition, a thick planetary boundary later can also have an impact on the retrieved optical 

thickness for the visible channels. To mitigate this problem, we record the integrated backscatter 

from the surface up to 4km and use this as an indicator in QC.  
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Figure 14 -A) HSRL Inversion results for the backscatter cross-section. B) HSRL inversion 

results for the linear depolarization ratio. C) Detected ice cloud boundaries output from the 

ICOTR. 

 

3.1.4 Uncertainty Quantification 

The bootstrapping method is used to obtain uncertainty estimates in the ice cloud optical 

thickness measurements outlined in the previous section. The approach for calculation of 

uncertainty is shown in the flow chart in Figure 15. 

 

Figure 15 - The methodology for determining the ice cloud optical thickness uncertainty 

 

The uncertainty of the photon counts measured in each of the 3 HSRL channels (combined, 

molecular and cross-polarization) can be ass umed to follow a Poisson distribution. We construct 
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a Poisson distribution about the mean photon count measurements and randomly sample with 

replacement using a Bernoulli distribution parameter of 0.5, this is known as Poisson thinning 

(PT). An example of the Poisson distribution about the mean (actual value of the photon counts 

shown by the red line) is shown in Figure 16 for the combined channel.  

 

 

Figure 16 - Generated Poisson distribution of photon counts for the combined channel 

The randomly sampled acc umulated photon counts can then be multiplied by the Poisson 

thinning parameter (0.5 in this case) and ran through the inverted forward model equations to 

obtain our geophysical parameters (optical thickness, backscatter cross section, linear 

depolarization ratio and unique SNR estimates for each iteration), then the ICOTR to obtain IOT 

this method is again shown in Figure 15. This process is repeated for 100 iterations, resulting in 

100 IOT measurements from this resampling technique. Figure 17A shows the impact of the 

photon counting noise on the IOT measurement, with the mean of all iterations shown as the 

dashed vertical redline. The standard deviation is taken from all the iterations as well as the 

mean, for this profile (November 29th 23:30). It should be noted that the integer rounded mean 
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of all iterations is the actual photon count value. The statistical variation in the optical depth, 

backscatter and molecular SNR induced by the bootstrap method is shown in figures 17B-D, 

with the blue shading indicating one standard deviation at each level. 

 

Figure 17 – Bootstrapped Results for a profile containing an ice cloud on November 29th, 23:30. 

A) Bootstrapped IOT histogram for 100 iterations using the ICOTR designed for this study. B) 

Bootstrap optical depth. C) Bootstrapped backscatter cross-section. D) Bootstrapped molecular 

SNR 
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It can be observed that at higher levels, where the SNR is lower, the variation in the optical 

thickness increases. Most of the variation in the IOT measurements occurs at higher altitudes 

despite our attempts to minimize this variation. In addition, the level of attenuation derived from 

the molecular SNR may change slightly in thickener cloud cases. Despite these considerations, 

the ICOTR is robust for ice clouds with IOT < 1.2 where its boundaries are mostly driven by the 

backscatter threshold condition, where the signal is far greater than the statistical variation. The 

statistically determined uncertainty as a function of optical thickness is shown in figure 18 for 

both the PISTON and Manila observatory HSRL.  

 

Figure 18 - HSRL IOT Uncertainty per optical depth range 

 

It can be seen that the HSRL based in Manila (CAMP2EX) has higher uncertainty than the 

PISTON ship based HSRL. This is likely because of the boundary layer aerosol at the Manila 
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observatory having higher concentrations relative to the pristine oceanic environment during the 

PISTON campaign. As can be seen, the uncertainty also increases with optical thickness for both 

sites, with the exception of the highest optical thickness bin for the PISTON ship due to limited 

sampling. 

 

3.2 Preparation of AHI Cloud Products and HSRL Retrieved IOT for Comparison 

3.2.1 Co-Location of the AHI with the HSRL 

The HSRL data at the land-based Manila Observatory and on board the PISTON field 

campaign are matched up to AHI for each HSRL 10-minute sampling interval by finding the 

closest pixel centroid distance to the location. The AHI cloud products have a temporal 

resolution of 10 minutes, and a standard product spatial resolution of 2 km. In this study, we only 

consider daytime observations indicated by NOAA Enterprise since we are utilizing visible 

retrievals. Equations 32 and 33 show how to extract the closest AHI pixel as: 

 

(32) Δ𝑠 =  √(𝐴𝐻𝐼𝑙𝑎𝑡 − 𝐻𝑆𝑅𝐿𝑙𝑎𝑡)2 + (𝐴𝐻𝐼𝑙𝑜𝑛 − 𝐻𝑆𝑅𝐿𝑙𝑜𝑛)2 

 

(33) 𝑙𝑎𝑡𝑖𝑑𝑥 , 𝑙𝑜𝑛𝑖𝑑𝑥 = 𝑛𝑝. 𝑎𝑟𝑔𝑚𝑖𝑛(Δ𝑠) 

 

The minim um distance (Δ𝑠) is found and that index is extracted. It should be noted that the AHI 

position is parallax corrected. If the distance is less than 1.5km, that AHI pixel is used. For the 

ship-based HSRL, the index changes regularly as the ship moves. The movement of the ship can 

be seen in section 2.6.1. We always compute the minimum distance even over the stationary 

Manila Observatory because the parallax corrected position of the cloud sometimes results in a 

different pixel being chosen, furthermore, the two retrieval products were on different 
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geolocation grids and had to be matched up separately to the HSRL. The indices are then used to 

extract the optical depth at that location for comparison.  

 

3.2.2 Quality Control of Products 

 
Once the desired AHI pixels are extracted, the AHI data is already on the same temporal 

scale as the HSRL data (10 min resolution) and the actual CLDPROP and NOAA Enterprise 

products are quality controlled. Pixels that have a cloud fraction of less than 80% are not used in 

this comparison, this is because we want the cloud structure measured by the HSRL to be as 

representative of the entire AHI pixel as possible. There are several quality control conditions 

that are applied to the HSRL data. Since the HSRL is an upward looking lidar fixed at a given 

spatial location, we use the temporal dimension as a sudo-spatial dimension in comparison with 

AHI. As we seek scenes that are uniform over the AHI pixel without major radiative 

contaminants to the ice cloud signal, we examine the geophysical parameters over a 30-minute 

range (+/- 10 minutes) of the central HSRL profile. This spatial uniformity condition allows for a 

more accurate comparison as this is essentially an approximate cross section of the AHI pixel by 

the HSRL. HSRL ICOTR measurements are screened for cloud uniformity by accepting values 

that have a standard deviation in cloud top height of less than 1 km over the 30-minute range. In 

addition, measurements that are missing an adjacent temporal measurement in cloud top height 

and optical thickness are not used as the spatial uniformity cannot be ensured. Figure 19A shows 

two ice cloud scenarios that fail the spatial uniformity condition. 
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Figure 19- A) Two Ice cloud scenes shown as the backscatter cross section that fail the spatial 

uniformity condition. B) Example of a thick PBL that does not pass the integrated backscatter 

condition and a PBL that is accepted. 

 

The lower atmosphere and PBL is screened by examining the extracted max backscatter 

of the water clouds and the integrated backscatter below 4 km. If a water cloud is below the ice 

cloud with a max vertical level backscatter of 2.5e-05 over the 30-minute range the sample is 

discarded. In addition, the integrated of the backscatter cross section in the lowest 4 km must be 

less than 8e-06, otherwise this indicates a thick lower atmosphere. Figure 19B show conditions 

in which the integrated backscatter condition fail (Thick) and when it is passed (Thin). Although 

not all of the pixel is profiled by the HSRL, we believe that the ice clouds in this comparison are 

relatively uniform due to these threshold conditions. Additionally, most of these ice clouds 

Thick Normal

A

B

2.5km

5km
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measured in the Philippines have extensive spatial scales that are related to upper-level 

divergence from convective activity from the Pacific warm pool. Lastly, all HSRL IOT 

measurements must have less than 10% uncertainty as indicated by the bootstrap method 

outlined in previous section. In the next section we outline the statistical method for comparing 

the HSRL derived IOT with the cloud property products. 

 

3.2.3 Statistical Method for Dataset Comparison 
 

The retrievals will be validated by computing the square root of the correlation 

coefficient (R2) value between the HSRL derived IOT and each retrieval. This approach provides 

a measure of linear correlation between the two datasets and is appropriate due to the two 

compared variables being the same geophysical parameter. The R2 value in this case is defined in 

equation 34: 

 

(34) 𝑅2 = (
∑(𝑥−�̅�)(𝑦−�̅�)

√Σ(𝑥−�̅�)2Σ(𝑦−�̅�)2
)

2

 

 

Where 𝑦 is the HSRL IOT vector and �̅� is the mean of 𝑦. 𝑥 is the passive retrieved optical 

thickness (NASA CLDPROP or NOAA NOAA Enterprise) vector being compared to the HSRL 

and �̅� is the mean of x. 

4. Results 

4.1 Validation of GEO Ice Cloud Property Retrievals 
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4.1.1 Infrared IOT Validation 

4.1.1.1 Oceanic Environment 

To validate the NASA CLDPROP and NOAA Enterprise infrared retrievals over ocean, 

the HSRL data collected during the 2018 PISTON campaign is utilized. The 2018 PISTON 

campaign took place in the Philippine Sea between the months of August to October during the 

south Asian Monsoon season. It should be re-iterated that these measurements are extremely 

important for retrieval evaluation as they ensure optimal surface conditions. The following 

comparison is the first over ocean ice cloud optical property retrieval evaluation using a well-

constrained direct IOT measurement with uncertainty estimates. For the infrared channels, this is 

because the ocean surface temperature and emissivity are well-known and allow us to examine 

other retrieval assumptions. Most of the daytime data is polluted by water clouds from that 

campaign. The position of the ship was matched up to the AHI following the methodology 

outlined in the previous section. Figure 20 shows the validation of the AHI NOAA Enterprise IR 

retrieved IOT against the HSRL on board the PISTON 2018 campaign. 

 

R
2
 = 0.80 
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Figure 20 - Validation of the NOAA NOAA Enterprise IR optical thickness retrieval by the 

HSRL over ocean during the PISTON Campaign 

 

The correlation coefficient (R2) relative to the HSRL IOT is 0.8. It is evident that this is a robust 

single layer ice cloud optical thickness retrieval over ocean, especially over small optical depth 

values. These results agree with previous literature that suggested the split window approach is 

particularly sensitive to thin cirrus (Heidinger and Pavolonis, 2009; Stephens and Kummerow, 

2007). Within this retrieval, surface temperature and emissivity are important parameters in order 

to quantify the extinction of spectral radiation through the cloud layer. It is shown that these 

parameters are well quantified in this oceanic environment. Although we do not have IOT values 

larger than 1.5 at this site, it has been suggested that the technique loses sensitivity with larger 

optical thickness values(Stephens and Kummerow, 2007). Although all water clouds were 

removed for this analysis, the IR channels also have some degree of sensitivity to ice cloud 

optical thickness in multi-layer ice clouds over shallow very warm water clouds as it is most 

sensitive to thermally cold clouds.  

 

4.1.1.2 Urban Environment 

The analysis preformed for the PISTON campaign is repeated for 1 year of observations 

at the Manila Observatory site during CAMP2EX. A visual of the surface properties of the city 
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of Manila in the Philippines is shown from google earth in Figure 21.  

 

Figure 21 - Google maps view centered on the Manila observatory, the location of the 

CAMP2EX HSRL. 

 

It can be observed that the environment is complex with dense urban housing and a mixture of 

terrestrial surfaces near the observatory. The developed ICOTR was run using the HSRL data at 

the observatory and co-located with the AHI NOAA Enterprise IR retrieval, the results are 

shown in Figure 22. 
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Figure 22 - Validation of the NOAA NOAA Enterprise IR optical thickness retrieval by the 

HSRL over an urban environment during the CAMP2EX campaign 

 

The comparison with the HSRL suggests that the NOAA Enterprise ACHA infrared retrieval is 

an accurate and stable retrieval algorithm for measuring the optical thickness of thin ice clouds, 

even over a complex urban environment such as Manila. The correlation coefficient relative to 

the HSRL only drops by 0.03 from to the over ocean comparison (From R2 = 0.80 to R2 = 0.77) . 

Furthermore, this shows that the assumptions in the retrieval are well constrained such as surface 

temperature and emissivity that result in the 𝐼𝑐𝑙𝑟  term from equation 4 into the PFAAST radiative 

transfer model. These results suggest that when examining IOT over urban environments, the 

infrared channels should be used. In the next section, we examine the visible retrieved IOT 

product.s 

 

R
2
 = 0.77 
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4.1.2 Visible IOT Validation 

4.1.2.1 Oceanic Environment 

The corresponding NASA CLDPROP and NOAA NOAA Enterprise VIS retrieved 

products for the same pixels and datetimes as the infrared plots shown in the previous section for 

the PISTON campaign are now examined. The HSRL ICOTR developed for this study now 

compared to the visible retrievals with Figure 23 shows the NASA CLDPROP comparison with 

the HSRL.  

 

Figure 23 - Validation of the NASA CLRPROP visible optical thickness retrieval by the HSRL 

over ocean during the PISTON Campaign 

 

It is observed that the NASA CLDPROP retrieval agrees well with the HSRL IOT relative to the 

HSRL (R2 = 0.69), with a minor high bias. However, the NOAA Enterprise infrared retrieval 

performed better. Using the bi-spectral reflectance method, there are two major potential sources 

of uncertainty as we showed using equation 1 from Nakajima and King 1989. The first is the 

R
2
 = 0.69 



 

 

77 

77 

ground albedo (𝑨𝒈) and the second is the scattering phase function/ asymmetry parameter (𝑔) for 

the ice crystals in the cloud. As we are over ocean and the ocean surface doesn’t reflect or emit 

heavily in the visible, only sun glint observations would positively bias the observed surface 

reflectance thus the optical thickness values. Because this data is quality controlled, sun glint is 

not an issue. These co-located observations with the HSRL provide a unique opportunity to 

evaluate the validity of the ice crystal scattering phase function as well as the methodology used 

in the retrieval. The results from the NASA CLDPROP retrieval suggests that the phase function 

ass umed in the retrievals is valid for the ice clouds observed in the Philippine Sea during this 

ship campaign. The NOAA NOAA Enterprise visible optical thickness retrieval is shown in 

Figure 24. 

 

Figure 24 - Validation of the NOAA NOAA Enterprise visible optical thickness retrieval by the 

HSRL over ocean during the PISTON Campaign 

 

R
2
 = 0.57 
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The NOAA Enterprise visible retrieval exhibits a consistent high bias over all optical thickness 

values and a lower correlation than CLDPROP and NOAA Enterprise IR relative to the HSRL 

(R2 = 0.57). Both the CLDPROP and NOAA Enterprise products use the MODIS white sky 

albedo maps (Schaaf et al., 2011) and the same asymmetry parameter /phase function, that is 

severely roughened aggregate col umns (Yang et al., 2013; Holz et al., 2016). Due to these 

mutual assumptions, differences between the NASA CLDPROP and NOAA Enterprise products 

likely arose due to the different retrieval methodologies.  One potential reason could be that 

within the optimal estimation framework if the observed reflectance values (𝑦) have a decent 

agreement with the forward model output 𝐹(𝑥, 𝑏), and the chosen a-priori is higher than the IOT 

measured by the HSRL, the retrieval may be pulled high towards a-priori (𝑥𝑎) while still meeting 

the cost function. The a-priori for the NOAA Enterprise visible retrieval is from CALIPSO 

climatology. As the ice clouds measured here are a subset of the climatological record, this is not 

entirely unexpected. The implications of these results suggest that the phase function used in 

these retrievals is valid for this part of the world and that the NASA CLDPROP optical thickness 

retrieval can be used for single-layer ice cloud observations for energy budget and other science 

applications over the ocean in the validated region. 

 

4.1.2.2 Urban Environment 

With the NASA CLDPROP retrieval agreeing well with the HSRL over the ocean, we 

now have confidence that the asymmetry parameter assumed in the retrieval is valid for this 

region. We can now examine the validity of both retrievals over an environment with the added 

uncertainty of a complex surface Bidirectional Reflectance Distribution Function. The BRDF 

describes the angular reflection of radiation off an opaque surface. Figure 25 shows the HSRL-
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derived IOT compared to the NASA CLDPROP (A) and the NOAA NOAA Enterprise retrieval 

(B). 

 

 

Figure 25 - Validation of the NOAA NOAA Enterprise visible (A) and NASA CLDPROP (B) 

optical thickness retrievals by the HSRL over an urban environment during the CAMP2EX 

campaign 

 
The two retrievals both exhibit a similar large high bias and increased uncertainty within 

the spread of that bias. The correlation is low with the HSRL for both the NOAA Enterprise VIS 

(R2 = 0.14) and CLDPROP (R2 = 0.29). Due to the results of the NASA CLDPROP retrieval 

over ocean, and the comparison of the infrared NOAA Enterprise retrieval over both land and 

ocean, we can safely assume that the uncertainty associated with the NASA CLDPROP and 

NOAA Enterprise visible retrievals shown here stem from an under-estimation of the surface 

reflection function. The high bias in each retrieval product is further examined in figure 26 by 

plotting the HSRL IOT against the optical thickness ratio as shown in equation 44. 

 

A B

R
2
 = 0.14 R

2
 = 0.29 
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39. 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝐻𝐼 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝐻𝑆𝑅𝐿 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 

 

Where the HSRL IOT is taken as the “truth” measurement. A value of 1 represents perfect 

agreement with the HSRL IOT and is indicated by the horizontal black line, while a value of 2 or 

3 would correspond to a high bias with double or triple the value of the HSRL respectively.  

 

 

Figure 26 - Optical Thickness Ratio (Bias) by HSRL IOT for the NASA CLDPROP and NOAA 

Enterprise visible retrievals 

 

The figure shows a logarithmic decrease in the bias as the HSRL IOT approaches unity. This is 

likely due to the decrease in transmitted reflected upwelling surface radiation through the cloud 

layer due to higher IOT values. As shown in equation 1, the higher optical thickness values result 

in a smaller atmospheric transmittance (tatm), which results in a decrease in the surface 

reflectance terms (2nd term) contribution to the top of the atmosphere reflectance.  Some of the 
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low IOT values from the HSRL with the highest biases in the NOAA Enterprise data are not 

present in the CLDPROP data. This is likely because the reflectance values fall out of the look-

up table, while in the NOAA Enterprise the optimal estimation is driven to higher values by the a 

priori that still meet the cost function condition. The surface BRDF for both retrieval algorithms 

is derived using clear sky observations of the surface using MODIS. Figure 21 shows high-

resolution visible imagery from google earth regarding the surface environment of Manila. It can 

be seen that this region has a very complicated surface, with asphalt, sheet metal roofs, and 

occasional vegetative pockets. These results suggest that one should use extreme caution when 

using visible optical property retrievals of ice cloud optical thickness for thin ice clouds over 

urban environments without validation at that location via lidar. 

 

4.1.2.3 Impacts of Radiometric Calibration on NASA CLDPROP Yield 

The NASA Cloud Property Algorithm was originally designed for the MODIS and VIIRS 

sensors. The early implementation of the NASA CLDPROP algorithm on MODIS and VIIRS 

resulted in inter-sensor biases in the optical property retrievals (Meyer et al., 2020). These 

inconsistencies were traced back to relative radiometric inconsistencies between analogous 

channels of the two instruments. When the NASA CLDPROP algorithm was implemented on the 

AHI, there was a small difference in the calibration of the 2.25 channel used for the bi-spectral 

reflectance method. The 2.25 um channel was dimmer. The reflectance values measured by the 

sensor at the 0.86 and 2.25 are used to simultaneously determine optical thickness and effective 

radius over ocean. As shown in Figure 7, the solution space in the look up table becomes smaller 

with decreasing IOT values and decreasing reflectance in the used channels The radiometric 

correction in the 2.25 channel resulted in an increase in the 0.84 and 2.25 channel point in the 
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look up table falling into the solution space. As shown in Figure 27, the increase in yield was 

highest for small IOT values indicated by the HSRL, especially for values under one.  

 

 

Figure 27 – Improvement in yield due to improved radiometric calibration by binned HSRL 

optical depth for the NASA CLDPROP   

 
The overall yield relative to the previous version without radiometric corrections in the 2.25 

channels was 120.5 % for the optically thin ice clouds during PISTON. 

 

4.2 Comparison of NASA Cloud Property Retrieval from AHI with MODIS and VIIRS 

 In the previous sections, the NASA CLDPROP and NOAA NOAA Enterprise retrievals 

run on the AHI instrument for both urban and ocean environments were validated. The NASA 

CLDPROP retrieval agreed very well with the HSRL data collected over ocean during the 
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PISTON campaign for single layer homogeneous ice clouds. The SSEC SIPPS had preprocessed 

NASA CLDPROP data available for AHI on Himawari-8, MODIS on AQUA and VIIRS on 

SNPP for the mutual time period of September 2019, enabling the comparison of the same 

retrieval on multiple platforms. NOAA NOAA Enterprise data during the months of the PISTON 

campaign for MODIS and VIIRS will not be analyzed due to lack of available data. There are 

two goals of this section; the first is to compare one month of CLDPROP data processed on AHI 

over the PISTON domain to CLDPROP data processed on MODIS and VIIRS. The second is to 

use AHI as an anchor to determine qualitatively how well the AHI-HSRL based result can 

translate to MODIS and VIIRS for optically thin ice clouds (IOT < 3). This approach is taken 

due to the difficulty of obtaining a statistically significant n umber of HSRL co-locations with 

individual LEO sensors during the PISTON campaign.  

The dataset is first constrained to only ice clouds indicated by both instruments’ optical 

phase retrievals. Then, to ensure the most accurate comparison possible, the co-located dataset is 

filtered to include MODIS and VIIRS averaged IOT values with low spatial homogeneity across 

the AHI pixel. The impact of reducing the absolute scattering and view angle differences is 

investigated for the entire IOT range and the statistical correlation between the GEO and LEO 

products are calculated for thin, opaque, and thick cloud indicated by Hong et al. 2017. The data 

is also constrained to low view and scattering angle differences to produce a better statistical 

comparison.  
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4.2.1 All Optical Depth Ranges 

Figure 28a and Figure 29a show the IOT product from AHI compared to its MODIS and 

VIIRS counterpart products respectively. 

 

Figure 28- Comparison of the NASA CLDPROP retrieved IOT for AHI and MODIS for the 

entire optical depth range over the PISTON domain 
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Figure 29- Comparison of the NASA CLDPROP retrieved IOT for AHI and VIIRS for the entire 

optical depth range over the PISTON domain 

It can be observed that the correlations for all ice phase cloud are moderate (MODIS: R2 

= 0.68 ; VIIRS: R2 = 0.59),  however this can be expected as view angle geometries have not yet 

been accounted for. The view angle difference is the angular difference between two line of sight 

vectors from the ground to the two respective imagers. Figure 30 shows the linear correlation 

between VIIRS and AHI as a function of the maxim um absolute view (v) and scattering angle 
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(s) differences. 

 

Figure 30 – Correlation of AHI and VIIRS for different maxim um view angle and scattering 

angle differences 

The solid blue line is the absolute scattering angle difference, and the solid red line is the 

absolute view angle difference with the dashed lines being the total count. The correlation from 

the scattering angle alignment was minimal overall but showed some improvement for the 

minimal extremes s < 1 for VIIRS. Alignment in view angle differences were unsurprisingly 

shown to have a large impact and accounted for about 31% (VIIRS) and 26% (MODIS) of the 

unquantified uncertainty between the datasets when confined to v < 10 relative to all view 

angles considered. Figure 28d and figure 29d show the MODIS and VIIRS IOT products 

constrained by s < 1 and v < 10 over the entire optical depth range and yield a correlation 

coefficient of 0.95 and 0.94 respectively. This is a very positive result over the entire optical 

depth range, and it also suggest that when comparing visible cloud products, the view angles 

must be aligned to investigate inter-sensor uncertainties. In the following section we will 

examine how this comparison holds up over difference optical depth ranges categorized by their 

radiative impact as outlined in Hong et al. 2017. 
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4.2.2 Comparison for Thin, Opaque and Thick IOT 

Here, we repeat the above comparison in the previous section, but for the subset of 

optical depth ranges described in Hong et al. 2017. These optical depth ranges are thin (IOT = 

0.3 – 3), opaque (3 < IOT < 20) and thick (IOT > 20). We will start with thin ice clouds because 

this is the optical depth range that is closest to the PISTON HSRL dataset. For thin ice clouds, 

the correlation for non-angle aligned IOT measurements is low, (MODIS: R2 = 0.37 ; VIIRS: R2 

= 0.32) and is shown in Figures 31A and 32A. It can be observed that the n umber density of the 

spread (red in density plot) is larger for VIIRS than MODIS. When only considering 

measurements that meet the view angle and scattering angle alignment criteria, the correlation is 

significantly higher (MODIS: R2 = 0.82 ; VIIRS: R2 = 0.75). This increase in correlation due to 

the angle alignment is higher for optically thin clouds than any other optical depth range (as 

indicated by the +R2; MODIS: +R2 = 0.45 ; VIIRS: +R2 = 0.43). It should also be noted that 

MODIS has higher agreement with AHI than VIIRS for this range (+R2 = 0.07) and could be due 

MODIS being closer in spatial resolution to AHI. Overall, MODIS and VIIRS agree well with 

AHI for optically thin ice clouds that have an overall net warming effect. 
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Figure 31 - Comparison of the NASA CLDPROP retrieved IOT for AHI and MODIS for thin, 

opaque and thick optical depth ranges 

 

Figure 32 - Comparison of the NASA CLDPROP retrieved IOT for AHI and VIIRS for thin, 

opaque and thick optical depth ranges 
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Opaque ice clouds (3 < IOT < 20) have higher agreement with AHI for both instruments 

than any other optical depth range. Both instruments are moderately correlated before the view 

angle subset criteria (MODIS: R2 = 0.58; VIIRS: R2 = 0.55) and highly correlated after the 

subset (MODIS: R2 = 0.95; VIIRS: R2 = 0.91). MODIS and VIIRS agree extremely well with 

each other in regards to opaque ice clouds, which can have a net warming or cooling effect 

depending on their exact optical depth. Thick ice clouds (20 < IOT < 140) are weakly correlated 

before the view angle subset criteria (MODIS: R2 = 0.33; VIIRS: R2 = 0.38) and moderately and 

highly correlated after the subset (MODIS: R2 = 0.65; VIIRS: R2 = 0.77) respectively. The 

correlation is overall moderate for this subset of ice clouds with a net cooling effect. 

 

4.2.3 Comparison of Regression Coefficients  

In this section, we will examine if the HSRL validation of CLDPROP on AHI is 

statistically translatable to CLDPROP on MODIS and VIIRS. This will be done by comparing 

the regression coefficients generated by regressing the HSRL, MODIS and VIIRS against AHI. 

Before the regression, we roughly restrict the optical depth range of MODIS and VIIRS to the 

PISTON HSRL dataset. Figure 33 shows the best fit line generated by the regression for the 

HSRL validation of AHI IOT during PISTON as well as the MODIS and VIIRS AHI 
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comparisons during PISTON

 

Figure 33 - Comparison of the NASA CLDPROP retrieval processed on AHI with the HSRL, 

MODIS and VIIRS over the PISTON domain for IOT < 1.5. 

 

It can be observed that the regression line (red) is visually similar in all figures and that 

each instruments product shows a low bias relative to AHI for IOT <  ~0.85. Furthermore, it can 

be seen that VIIRS is lacking measurements for IOT < 0.5. The regression coefficients such as 

the slope, y-intercept (mean linear bias) as well as their associated uncertainties are extracted for 
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each comparison and are shown in figure 34. 

 

Figure 34 – Comparison of regression coefficients for the comparison of NASA CLDPROP 

retrieval processed on AHI vs the HSRL, MODIS and VIIRS over the PISTON domain. The 

blue bar corresponding to the left y axis is the slope relative to AHI and the red bar is the mean 

linear bias relative to AHI 

The comparison of the regression coefficients of the HSRL-AHI and MODIS-AHI regressions 

show that the slopes (0.9 +/- 0.08 and 0.83 +/- 0.02) and y-intercepts (0.19 +/- 0.04 and 0.16 +/ 

0.02 ) are within the bounds of uncertainty of each other. The same is true for the VIIRS-AHI 

slope (0.81 +/- 0.04) and y-intercept (0.16 +/- 0.04). This suggests that these results may 

translate to MODIS and VIIRS. It should be stated however, that direct in-situ validation using 

the HSRL directly co-located with MODIS and VIIRS over a well behaved BRDF environment 

is the best way to validate these retrievals on each instr ument. 

5. Summary and Conclusions 

The necessity to examine changes in cloud frequency and optical properties due to 

greenhouse gases for energy budget applications and climate sensitivity studies facilitate the 
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need to construct a highly accurate and stable cloud data record extending three decades or more. 

The MODIS-VIIRS cloud continuity (NASA Cloud Property Retrieval) and the NOAA 

Enterprise (NOAA Clouds from the AVHRR extended system) algorithms aim to construct an 

inter-satellite data record to investigate these trends. The optical depth plays a primary role in the 

net radiative effect of an ice cloud, which motivates the validation of this key parameter. The 

goal of this thesis was to create an ice cloud property retrieval for the HSRL with uncertainty 

estimated to validate the cloud optical thickness products from the NASA CLDPROP and 

NOAA NOAA Enterprise retrievals during the CAMP2EX and PISTON field campaigns as well 

as examine the validity of the assumptions made in these operational retrievals. The 

advancement in GEO satellite technology allows for these LEO retrieval algorithms to be 

accurately run on the AHI instrument. Utilizing the HSRL’s unique ability to determine optical 

depth and particulate backscatter by separating the molecular and particulate signals, a highly 

accurate ice cloud optical thickness retrieval with quantifiable uncertainties was developed for 

this validation effort to detect ice clouds and determine IOT. Using extremely rare and valuable 

HSRL ship-based measurements during PISTON, all three retrievals were validated under the 

most optimal conditions possible. The over-ocean measurements allowed for the investigation 

into the validity of the scattering phase function and surface assumptions independently. The 

NASA CLDPROP from AHI is also compared to CLDPROP processed on MODIS AQUA and 

VIIRS SNPP. 

It was shown that the NOAA Enterprise infrared retrieval has the highest agreement with 

the HSRL instrument (R2 = 0.80, Ocean; R2 = 0.77, Urban), with the NASA Cloud Property 

retrieval performing well over the ocean (R2 = 0.69, Ocean; R2 = 0.29, Urban). The NOAA 

Enterprise visible retrieval has a high bias over both land and ocean (R2 = 0.57, Ocean; R2 = 



 

 

93 

93 

0.14, Urban), likely due to its optimal estimation methodology as it shared assumptions 

regarding the phase function and surface albedo with NASA CLDPROP. All R squared values 

for all validation efforts are s ummarized below in Table 3.  

 

Table 3 - R squared values for all validated retrievals 

 

The results of the NASA Cloud Property retrieval suggest for the ice clouds in the Philippine Sea 

region during August – September of 2018 the assumed phase function in the retrieval was valid. 

This is a significant finding and builds upon the work of Holz et al. 2016. Overland at the urban 

site of Manila, the only retrieval that performed well was the NOAA Enterprise infrared 

retrieval, with the two visible retrievals performing poorly due to a poorly constrained surface 

BRDF. Furthermore, the quantifiable variance in the R2 only decreased by 0.03, showing the 

robustness of this retrieval algorithm to the urban surface environment. This validation effort 

suggests that the visible retrievals should not be used over urban environments for scientific 

investigations where thin ice clouds are an important parameter until the surface reflection 

contribution has been better constrained. The high bias in optical thickness would result in an 

overestimation of the shortwave cooling and an overestimation of the longwave warming. Future 

NOAA CLAVR-x 

Infrared 

NASA CLDPROP NOAA CLAVR-x 

Visible 

PISTON Philippine 

Sea

(Oceanic)

0.80 0.69 0.57

CAMP2EX Manila, 

PH

(Urban)

0.77 0.29 0.14

Correlation Coefficients (R2) for the AHI – HSRL Validation Effort
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research must be done to better constrain the surface BRDF of urban environments for visible 

retrievals. Over the ocean, the NASA CLDPROP retrieval could be used, however, the NOAA 

Enterprise infrared retrieval has higher agreement with the HSRL. Overall, there are two 

important findings from this work: 1) The first is that the phase function utilized in the visible 

retrieval is valid for the clouds measured in PISTON (ei: severely roughened aggregate crystals 

from Yang et al. 2013 and Holz et al. 2016). 2) The infrared channels are the most effective 

passive method to obtain IOT for thin ice clouds. With the fact that these passive observations 

also offer night-time coverage, infrared radiometers should be heavily considered for any future 

mission that wants to measure cirrus cloud optical thickness. 

Obtaining a statistically significant number of MODIS and VIIRS co-located 

measurements with the HSRL for single-layer optically thin ice clouds that meet the 

requirements outlined in this study for the PISTON ship campaign was not possible. Therefore, 

the validated NASA CLDPROP retrieval processed on AHI is compared to the CLDPROP 

retrieval processed on MODIS AQUA and VIIRS SNPP over the PISTON domain. It was shown 

that the MODIS and VIIRS products agree very well with those validated on AHI for view angle 

differences less than 10 degrees over all optical depth ranges (MODIS R2 = 0.95 and VIIRS R2 = 

0.94). This shows that to compare geostationary and low earth orbing visible cloud optical depth 

measurements, the view angle difference should be restricted to less than 10 degrees for an 

accurate comparison. For all optical depth ranges, the instruments agreed best with AHI for 

optically opaque clouds. When comparing the regression coefficients generated by the HSRL-

AHI IOT comparison during PISTON to the MODIS-AHI and VIIRS-AHI comparisons for IOT 

< 1.5, the coefficients suggest these results may be applicable to MODIS and VIIRS.  
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Although the validation effort outlined in this thesis showed positive results for the 

assumed phase function, more HSRL validation efforts are required. The motivation for further 

validation is the current phase function implemented in the retrievals was determined by bringing 

the MODIS C6 visible retrieval into an agreement with an infrared retrieval in a global statistical 

sense (Holz et al., 2016), but did not account for regional or seasonal variation. To account for 

varying ice crystal morphology, which as been shown to be dependent on atmospheric conditions 

such as temperature and ice saturation (Bailey and Hallett, 2009) the comparison should be 

repeated in different locations and seasons that may contain different ice crystals under well-

quantified surface BRDF conditions.  

Although for optically thick ice clouds, polarimeter studies by Van Diedenhoven et al. 

2020 have shown slight global variation in the annual asymmetry parameter. By utilizing 

polarimeter measurements such as these or in-situ measurements obtained by a cloud particle 

imager combined with knowledge of well-quantified surface BRDF environments (such as ocean 

and grasslands) strategic locations can be chosen to validate different ice cloud morphologies. It 

is difficult to choose a location with different ice cloud morphologies without having available 

information on the ice crystal morphology of regions by season. Furthermore, different seasons 

may bring more difficult surface BRDF environments to account for such as snow or ice, which 

must be considered. An in-depth analysis should be performed to choose the most optimal 

locations for HSRL deployment that considers both a variation in ice crystal morphology and a 

well-quantifiable surface BRDF to validate different ice cloud morphologic environments. Based 

on the results of a future validation effort, a global phase function assumption may be maintained 

or a regional or conditional phase function assumption may be adopted. The HSRL site of the 

southern great plains good data record under a well-quantified surface BRDF for validation, 
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however, the ice crystal morphology should be shown to be different than in this study so that a 

unique ice crystal morphology can be validated.  

The results of this work suggest that the surface BRDF of urban environments needs to 

be re-visited. To improve the surface BRDF assumption from geostationary orbit one can use a 

lidar such as the HSRL in combination with the highest high-resolution channel (red band) to 

find cloud and aerosol-free measurements within the region of interest and map the surface 

BRDF. This clear sky BRDF can then be used as an assumption within the retrieval to attempt to 

make a visible IOT retrieval.   
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Appendix 

 

A. List of Equations and Symbols 

 
Visible retrieval Theory Equations 

Symbols 

 𝑅 : Reflection function observed at the sensor 

 𝑅𝑎𝑡𝑚Reflectance function of the atmosphere as a function of 𝜏𝑐 

𝑅𝑐: Reflectance function of the cloud  

𝑅∞: Reflection function of a semi-infinite atmosphere 

𝐴𝑔: Surface albedo in accordance with Lamberts law 

𝐴𝑣: Virtual surface albedo parameter  

𝑟𝑎𝑡𝑚  ̅̅ ̅̅ ̅̅  : Spherical Albedo of Atmosphere as a function of 𝜏𝑐 

𝑆: Cloud Albedo 

𝑡𝑎𝑡𝑚: Transmission of the atmosphere as a function of 𝜏𝑐 

𝜏𝑐 : Cloud Optical Thickness 

𝜇𝑜: cosine of the solar zenith angle 

𝜇: absolute value of the cosine of the solar zenith angle 

𝜙: relative azimuth angle 

𝐾: Escape Function 

𝑔: Asymmetry Parameter 

𝑞𝑜: Extrapolation length for conservative scattering 

𝑅𝑒: Equivalent reflectance value 

 



 

 

110 

110 

 

 

• 𝑅(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙) =  𝑅𝑎𝑡𝑚(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙) + 
𝑨𝒈

1−𝑨𝒈𝑟𝑎𝑡𝑚 ̅̅ ̅̅ ̅̅ ̅̅ (𝜏𝑐)
𝑡𝑎𝑡𝑚(𝜏𝑐, 𝜇) 𝑡𝑎𝑡𝑚,𝑜(𝜏𝑐, 𝜇𝑜) 

• 𝑅𝑎𝑡𝑚(𝜏𝑐,  𝜇 𝜇𝑜 , 𝜙)  = 𝑅∞(𝜇 𝜇𝑜 , 𝜙) – 
4𝐾(𝜇)𝐾(𝜇𝑜)

3(1−𝑔)(𝜏𝑐+2𝑞𝑜)
 

• 𝑡𝑎𝑡𝑚(𝜏𝑐; 𝜇 𝜇𝑜 , 𝜙) =  
4𝐾(𝜇)𝐾(𝜇𝑜)

3(1−𝑔)(𝜏𝑐+2𝑞𝑜)
 

• 𝐹(𝑥) = 𝑅𝑐(𝑥) +
𝐴𝑣𝑡𝑎𝑡𝑚,𝑜(𝑥)𝑡𝑎𝑡𝑚(𝑥)

1−𝐴𝑣𝑆(𝑥)
+ 𝑅𝑒(𝑥) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Citations: Walther and Heidinger 2012, King et al. 1987 
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Infrared Retrieval Equations 

Symbols 

𝐼𝑐𝑎𝑙𝑐: Top of the atmosphere spectral radiances 

𝐼𝑐𝑙𝑟 : Clear sky radiances (surface contribution) 

𝐼𝑎𝑐: Above cloud radiance contribution 

𝜖𝑐: Emissivity of the cloud 

𝐵(𝑇𝑐): Emitted radiances by the cloud from the Planck function 

𝜏𝑣𝑖𝑠 : Optical depth as visible wavelength  

𝜎𝑣𝑖𝑠: Extinction coefficient at the visible wavelength 

𝜎11𝜇𝑚: Extinction coefficient at 11 m 

𝜔11𝜇𝑚: Single scattering albedo at 11m 

𝑔11𝜇𝑚: Asymmetry parameter at 11m 

 

• 𝐼𝑐𝑎𝑙𝑐 = 𝜖𝑐𝐼𝑎𝑐 + 𝑇𝑎𝑐𝜖𝑐𝐵(𝑇𝑐) + 𝐼𝑐𝑙𝑟(1 − 𝜖𝑐) 

• 𝜏𝑣𝑖𝑠 =
𝜎𝑣𝑖𝑠

𝜎11𝜇𝑚
[

−𝜇𝑙𝑛 (1−𝜖𝐶)

1−𝜔11𝜇𝑚𝑔11𝜇𝑚
] 

 

 

 

 

 

 

Citations: Heidinger and Pavolonis 2009, Heidinger 2015 
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HSRL Equations 

 

Basic Principles  

Symbols 

𝑃 : Received power 

𝐸𝑜: Laser Pulse energy 

c : Speed of light 

𝐴𝑟: Collection area of receiver 

R : Range to scattering vol ume 

𝛽𝑎 : Aerosol back scattering cross section 

𝛽𝑚 : Molecular back scattering cross section 

𝑃(𝜋,𝑟)

4𝜋
 : Backscatter phase function 

3

8𝜋
 : Molecular backscatter phase function 

𝜏(𝑟) : Optical thickness 

𝑆𝑚: Molecular signal 

𝑟: Range of target 

𝜌: Atmospheric density 

 

• 𝑃(𝑟) = 𝐸𝑜
𝑐𝐴𝑟

2𝑟2 (𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
+ 𝛽𝑚(𝑟)

3

8𝜋
)𝑒−2𝜏(𝑟) 

• 𝜏 =  ∫ 𝛽𝑒(𝑟)𝑑𝑟
𝑟

0
 

• 𝑃𝑚(𝑟) = 𝐸𝑜
𝑐𝐴𝑟

2𝑟2 𝛽𝑚(𝑟)
3

8𝜋
𝑒−2𝜏(𝑟) 

• 𝑃𝑎(𝑟) = 𝐸𝑜
𝑐𝐴𝑟

2𝑟2 𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
𝑒−2𝜏(𝑟) 
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• 𝛽𝑚 = 𝐶𝜌(𝑟) 

• 𝑆𝑚(𝑟) =  
𝑃𝑚(𝑟) 𝑟2

𝐸𝑜
 

• 𝜏(𝑟) −   𝜏(𝑟𝑜) =  
1

2
𝑙𝑛(

𝜌(𝑟)

𝜌(𝑟𝑜)
) − 

1

2
𝑙𝑛(

𝑆𝑚 (𝑟)

𝑆𝑚 (𝑟𝑜)
) 

• 𝜏 =  ∫ 𝛽𝑒(𝑟)𝑑𝑟
𝑟

0
 

• 𝑅(𝑟) =  
𝑃𝑎(𝑟)

𝑃𝑚(𝑟)
 

• 𝛽𝑎(𝑟)
𝑃(𝜋,𝑟)

4𝜋
= 𝑅(𝑟)𝛽𝑚(𝑟)

3

8𝜋
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Citations: https://lidar.ssec.wisc.edu/ 

https://lidar.ssec.wisc.edu/
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Calibration of HSRL Data 

 

Symbols 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 : After pulse corrected photon counts for a given channel 

𝑁𝑡𝑜𝑡𝑎𝑙 : Total n umber of photon counts measured for a given channel 

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: Baseline correction  

𝑁𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 : Background correction 

𝑁𝑚𝑜𝑙: N umber of molecular photon counts 

𝑁𝑎: N umber of aerosol photon counts 

𝑆𝑐𝑚𝑏: Signal in the combined channel 

𝑆𝑚𝑜𝑙: Signal in the molecular channel 

𝐶𝑎𝑚: Corrects for the leakage of aerosol photons that are not removed by the iodine filter 

𝐶𝑚𝑚: Corrects for the attenuation of the molecular photons through the iodine filter 

𝐶𝑎𝑐: Relative contribution of the aerosol onto the combined channel 

𝐶𝑚𝑐: Relative contribution of molecules onto the combined channel 

 

• 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =   𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑁𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  

• 𝑆𝑚𝑜𝑙 = 𝐶𝑎𝑚𝑁𝑎 + 𝐶𝑚𝑚𝑁𝑚𝑜𝑙 

• 𝑆𝑐𝑚𝑏 = 𝐶𝑎𝑐𝑁𝑎 + 𝐶𝑚𝑐𝑁𝑚𝑜𝑙 

• 𝑁𝑚𝑜𝑙 =
𝑆𝑚𝑜𝑙−𝑆𝑐𝐶𝑎𝑚

𝐶𝑚𝑚−𝐶𝑎𝑚𝐶𝑚𝑐
 

• 𝑁𝑎 =
𝑆𝑐𝑚𝑏𝐶𝑚𝑚−𝑆𝑚𝐶𝑚𝑐

𝐶𝑚𝑚−𝐶𝑎𝑚𝐶𝑚𝑐
 

Citations: Razenkov 2010, Marias 2021 
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Geophysical Parameters 

 

Symbols  

𝛿𝑝: Particulate depolarization ratio 

𝑁𝑝𝑜𝑙 : N umber of photon counts in cross-polarization channel 

𝐺: Combined to cross polarization gain ratio 

𝑣𝑎: particulate backscatter cross-section 

𝑆𝑝𝑜𝑙 : Signal in the cross-polarization channel 

𝑆𝑐𝑚𝑏: Signal in the combined channel 

𝐶0: Polarization cross talk 

𝛿𝑚: Molecular depolarization 

𝑣𝑚𝑜𝑙
∥ : molecular backscatter 

0: Geometric overlap function 

𝜇: Mean  

𝜎: Standard deviation 

𝜏𝑎𝑏𝑣_𝑐𝑙𝑑: Photon averaged optical depth above cloud 

𝜏𝑐𝑏ℎ: Lowest optical depth of cloud 

 

 

• 𝛿𝑝 =
𝑁𝑝𝑜𝑙

𝑁𝑐𝑚𝑏
 

• 𝑁𝑝𝑜𝑙 = 𝐺(𝑆𝑝𝑜𝑙 − 𝐶0𝑆𝑐𝑚𝑏) − 𝐶𝑚𝑐𝑁𝑚𝑜𝑙𝛿𝑚 

• 𝑣𝑎 =
𝑣𝑚𝑜𝑙

∥ (𝑁𝑐𝑚𝑏𝐶𝑚𝑚−𝑁𝑚𝑜𝑙𝐶𝑚𝑐)

𝑁𝑚𝑜𝑙−𝑁𝑐𝑚𝑏𝐶𝑎𝑚
(1 + 𝛿𝑝) 
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• 𝜏 =  −
1

2
log(

(𝑁𝑐𝑚𝑏𝐶𝑎𝑚−𝑁𝑚𝑜𝑙)𝑟2

0𝑣𝑚𝑜𝑙
∥ (𝐶𝑎𝑚𝐶𝑚𝑐−𝐶𝑚𝑚)𝑒−2𝑡𝑚

) 

• 𝑆𝑁𝑅 =  
𝜇

𝜎
 

• 𝜎(𝑁)  = √𝑁 

• 𝜎(𝑣𝑎)2 = √(
𝜕𝑣𝑎

𝜕𝑁𝑐𝑚𝑏
)

2
𝜎(𝑁𝑐𝑚𝑏)2 + (

𝜕𝑣𝑎

𝜕𝑁𝑚𝑜𝑙
)

2
𝜎(𝑁𝑚𝑜𝑙)2 + (

𝜕𝑣𝑎

𝜕𝑁𝑝𝑜𝑙
)

2

𝜎(𝑁𝑝𝑜𝑙)
2
 

• 𝑆𝑁𝑅𝑝𝑎𝑟𝑡 =
𝑣𝑎

𝜎(𝑣𝑎)
 

• 𝜏𝑎𝑏𝑣_𝑐𝑙𝑑 =  −
1

2
log(

𝑚𝑒𝑎𝑛(𝑟2(𝑁𝑐𝑚𝑏𝐶𝑎𝑚−𝑁𝑚𝑜𝑙)[𝑐𝑡ℎ:𝑎𝑡𝑡𝑒𝑛_𝑙𝑒𝑣𝑒𝑙])

𝑚𝑒𝑎𝑛(0𝑣𝑚𝑜𝑙
∥ (𝐶𝑎𝑚𝐶𝑚𝑐−𝐶𝑚𝑚)𝑒−2𝑡𝑚 [𝑐𝑡ℎ:𝑎𝑡𝑡𝑒𝑛_𝑙𝑒𝑣𝑒𝑙])

) 

• 𝐼𝑂𝑇 = 𝜏𝑎𝑏𝑣_𝑐𝑙𝑑 − 𝜏𝑐𝑏ℎ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Citations: Holz 2002; Marais 2021 
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B. List of Acronyms 

 
ABI - Advanced Baseline Imager  

ACCP - Aerosols Clouds Convection Precipitation 

AHI - Advanced Himawari Imager  

AIRS - Atmospheric Infrared Sounder  

AOS - Atmospheric Observing System  

APDs - Avalanche Photodiodes  

AVHRR - Advanced Very High-Resolution Radiometer 

BRDF - Bidirectional Reflectance Distribution Function 

CALIPSO - Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations  

CAMP2EX - Cloud-Aerosol and Monsoon Process Philippines Experiment 

CER - Effective Radius 

CrIS - Cross-track Infrared Sounder  

COT - The Cloud Optical Thickness  

DARDAR - CloudSat Data Processing Center and Radar/Lidar Product  

DISTORT - Discrete Ordinates Radiative Transfer Model 

ECM - Enterprise Cloud Mask  

FMA - Four Mirror Anastigmat  

FPM - Focal Plane Modules 

GCMs - Global Climate Models 

GEO - Geostationary Earth Orbit 

HSRL - High Spectral Resolution Lidar 

ICOTR - Ice Cloud Optical Thickness Retrieval 
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IOT  - Ice Cloud Optical Thickness  

IRIS  - Infrared Inter-ferrometer Spectrometer 

ITCZ - Inter-Tropical Convergence Zone 

LEO - Low Earth Orbit  

MODIS - Moderate Resolution Imaging Spectroradiometer 

NASA CLDPROP - NASA Cloud Property Algorithm  

PISTON  - Propagation of Intra-Seasonal Tropical Oscillations  

SIPS - Science Investigator-led Processing System  

TOA  - Top of the Atmosphere  

VIIRS  - Visible Infrared Imaging Suite  
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