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Abstract

Automated Objective Identification of Occluded Sectors in Midlatitude

Cyclones: Method and Some Climatological Applications

by Poushali Ghosh

A novel automated scheme for identifying occluded mid-latitude cyclones from gridded

data sets is described and employed to construct a limited climatology of such storms as

well as composites of their thermodynamic and kinematic structures. This scheme is also

utilized to construct composite cross-sections of the cloud and precipitation distributions

characteristic of occluded mid-latitude cyclones. The climatologies are derived from 11

years of MERRA-2 data and hydrometeor retrievals provided by CloudSat and CALIPSO.

Di↵erences between Northern Hemisphere (NH) occlusions and Southern Hemisphere

(SH) were revealed in each composite category. Northern Hemisphere occlusions are

most frequent in boreal winter (DJF) and are found poleward of the mean tropopause-

level jets in both the Atlantic and Pacific basins. In the Southern Hemisphere, however,

occlusions are most frequent during austral autumn (MAM) and are almost never found

equatorward of 40�S. NH occluded sectors also exhibited wider and deeper hydrometeor

structures than their SH counterparts, but with lesser hydrometeor frequency magnitudes

than the SH structures. When compositing the hydrometeor structures across all occluded

thermal ridges globally and comparing them to the distributions across associated frontal

boundaries, the maximum in hydrometeors falls indubitably within the occluded sector,

divorced from the surface occluded front.
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Using the identification scheme, occlusions are stratified based on the maximum value of

equivalent potential temperature (✓e) at 700 hPa in their characteristic occluded thermal

ridges. Composites of six groups of occlusions, based upon this distinction, are con-

structed for each hemisphere. The composites reveal notable di↵erences in the thermo-

dynamic structures among these 6 groups with more poleward (lower ✓e) storms exhibiting

shallower, less developed thermal structures as compared to their lower-latitude (higher

✓e) counterparts. These di↵erences are attended by contrasts in the intensity of upward

vertical motions in the occluded sectors of the various composite storms, implying that

”warmer” storms are associated with greater latent heat release than ”colder” storms.

This claim is reinforced by the positive correlation between hydrometeor frequency and

700 hPa maximum ✓e, until a threshold is reached. For very large values of 700 hPa

maximum ✓e, hydrometeors tend to occur less frequently in NH occluded sectors and

reach in asymptote in SH occluded sectors. Despite this contradiction, the coincident

di↵erences between ”cold” and ”warm” storms provide further evidence of the fundamen-

tal importance of latent heat release to the development of occluded thermal structures.

The inconsistency seen between the supposed latent heat release trends in the composites

and climatological hydrometeor frequency of occurrence suggests a nonlinear relationship

between the two, which warrants further investigation.
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Chapter 1

Introduction

In their conceptual model of the mid-latitude cyclone, Bjerknes and Solberg (1922) were

the first to suggest a relationship between the three-dimensional (3-D) thermal structure

of the storm and its associated distribution of clouds and precipitation. The model,

which has come to be known as the Norwegian Cyclone Model (NCM), described how the

amplification of the nascent cyclone distorted the polar front, the globe-girdling boundary

separating polar air to the north from the tropical air to the south into the cold and warm

fronts of the storm structure. The so-called warm sector, a region of homogeneously warm

air between the two fronts, extended downward to the surface. The thermal evolution

of such cyclones involves changes in both the vigor of the individual frontal zones and

in their orientation with respect to one another. The dynamical processes that control

this evolution are also responsible for producing the secondary circulations to which the

characteristic cloud and precipitation distribution in cyclones - linear bands of varying
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widths along the cold and warm fronts and a cloud head poleward and westward of the

storm center - can be accurately attributed.

Namias (1939) was among the first to examine the 3D airflow through cyclones and relate

it to the attendant distribution of clouds and precipitation. He identified an ascending

airstream, originating in the warm sector boundary layer, that bifurcated into two sepa-

rate streams – one turning cyclonically to the west and the other turning anticyclonically

to the east. More recent studies by Browning and Harrold (1969), Harrold(1973), Carlson

(1980), Young et al. (1987) and Browning (1990) have christened the latter as the warm

conveyor belt. This feature has garnered considerable research attention in the ensuing

30 years (e.g., Wernli, 1997; Wernli and Davies, 1997; Eckhardt et al., 2004; Madonna

et al., 2014; Martinez-Alvarado, 2014;Schäfler and Harnisch, 2015;Berman et al., 2019).

The cyclonically turning airstream has also been noted by Atkinson and Smithson (1974)

as well as Iskendarian (1988), Kurz (1988), Mass and Schultz (1993), Schultz and Mass

(1993) and Reed et al. (1994).

A notable element of the post-mature phase of the cyclone life cycle, with a bearing

on these various airstreams, is the process of occlusion first conceived by Tor Bergeron

(Jewell 1981). Among the structural changes that characterize the occluded stage are

the adoption of an increasingly equivalent barotropic structure in the vertical as well as

the development of a lower tropospheric thermal ridge connecting the sea level pressure

(SLP) minimum to the peak of the warm sector (Saucier, 1955; Wallace and Hobbs, 1977;

Schultz and Mass, 1993; Martin, 1998a,b; 1999a,b; Posselt and Martin, 2004; Schultz and
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Vaughan,2011). According to the NCM, the air occupying the thermal ridge originated

in the surface warm sector and was forced to ascend by the intersection of the cold

and warm fronts as the cyclone occludes. The resulting structure consists of an axis of

maximum potential (✓) or equivalent potential (✓e) temperature, in both horizontal and

vertical cross sections, embedded within a region of reduced static stability between two

significant baroclinic zones, as depicted in Fig. 1.1. Despite the sometimes fierce debate

regarding the mechanisms that might operate to produce it (e.g. Schultz and Mass, 1993;

Stoelinga et al., 2002; Schultz and Vaughan, 2011), there is little disagreement that such

a configuration represents the canonical thermal structure of a warm-occluded cyclone.

A more fully 3-D representation of the warm-occluded thermal structure was developed

in a series of papers over the course of more than a decade by scientists at the Canadian

Meteorological Service (Crocker et al., 1947; Godson, 1951; Penner, 1955; Galloway,

1958,1960). These studies noted the ubiquity of a westward slope to the crests of the

thermal wave at successive heights in occluded cyclones. Penner (1955) referred to this

”sloping valley of tropical air”, as it had been previously described by Godson (1951),

as the TROWAL (TROugh of Warm air ALoft). Borrowing terminology from the NCM,

the TROWAL essentially marks the 3-D sloping intersection of the upper cold frontal

portion of the warm occlusion with the warm frontal zone. The observation that the

cloudiness and precipitation characteristic of the occluded sector of the cyclone bore a

closer correspondence to the TROWAL position than to the weak surface warm-occluded

front led the Canadians to regard the TROWAL as the essential structural feature of a

warm-occluded cyclone. Consistent with the definition given by Penner (1955) and the
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description given by Godson (1951), the TROWAL can be approximately located either

as a ridge of high ✓, ✓e or 1000:500 hPa thickness on a horizontal cross section, and more

precisely as a 3-D sloping canyon in an isosurface of ✓e as shown in Martin (1998a, 1999a).

In fact, unlike cold and warm frontal analyses that are drawn as lines on a single isobaric

or geometric height surface, because occlusions are so strongly tied to the position of the

sloping TROWAL, identifying them is inherently a 3D problem. A schematic illustrating

the TROWAL conceptual model is given in Fig. 1.2.

Compelling evidence supporting these earlier observational findings comes from a number

of a more recent fine scale numerical modeling studies of occluded cyclones (Schultz and

Mass, 1993; Reed et al., 1994; Martin, 1998 a,b) that have illustrated the structure and

thermal evolution of, and airflow through, the occluded sector. These studies have iden-

tified a coherent airstream, originating in the warm sector boundary layer, that ascends

cyclonically in the occluded sector of the cyclone. Martin (1998b,1999a), noting a spatial

relationship between the path taken by this airstream and the TROWAL in various cases,

referred to this airflow as the ”trowal airstream”. By considering the insightful along- and

across-isentrope partition of the Hoskins et al. (1978) Q-vector first described by Keyser

et al. (1992), Martin (1999a,b) provided a dynamical explanation of the relationship

between the development of the characteristic thermal structure in the occluded sector of

cyclones and the associated ascent that supports this airstream. Consistent with forced

ascent in a nearly saturated environment, the developing occluded thermal ridge is often

associated with substantial latent heat release (LHR).
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Martin (1998a) noted that some occluded cyclones are associated with a characteristic

tropopause-level potential vorticity (PV) structure consisting of an isolated, low-latitude

high-PV feature that is connected to a high-latitude reservoir of high PV by a thin

filament of high PV - a structure he termed the ”treble clef” (Fig. 1.3). Given the

relationship between tropopause-level PV and the thermal structure in the underlying

troposphere (Hoskins et al., 1985), the horizontal juxtaposition of two upper-level positive

PV anomalies of unequal magnitude, separated by a relative minimum in PV (such as

along line A-A’ in Fig. 1.3a) depicts the canonical warm-occluded thermal structure

(Fig. 1.3b). From the perspective of the NCM, the sloping warm column beneath the

upper-tropospheric PV minimum in Fig. 1.3b represents warm sector boundary layer

air that has been lifted during the occlusion process. In three dimensions, the warm

axis identifies the position of the TROWAL which, as mentioned earlier, tends to be a

focus for precipitation production in the occluded sector of cyclones. Thus, the clouds

and precipitation in that portion of the storm are often nearly coincident with an upper-

tropospheric PV minimum. The strong connection between the morphology of the upper-

tropospheric PV and the underlying occluded thermal structure, coupled with the known

diabatic influence on vertical PV redistribution (e.g., Eliassen and Kleinschmidt, 1957;

Hoskins et al., 1985; Raymond, 1992), provided a convenient framework for Posselt and

Martin (2004) to investigate the influence of LHR on the formation of an occluded thermal

structure.

Comparing full physics and “no LHR” MM5 simulations of a major winter storm, Posselt



6

and Martin (2004) found that the former depicted the canonical, troposphere-deep, warm-

occluded structure while the latter produced only a shallow, poorly developed one. Their

analysis showed that direct dilution of a local, upper-tropospheric PV maximum by mid-

tropospheric LHR initiated formation of a local, upper-tropospheric PV minimum, or

low PV tongue, to the northwest of the surface cyclone center. The production of this

PV minimum initiated a cutting o↵ of the upper-tropospheric PV anomaly associated

with the surface development. The associated upper-tropospheric circulation then forced

the advection of low (< 1 PVU) values of PV into the developing PV trough. This

combination of kinematic and diabatic processes acted to produce both the tropopause

PV treble clef as well as the underlying warm-occluded thermal structure in the full

physics simulation. In contrast, though an adiabatic kinematic tendency for production

of a treble clef PV morphology also operated in the “no LHR” simulation, the resulting

PV and thermal structures were weaker and slower to evolve than those produced in the

full physics simulation. Thus, the authors suggested that LHR plays an important role

in the production of the characteristic occluded thermal structures observed in nature.

A number of methods have been proposed for objective identification of cold and warm

fronts (e.g. Hewson, 1998; Hewson and Titley, 2010; Berry et al., 2011; Simmonds et

al., 2012; Schemm et al., 2018 ; Thomas and Schultz, 2019a,b and references therein).

Naud et al. (2012;2015;2018; Schultz, 2018) employed satellite-based radar and lidar

profiles (CloudSat, Stephens et al., 2002; CALIPSO, Winker et al.,2009) to explore the

cloud and precipitation distributions associated with objectively identified cold and warm

fronts and how these distributions relate to the larger scale environment. Although
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occlusions are a well-studied meteorological phenomenon (e.g. Schultz and Mass, 1993;

Martin, 1998a,b, 1999a,b; Stoelinga et al., 2002; Posselt and Martin, 2004; Schultz and

Vaughan, 2011), there is no automated method of occlusion detection. Consequently,

it has not been possible to consider the global distribution of occluded cyclones, their

composite thermodynamic and kinematic structures or explore the cloud and precipitation

distributions of a very large number of occluded sectors observed in a wide range of

locations and environmental conditions.

Extratropical cyclones are responsible for the largest share of the global redistribution

of heat required to o↵set latitudinal di↵erences in radiative transfer. Since the occluded

sectors of these storms are known to be regions of significant moisture convergence and

attendant LHR, occluded cyclones provide a key physical link in the global energy and

water cycles. As we peer into the future with sophisticated global climate models, it is

essential that these models faithfully reproduce increasingly detailed aspects of the life

cycles of the individual weather systems involved in these global cycles. This thesis will

lay the foundation for assessment of the climatological characteristics of occluded mid-

latitude cyclones and attendant evaluation of the skill with which a global climate model

can reproduce the canonical occluded structure and precipitation characteristics.

Central to the present study will be the description of an automated scheme that identifies

the occluded sectors of cyclones from gridded reanalyses and/or climate model output.

The method will then be employed to construct the first global survey of occluded cy-

clones. In Chapter 2, we describe details of the objective identification scheme. Some
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results of its application to eleven years of MERRA-2 reanalysis data are presented in

Chapter 3. Included in this presentation are a limited global climatology as well as com-

posites of the thermal structure and vertical motion distributions of wintertime occluded

cyclones observed in both the Northern (NH) and Southern Hemispheres (SH) over 11

recent winters. Also included in the present study is the application of the objective iden-

tification scheme outlined in Chapter 2 to CloudSat-CALIPSO retrievals to explore the

cloud and precipitation distributions across the TROWAL region and associated frontal

boundaries. The results of this analysis are presented in Chapter 6. A discussion of the

results and an outline of future work to be undertaken are o↵ered in Chapter 6.
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Chapter 2

Data and Methods

2.1 Data

In the automated methodology to be described, the analysis uses 11 years of data from

the second iteration of NASA’s Modern-Era Retrospective analysis for Research and Ap-

plication (MERRA-2) gridded reanalysis output (Gelaro et al., 2017) spanning September

2006 – August 2017. In particular, air temperature along with SLP, geopotential height

(�), specific humidity and vertical velocity (!) are utilized to identify occluded extrat-

ropical cyclones and subsequently portray aspects of their structure and evolution. The

MERRA-2 data is available on a 0.625� ×0.5� horizontal grid with 42 vertical levels span-

ning from 1000 hPa to 3 hPa. For purposes of evaluation of the automated identification

method to be described later, and to ensure it is reliable across di↵erent data sets and

grid resolutions, the study also employed the NCEP Climate Forecast System Reanalysis
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(CFSR) (Saha et al., 2010) data set, from which the same variables were available at 64

vertical levels with 38 km spatial resolution.

2.2 Objective Identification Parameter

Since occlusion represents the beginning of the post-mature phase of a cyclone’s life cycle,

many (though not all) storms that occlude do so near their peak intensities. This study

utilizes the methodology and parameters of Naud et al. (2023), which considers the time

of peak intensity as the time at which either the central SLP reaches a minimum or

when the pressure depth has reached a maximum, then choosing whichever phenomenon

occurs first. Pressure depth is defined as the di↵erence between the outermost closed SLP

contour and the central pressure in Polly and Rossow (2016).

An occluded thermal ridge serves as a two-dimensional (2-D) proxy for the 3-D TROWAL,

the essential structural feature of the occluded sector. Therefore, it can be identified using

any of several thermodynamic variables, including potential temperature (✓), equivalent

potential temperature (✓e ) and 1000-500 hPa thickness, according to Naud et al. (2023).

Since the occluded thermal ridge routinely extends through a substantial depth of the

troposphere, 1000-500 hPa thickness, denoted as �0, was chosen as the focal variable

for the objective identification scheme as it best captures the full 3-D structure of the

feature. Naud et al. (2023) found that elements of the analysis method were found to

be occasionally noisy at the high native resolution of the MERRA-2 data. This fact,

coupled with a desire to construct an automated detection method that could eventually
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be applied to lower resolution output from global climate models, compelled coarsening

the native resolution of the MERRA-2 data by a factor of 2. Hence, the thickness fields

were processed on a 1.25�⇥1� horizontal grid. Objective identification of the occluded

thickness ridge (OTR) is based upon examination of the functional form of the divergence

of the unit vector in the direction of r�0 , given by,

n̂ =
r�0

|r�0| (2.1)

An example field of �0 and n̂ for an occluded cyclone over the British Isles at 0600 UTC

7 January 2008 is shown in Fig. 2.1a. The divergence of 2.1, (r · n̂), takes the form,

r · n̂ = r · r�0

|r�0| =
r2�0|r�0|�r�0 ·r|r�0|

|r�0|2 (2.2)

using the quotient rule. The sign of the resulting expression is negative in the presence

of a thickness ridge but, as shown in Fig. 2.1b, it is also negative in many other locations

unrelated to the OTR. In order to highlight those areas of (r · n̂ ) that are also associated

with the largest thermal contrasts, the final form of the finding function (referred to as

F ) is weighted by the magnitude of the thickness gradient.

F = (r · n̂)|r�0| = r2�0 � n̂ ·r|r�0| (2.3)
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From this expression it is clear that F highlights regions where the Laplacian (i.e., di-

vergence of the gradient) of the thickness field is substantial and/or where there is sub-

stantial advection of thickness gradient magnitude by the unit vector. In the vicinity of

a thickness ridge, bounded by thickness contrasts on either flank, both of these terms

contribute to F < 0. Unfiltered fields of F contain small-scale features that can cloud

the intended thickness ridge identification results. To avoid such obfuscation, only values

of F < �1 ⇥ 10�9 m�1 (Fmax) are considered and a 9-point smoother is applied to

avoid excessive noise in the output. The example shown in Fig. 2.1c is illustrative of the

e�cacy of F as the noisiness of the raw (r · n̂) field in Fig. 2.1b is rendered considerably

more coherent and interpretable. The main feature is an extended region of F < Fmax,

some of which clearly coincides with the axis of the 1000-500 hPa thickness ridge, while

the other portion stretching from southern Germany across eastern France appears just

ahead of the cold frontal thickness gradient. The vertical cross-section along B-B’ in Fig.

2.1c cuts through the section of the F field that elongates along the thickness ridge from

the low-pressure center into the warm sector.

That cross-section (Fig. 2.1d) illustrates the canonical warm occluded thermal structure

with an axis of maximum ✓e between two baroclinic zones, the warm and cold fronts,

sloping poleward with height. Martin (2006) characterizes the location at which the axis

of maximum ✓e intersects with the ground as the position of the surface warm occluded

front. As is generally the case, a plume of maximum vertical motion associated with

the main updraft of the storm appears to be better collocated with the TROWAL than

with the surface occluded front. The isobaric topography of the 300 K moist isentrope
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from this case is shown in Fig. 2.1e. This particular isentrope was chosen as it lies

near the warm edge of both the cold and warm fronts in the occluded thermal structure.

The TROWAL, indicated by the bold dashed line, clearly coincides with the northern

portion of the F < Fmax region. However, by its nature as the 3D sloping intersection

of the cold and warm fronts of the occluded thermal structure, the TROWAL is never

perfectly represented by analysis at a single level or in a single layer. Despite the fact that

there is no objective standard against which the automated identification method could

be checked, elements of the canonical occluded thermal structure are easy to identify

in gridded reanalysis data sets, as demonstrated in the example illustrated in Fig. 2.1.

Therefore, the evaluation of F consisted of interrogating every feature the parameter

flagged as occluded in the north Atlantic (20�N - 80�N, 90�W - 40�E) and north Pacific

basins (10�N – 80�N, 130�E - 110�W) during the winter seasons of 2007-08 and 2008-09

against those canonical elements. This process was conducted using Unidata’s GEneral

Meteorology PAcKage (GEMPAK) visualization software suite (Unidata, 2019). Table 1

tabulates the relevant GEMPAK input variables used to display each field. Once an OTR

was recognized, the analysis steps depicted in Fig. 2.1a-e were reconstructed at each 6h

time step at which the feature was identified to assess F ’s e�cacy throughout the full

OTR life cycle. In order to develop a robust, data set-independent technique, an element

of this testing was employment of a collection of input data sets including NCEP-CFSR

as well as NCEP-NCAR reanalysis data (Kalnay et al., 1996). An example of a direct

comparison of the depiction of an occlusion identification by both the MERRA-2 and

CFSR data sets (of which many were considered) is shown in Fig. 2.1f. Although the fine
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spatial resolution of CFSR data allowed for the detection of a greater number of grid cells

where F < Fmax than the coarser MERRA-2 data, it can be seen that the identification

parameter clearly highlights the position and orientation of an occluded thermal ridge.

2.3 The cluster tracking method

Automating the use of the F parameter presents the unique opportunity to identify all

extratropical cyclones undergoing occlusion as well as construct composites of elements of

the thermodynamic and kinematic structure of the occluded sector. Given its versatility,

F can be employed using output from any gridded data set, such as those produced by

standard numerical weather prediction (NWP) forecast models and/or GCMs. Naud et

al. (2010) used GISS Model E (Schmidt et al., 2006) and NCEP-DOE (Kanamitsu et

al., 2002) data to track and identify storms with a method similar to Bauer and Del Ge-

nio (2006) and Bauer et al. (2016)’s NASA Modeling, Analysis, and Prediction (MAP)

Climatology of Mid-Latitude Storm area (MCMS) algorithm. The MCMS algorithm

searches for local minima in SLP and tracks them through time. Qualifying cyclones

must not travel more than 720 km in any 6h interval of their life cycles but must travel

at least 700 km, exist for at least 24 hours, and reach a minimum SLP of less than 1010

hPa during their life cycles. However, Naud et al. (2010) only utilized this technique

for observing the properties of the cold and warm fronts associated with detected cy-

clones, and subsequently warm frontal (Naud et al., 2012) and cold frontal precipitation

structures (Naud et al., 2015). The latter studies upgraded the spatial and temporal

resolution used to construct the cyclone database to MERRA (Rienecker et al., 2011) at
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0.5�⇥0.667� for 4 years from the coarser 2.5�⇥2.5� 2-year NCEP-DOE reanalysis used

in (2010). In response to a critique from Schultz (2018) that requested the removal of

“contaminating” occluded fronts from Naud et al. (2015), Naud et al. (2018) expanded

the use of their 2010;2012;2015 cyclone database to focus on non-frontal properties of

their identified cyclones. The present study utilizes this most recently updated cyclone

database for the automated detection of OTRs.

The full track of each identified storm in the cyclone database was considered and divided

into individual snapshots, depicting the instantaneous state of the cyclone every 6 hours.

Automating the use of the OTR finding function,F , to identify cyclones that are occluded

involves several assessments at each 6h snapshot for candidate cyclones. First, the indi-

vidual cyclone tracks have to be identified. Figure 2.2a provides an example of the track

of a sample cyclone that occurred over the northeast Atlantic in early January 2008 (the

analysis in Fig. 2.1 represents one 6h snapshot of this storm). The cyclone’s time of peak

intensity is clearly indicated as is its position every 6h from 0600 UTC 6 January to 1800

UTC 8 January. To ensure computational e�ciency, a limited area stretching from -10�

to +20� longitude and ±20� latitude from the storm center, is then considered at each

6h analysis time. MERRA-2 temperature, SLP, 1000:500 hPa thickness, ✓e and vertical

velocity fields were collected within this limited area and F was calculated at each grid

point.

The finding function is then applied within this area, flagging grid points at which F <

Fmax. Corresponding points for the example time previously considered (Fig. 2.1) are
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shown as the red crosses in Fig. 2.1f. The collection of such points, in the prescribed

limited area, for 1200 UTC 6 January 2008 are indicated by the black and red crosses

in Fig. 2.2b (and similarly for other times in Figs. 2.2c-e). These points are referred

to as qualifying grid points. Any such grid points are given no further consideration

if the standard deviation of the surface elevation at the object grid point, and its 4

adjacent points is greater than 300 m, STDSurfmax. Such points in the example storm

are indicated with a blue triangle in Figs. 2.2b-e. Remaining grid points meeting the

threshold in F qualify for further consideration only when at least 8 (Nmin) contiguous

neighbors constitute a cluster and the mean longitude of that cluster is located to the

east of the SLP minimum (note 12 such grid points in Fig. 2.2b). Such qualifying clusters

have a black diamond surrounding a black cross in Figs. 2.2b-e. When a 6h snapshot

possesses a qualifying cluster, it is said to be an occlusion identification. In order to

have identified an occluded ETC, qualifying clusters must at least partially overlap in a

cyclone-relative grid at no less than two consecutive 6h times as illustrated in Fig. 2.3 for

the 6-7 January 2008 cyclone. This confirms that the cyclone center and the qualifying

cluster are moving in tandem. Additionally, the first appearance of a qualifying cluster

in a cyclone’s track history (e.g., the cluster at 1200 UTC 6 January in Fig. 2.2b) must

have been located within a distance of 300 km (Dmax) of the cyclone center in order for

the cyclone to qualify as an occluded ETC and be included in the subsequent composite

analyses. Finally, if a cluster is identified (1) only once during a cyclone’s life cycle,

(2) at several non-consecutive 6h time steps, or (3) in a consecutive series that ends

before the cyclone reaches its peak intensity, that storm and its cluster are not considered
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in any subsequent analyses. These various empirically-derived disqualifications reflect

the intentionally conservative nature of the scheme which is designed to minimize false

identification. Though such a design may overlook some weak occlusions, given the

large number of candidate storms, the slightly conservative approach adopted here is

unlikely to lead to mischaracterization of the global climatology or composite structures.

This detection method identified 26,351 6h snapshots of cyclones classified as occluded

throughout the 2006-2017 analysis period across the globe and all seasons.

This procedure can be applied to any gridded data sets with only slight modifications

made based upon horizontal grid spacing. Resolution-based adjustment made to several

of the parameters involved in the method are summarized in Table 2.1. The parameters

F max, Nmin, and STDSurfmax were determined to exhibit a linear dependence on grid

resolution. Dmax is an absolute distance and, therefore, its magnitude remains the same

for all three grid spacings. Use of F paired with these synoptically-informed qualifications

has proven to be satisfactory as the composite results in Chapter 3 will unambiguously

testify.

2.4 Constructing composite vertical cross-sections

Employing each 6h occlusion identification, the following procedure was employed to build

composite vertical cross-sections through these features. The procedure is best described

using a schematic version (Fig. 2.4) of a single 6h identification period (such as those

shown in Figs. 2.2b-e). The procedure takes advantage of the fact that the occluded
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thermal ridge can be accurately portrayed by a number of alternatives to 1000-500 hPa

thickness, including 700 hPa ✓e . It proceeds by first calculating a regression line (in

latitude and longitude) through the cluster of the grid points constituting a qualifying

cluster (blue crosses in Fig. 2.4). That line, the solid gray line in Fig. 2.4, represents

the thickness ridge axis and its longitudinal range is bounded by the dashed red lines.

At the median longitude of the thickness ridge axis, a transect is drawn perpendicular

to the axis. Finally, the thickness ridge axis line is slid along the transect line until it

reaches the coincident 700 hPa ✓e maximum. Synoptic experience suggests that the OTR

rarely extends above 350 hPa. Consequently, though a number of other choices might

also serve the purpose, 700 hPa represents a mid-tropospheric level (free from excessive

boundary layer influences) by which to normalize the position of the axis of the thermal

ridge. The intersection of the transect line and the adjusted thickness ridge axis is then

the midpoint of a 3000 km long transect line along which any variable (✓e ,!, T, etc.)

may be obtained. In order to produce composites of the vertical structure through the

OTR, each such transect is preserved and then they are all averaged together to produce

the composite vertical cross-section of the given variable. Because the middle of each

transect is, by construction, coincident with the maximum 700 hPa ✓e for that particular

cross-section, it is possible to create separate composite occluded structures based upon

ranges of their maximum 700 hPa ✓e values.
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Chapter 3

Some Climatological Applications

Because subsequent work will employ observations made with CloudSat/CALIPSO data,

application of the automated method just described has been applied to 11 years (1

September 2006 – 31 August 2017) of MERRA-2 reanalyses, corresponding to the Cloud-

Sat/CALIPSO era. In that period 6,147 individual cyclone tracks (2,529 in the NH and

3,618 in the SH) have been identified from which 26,351 6-hrly snapshots (as described

in Section 2.3) have resulted in occlusion identifications. Given the standard deviation

of surface elevation criteria previously described (STDSurfmax), the analysis focused only

on those identifications that were made over the oceans. Thus, a total of 22,329 identifi-

cations (8,741 in the NH and 13,588 in the SH) were included in the analysis. In the next

section descriptions of some elements of these occlusion identifications are presented.
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3.1 Global distribution of occluded cyclones

Employing the automated identification method just described, a global distribution of

occluded identifications can be constructed. Figure 3.1a shows the NH winter (DJF)

cumulative distribution of 6h occluded identifications over the eleven year period and

reveals that, in the north Pacific, occluded cyclones populate the basin poleward of the

mean jet with distinct maxima in the southern Sea of Okhotsk, east of the Kamchatka

peninsula, and in the Gulf of Alaska. Wintertime occlusions in the north Atlantic basin

are concentrated in a strip running from the mouth of the Labrador Sea to the southeast

coast of Greenland. Further analysis (not shown) revealed that the robust maximum in

occluded identifications near the tip of Greenland in Fig. 3.1a is a function of a larger

overall number of storms there and not an unusually large proportion of those storms

occluding in that location. The two winter maxima regions harbor smaller numbers of

occlusion identifications during the NH spring (MAM) (Fig. 3.1c). It is no surprise

that identifications are considerably less common during the NH summer (JJA) while

frequenting the same general locations (Fig. 3.1e). The number of occluded identifications

quickly rebounds in NH autumn (SON) (Fig. 3.1g).

The distribution in the SH is di↵erent in many respects. The wintertime (JJA) distribu-

tion shows almost no occlusion identifications equatorward of 40�S (Fig. 3.1b). Despite

the fact that a noted cyclogenesis maximum exists in the lee of the Andes during austral

winter (Hoskins and Hodges, 2005), there is no coincident maximum in occluded identi-

fications in the region in that season. Instead, cyclones in the lee of the Andes appear
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to occlude more frequently in spring (Fig. 3.1d) and autumn (Fig 3.1f). Dual frequency

maxima during winter appear along the Wilkes Land (120 �E) and Enderby Land (45�E)

coasts of Antarctica. By spring (SON), occluded identifications are less common every-

where with the greatest decreases observed in the longitudes straddling South America

(Fig. 3.1d). The distribution thins further by austral summer (DJF) (Fig. 3.1f). With a

resurgence of occluded identifications at the locations of the winter maxima and a general

increase elsewhere, autumn (MAM) is the season with the greatest number of identifica-

tions in the SH (Fig. 3.1h). Thus, the hemispheres have notably di↵erent seasonal cycles

in occluded identifications.

3.2 Structure of composite wintertime occlusions

3.2.1 Composite Northern Hemisphere wintertime occlusions

Further detail regarding the wintertime distribution of NH occlusion identifications is

a↵orded by stratifying them by the value of the 700 hPa ✓e maximum along the thickness

ridge axis. The goal was to partition the total number of identifications into as many

groups as possible whose composite structures were meaningfully di↵erent from one an-

other while keeping the number of identifications in each group large enough to ensure

statistical robustness. Such a compromise was achieved by considering 6 groups each

containing 372 occluded ETCs. Figure 3.2 shows the number of occluded identifications

in 6 bins constructed such that each bin contains the same fraction of the total number

of identifications in the 2006-2017 analysis period. Two-thirds of all the identifications
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had 700 hPa ✓e maxima in the range of ⇠293K to 313 K. The geographic distribution

from each of these 6 bins is shown in Fig. 3.3. Not surprisingly, stratification by 700

hPa ✓e maxima e↵ectively separates sub-populations of identifications by latitude, with

the lowest ✓e maxima occurring at high latitudes and vice versa. Bins II-IV (Figs. 3.3b-

d) exhibit distributions of occluded identifications that are broadly consistent with the

climatological positions of the Aleutian Low in the Pacific basin and the Icelandic Low

in the Atlantic basin. In the two “warmest “ bins (Figs. 3.3e-f), however, the occluded

identifications in both basins notably recede equatorward from these centers.

Figure 3.4 presents the results of constructing composite vertical cross-sections of ✓e

through each of these 6 groups of occlusion identifications. Recall from Fig. 3.4 that

the 700 hPa ✓e maxima of those comprising Bin I range from 275K to 293 K. In this

”coldest” bin, the OTR notably does not exhibit any vertical tilt (Fig. 3.4a), suggesting

that these storms have a shallower and less developed occluded thermal structure than

those occurring at lower latitudes. These identifications are associated with cyclones that

appear to cluster near coastlines - especially around Kamchatka and southeast Greenland

(Fig. 3.4a). This circumstance may influence their composite structure compared to

those cyclones found farther out at sea. Both the cold and warm frontal portions of

the composite occluded structure in Bin II (Fig. 3.4b) are better developed that those

in Fig. 3.4a. The successively ”warmer” composite occlusions (Fig. 3.4 c-f) exhibit

increasingly robust cold and warm frontal structures as well as axes of maximum ✓e that

tilt increasingly poleward, as in the canonical occluded thermal structure. Also notable

in these last 4 composites is the burgeoning couplet of lower tropospheric cyclonic PV
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(at the center of the cross-sections) along with its companion upper-tropospheric PV

minimum. These features are physically linked to each other through the substantial

mid-tropospheric LHR that characterizes the TROWAL in these “warmer” storms.

Further evidence of this connection is evident in the composite vertical motions in the

vicinity of the OTRs of these di↵erent collections of occlusion identifications shown in

Fig. 3.5. It is immediately apparent that the ”warmer” identifications have stronger

upward vertical motions within their OTRs and that their composite vertical motion

plumes share the poleward tilt of their respective axes of maximum ✓e . The magnitude

of ! is a function of the forcing for ascent modulated by the local static stability. As

noted in reference to Fig.3.3, stratifying the identifications by 700 hPa ✓e maxima in their

OTRs amounts to a sorting by latitude. Thus, the ”warmer” (i.e., lower latitude) ones

are consistently farther south over warmer SSTs and are therefore likely characterized by

weaker stratification in their warm sectors prior to occlusion. Martin (1999a) showed that

synoptic-scale forcing during the process of occlusion (namely, positive vorticity advection

(PVA) by the thermal wind (Sutcli↵e, 1947)) thrusts some portion of this warm sector air

aloft into the TROWAL. Nearly all the occluded identifications shown in Fig. 3.3 occur in

proximity to the Northern Hemisphere storm tracks (see Fig. 3.1a) which, by definition,

are regions of maximum frequency of surface development. Since a fundamental synoptic-

scale forcing for ascent in mid-latitude cyclogenetic environments is provided by PVA by

the thermal wind (e.g. Sutcli↵e, 1947; Trenberth, 1978; Hoskins et al. 1978; Hoskins,

1999; Martin 1999a,b), it is reasonable to conclude that the vast majority of occluded

identifications shown in Fig. 3.3 occurred in regions where PVA by the thermal wind
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was involved in development. We suggest that the robust di↵erences in response to such

forcing, as manifested in the notable di↵erences in vertical motion, are at least partly,

and perhaps largely, a function of the decreasingly stable stratification at lower latitudes.

3.2.2 Composite Southern Hemisphere wintertime occlusions

As in the preceding section, the wintertime distribution of occlusion identifications is

divided into 6 groups with equal populations of 605 occluded SH ETCs based upon the

value of the 700 hPa ✓e maximum along the thickness ridge axis. Figure 3.6 shows

the number of occluded identifications in each of those 6 groups. Two-thirds of all the

identifications had 700 hPa ✓e maxima in the range of ⇠288K to 304 K, notably lower

than the ✓e range of the equivalent fraction of NH occlusion identifications (Fig. 3.2). It

should also be noted that the number of wintertime occluded identifications in the SH

is nearly twice that of the NH during the same 11-year period (note the ordinate axis

in Fig. 3.6 versus Fig. 3.2) and that the peak occurs at much lower ✓e in the SH. The

geographic distribution of occlusions from each of these 6 bins is shown in Fig 3.7. As in

the NH, the stratification by 700 hPa ✓e maximum primarily separates subpopulations of

identifications by latitude. An exception to this general rule is suggested by the notable

maxima of occlusion identifications east of Argentina that appears in Bin VI (Fig. 3.7f).

This regional concentration of occluded ETCs suggests that the “warmest” events in

the wintertime cyclogenesis maximum identified by Hoskins and Hodges (2005) are more

likely to occlude than all others in that same region.

Figure 3.8 presents the composite vertical cross-sections of ✓e through each of the 6 groups
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of SH occlusion identifications. As in the NH population, the “coldest” composite does

not exhibit any vertical tilt (Fig. 3.8a). In fact, such a vertical tilt does not appear until

the composites of Bin III (Fig. 3.8c) and then becomes more exaggerated in the succes-

sively “warmer” bins (Figs. 3.8d-f), as was the case for the NH composites. As in the

“warmest” NH identifications, a relationship between expanding lower tropospheric cy-

clonic (negative) PV features and a companion upper-tropospheric PV maxima is clearly

evident in Figs. 3.8c-f. Interestingly, even the “coldest” identifications are characterized

by a lower tropospheric cyclonic PV maxima in the SH (Figs. 3.8 a-b). Another notable

di↵erence between the “warmest” SH composite occluded structures as compared to their

NH counterparts is that the axis of maximum ✓e does not penetrate to the surface in the

SH composites (e.g., ✓e = 288K in Fig. 3.8e and ✓e = 297K in Fig. 3.8f). Instead,

it appears that their occluded thermal structures are found atop a shallow, potentially

unstable boundary layer in which ✓e decreases with height to ⇠ 950 hPa.

Finally, the composite vertical motions in the vicinity of the SH OTRs are shown in

Fig. 3.9. Again, as in the NH, the ”warmer” occlusions are associated with stronger

upward vertical motions within their OTRs as well as gradually increasing poleward

tilt. The same conjunction of synoptic-scale forcing and stratification presumed to be

involved in shaping the NH composites likely also determines the characteristics of the

SH vertical motion composites. In the face of this probable similarity, it is interesting to

note that both the horizontal and vertical scales of the ascent in the SH composites are

larger. Alternatively, the composite NH occluded sector vertical motions are both more
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concentrated and more vigorous. Identification of the underlying physical factors that

might account for this di↵erence is the subject of ongoing research.
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Chapter 4

CloudSat-CALIPSO Hydrometeor

Retrievals

In April 2006, NASA’s Jet Propulsion Laboratory launched and maneuvered CloudSat

and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) to

join the Afternoon Constellation (“A-Train”) in an e↵ort to advance the understanding of

cloud abundance, distribution, structure, and radiative properties through spaceborne ob-

servations. The troop of satellites that constitute the A-Train follows a helio-synchronous

orbit approximately 705 km above the surface. The orbital mechanics of the A-Train al-

low for each of the satellites to view a location at 1:30 pm local time, providing plenty of

sunlight to illuminate the scene. The Cloud Profiling Radar (CPR) aboard CloudSat pro-

vides radar products at millimeter-wavelengths (95 GHz), allowing it to observe smaller

particles at a higher level of precision than ground-based centimeter-wavelength (3 GHz)
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weather radars. Since a sizeable portion of the cloudiness and precipitation associated

with the post-mature phase of midlatitude cyclones is found within the occluded sec-

tor, retrievals from the CPR and the Cloud-Aerosol Lidar with Orthogonal Polarization

(CALIOP) aboard CALIPSO o↵er the unique opportunity to observe the hydrometeor

structure within this region. An additional aspect of the detected cyclones in the Naud et

al. (2018) database discussed in Chapter 2 is the established association of a CloudSat-

CALIPSO orbit with each identification. The detection scheme ascertains if a CloudSat

orbit could be found within 2500 km of the center of the identified cyclone and ± 3 hours

of its detection. The CloudSat platform exited the A-Train in February 2018. There-

fore, OTRs were detected throughout the 5-year analysis period from 2006-2011 and then

further extended to 11 years from 2006-2017 to supplement the results with more data.

During its operational term, CloudSat experienced a battery failure which led to a gap

in data from April 2011 - June 2012. After this time frame, CloudSat was restricted to

Daylight-Only operations (DO-Op) for the remainder of the analysis period. The cloud

shield and frontal analysis for an example case on 01 December 2006 at 06 UTC is shown

in Fig. 4.1a. The satellite path is seen cutting through the thermal ridge at nearly a right

angle to its axis in Fig. 4.1b. Each grid column along the satellite path is associated with

a vertical profile taken by the active sensors aboard the spacecraft, giving a top-down

point of view of the hydrometeors in the column.
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4.1 Individual Hydrometeor Profiles

Retrievals along these vertical profiles provide a wealth of information about the 3-D

cloud and precipitation distribution at those locations. The CPR collects reflectivity pro-

files across a horizontal footprint of 1.4 km x 1.7 km at a vertical resolution of 240 m. An

example of the reflectivity information taken along the satellite path through the 06 UTC

1 December 2006 occluded identification is shown in Fig. 4.1c. Marchand et al. (2008)

developed a hydrometeor detection algorithm based upon these reflectivity returns and

constructed a geometric profile (i.e., “a cloud mask”) by di↵erentiating between those

CPR returns that were likely to have been scattered by hydrometeors and those that

could represent noise or radar clutter. The final product, called 2B-GEOPROF, gener-

ates a more refined “cloud mask” depicting a spatial distribution of hydrometeor layers

in each profile, as well as reflectivity values from the measured radar return power. CPR

operates with wavelengths that are an order of magnitude smaller than most weather

radars, meaning that it’s able to penetrate optically thick layers and “see” cloud parti-

cles. However, it is still incapable of accurately detecting non-precipitating liquid clouds

and thin cirrus, such as those with reflectivity values less than -30 dBZ (Mace and Zhang,

2014). The Vertical Feature Mask (VFM) developed by Vaughan (2009) can di↵erenti-

ate between aerosols and clouds and detect optically thin layers that have reflectivity

values below CPR’s sensitivity (Mace and Zhang, 2014), creating another ”cloud mask”

that fills in the gaps of Marchand et al. (2008)’s mask. Mace et al. (2009) further ad-

vanced 2B-GEOPROF by combining the capabilities of the CPR and CALIOP to create
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a radar-lidar geometric profile (RL-Geoprof). CloudSat and CALIPSO shared a compact

configuration within the A-Train during this study’s analysis period, one that supports

the assumption that both instruments simultaneously observe the same volume of the

atmosphere. RL-Geoprof is provided regularly with each retrieval under the name ”2B-

GEOPROF-LIDAR”.

The present study utilized 2B-GEOPROF-LIDAR to observe the hydrometeor structure

along every CloudSat-CALIPSO orbit in the database. Cloud top and cloud base heights

are given at the precise altitude at which the first and last pulses are scattered by cloud

particles, respectively. A joint hydrometeor mask can be created using these heights. The

use of ”hydrometeor” rather than cloud or precipitation particles hereafter is deliberate

as the instruments cannot distinguish between actively falling particles and those that are

suspended. A boolean condition, “cloudy” (if between a cloud base and top) or “clear”

(if between cloudy layers), was applied to the 250 m thick grid cells constituting each

vertical profile. 2B-GEOPROF-LIDAR will only define a new layer if 960 meters of free

space exists between the top of a previous layer and the bottom of the new layer (Mace

and Zhang, 2014). Using this condition, the product constructs a hydrometeor mask

consisting of a maximum of 5 distinct layers in each column. This limiting factor does

not pose a problem for the mostly deep and continuous clouds found within the TROWAL

region. Figure 4.1d demonstrates the produced hydrometeor mask for the 06 UTC 01

December 2006 identification.

While 2B-GEOPROF-LIDAR can detect the presence of suspended and actively falling
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hydrometeors within the TROWAL precisely, it cannot o↵er any information about the

surface precipitation type or rate. The 2C-PRECIP-COLUMN product, described in

Haynes et al. (2009), utilizes path integrated attenuation (PIA) and strength of surface

backscatter to gather information about precipitating particles in the column. The group

claims that CPR’s high sensitivity to smaller particles renders the sensor well-suited to

identify where precipitation might be occurring, especially over open water as the reduced

ground clutter provides a clearer return. Since the present study only considers maritime

cyclones, this particular strength would seem to o↵er a perfect fit. Ice particles complicate

the dependence of the product on attenuation as it will not scatter or absorb surface

backscatter. Since ice is the predominant cloud phase at middle and higher latitudes

(Field and Heymsfield, 2015), the geographic location of a majority of the occluded

identifications in the database limits the viability of precipitation rate retrievals. Haynes

et al. (2009) also stresses that the quality of the rate of retrieval can be gravely a↵ected

by multiple scattering e↵ects in areas of intense precipitation, such as the trowal region

of an occluded midlatitude cyclone. The integrated e↵ect of these various limitations is

exemplified in Fig. 4.1e for the same identification as in Figs. 4.1a-d. Meaningful surface

precipitation rates are only registered for the southernmost portion of the orbit, despite

the frozen and mixed precipitation most certainly occurring at higher latitudes as well as

the higher reflectivities coinciding with those locations. This result may arise from the

absence of a reflectivity bright band in Fig. 4.1c, which suggests that the freezing level

is at the ground and all surface precipitation rate contains ice. As a result, 2C-PRECIP-

COLUMN would not register any surface precipitation rate in the vicinity of the wide
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reflectivity tower at 58�N shown in Fig. 4.1c. Therefore, results showing characteristic

surface precipitation rates within the TROWAL is not included in this study and will be

considered in future work using other resources.

4.2 Constructing composite cross-sections of CloudSat-

CALIPSO products

Constructing composite cross-sections of the 2B-GEOPROF-LIDAR hydrometeor struc-

ture and 2C-PRECIP-COLUMN surface precipitation rates within the identified OTRs

involves the challenge of standardizing the derivation of information from satellite profiles

taken across a wide range of orientations that individual orbit patterns might take through

the OTR. The construction proceeds via a methodology similar to that used for the ther-

modynamic and kinematic composites of Chapter 2. This method is best described using

a schematic of a single analysis time, shown in Fig. 4.2 for the previously analyzed 06

UTC 1 December 2006 occluded identification. The construction of the thermodynamic

and kinematic composites in Chapter 2 proceeded from identification of a cross-section

transect at the median longitude of a qualifying cluster. MERRA-2 data from all occluded

identifications were then averaged along that transect line to construct those composites.

Since the CloudSat-CALIPSO orbit paths traverse the OTR at a variety of orientations,

a variation of the previous compositing methodology is required in each MERRA-2 grid

column (gray lines in Fig. 4.2a). Since the challenge is to collapse the information from

a curved cross-section through a 3-D volume onto a line (like the cross-section transect
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line in Fig. 4.2a), we adopt the following strategy. First, the precise position of the OTR

axis is determined at the degraded resolution of the MERRA-2 data used in construction

of the composite transects in Chapter 2. Starting at the intersection of the regressed

OTR axis (black line in Fig. 4.2a) with each MERRA-2 grid column, the maximum 700

hPa ✓e in each column is identified. The line connecting each of these identifications is

the 700 hPa ✓e ridge (pink curve in 4.2a). By construction, in every grid column, the

distance from this curve to the adjusted OTR axis is zero, therefore it will be referred

to as the D0 (Distance = 0) line. Secondly, only the portion of an orbit path that falls

within the longitudinal range of the qualifying cluster and within ±1500 km of the D0

line is considered. This area is enclosed by the rectangular box (“transect area”) drawn

in Fig. 4.2b. These restrictions facilitate the automated selection of qualifying satellite

orbits since any profile that does not lie within the prescribed area will be disregarded.

Out of the 22,329 6-hourly analysis times identified globally (2006-2017) in the occluded

identification database described in Chapter 2, this detection scheme determined 4,828

cases to also have a CloudSat-CALIPSO overpass traverse through the “transect area”

in this manner.

Along with a set of lines parallel to the cross-section transect line in Figs. 4.2a,b (referred

to as “width” lines), the equidistant lines parallel to D0 (referred to as “distance” lines)

form an irregular grid over the transect area (Fig. 4.2c). As illustrated in Fig. 4.2d, it

is the distance from the OTR measured along a width line that determines where the

CloudSat-CALIPSO profile information taken at any column on the grid is placed along

the composite cross-section line.
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Constructing composites of the hydrometeor structure through the OTR requires col-

lecting information from each of the CloudSat-CALIPSO orbits comprising the desired

composite. For each such orbit, the first analysis step is to determine how many profiles

fall within each 100 km distance increment delineated by the distance lines in Fig. 4.2d.

The profiles are organized into a histogram centered on the D0 line with “distance bins”

representing each 100 km increment based on their distance value, as shown in Fig. 4.3a

for the 06 UTC 1 December 2006 case. By visualizing each of the 250 m thick grid cells

in Fig. 4.1b as “altitude bins”, the second analysis step determines the quantity of cells

at various altitudes marked as “cloudy” (maroon “+”’s in Fig. 4.1b) and “clear” in each

distance bin from Fig. 4. For example, Fig. 4.3b shows that the most “cloudy” cells

found along the orbit through the identified OTR on 1 December 2006 at 06 UTC are

found at 400 km to the northeast of the D0 line and about 8 km above the surface. This

methodology was applied to CloudSat-CALIPSO orbits traversing the “transect area”

in all occluded identifications and the results of the previously described sub steps were

preserved in preparation for constructing what we will refer to as the “grand composite”.

When constructing the grand composite, the results of the previously described analysis

steps are considered first. The histograms dissecting the number of profiles in each dis-

tance bin (e.g., Fig. 4.3a) from each occluded identification in the analysis period were

summed together. Figure 4.4a shows the composite histogram resulting from this step for

all NH occluded identifications from 2006 – 2017. Secondly, all histograms for accumu-

lated “cloudy”/”clear” grid cells per distance and altitude bin (e.g., Fig. 4.3b) were then

summed together. Figure 4.4b shows the consequent composite for all NH cases. Finally,
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as was done with the singular case shown in Fig. 4.3, the full composite of hydrometeor

frequency across all orbits through all occluded identifications is constructed by dividing

the composite histogram in Fig. 4.4b by that in Fig. 4.4a. The resulting grand composite

of hydrometeor frequency of occurrence across all identified NH OTRs is shown in Fig.

4.4c.
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Chapter 5

CloudSat-CALIPSO Climatological

Applications

As explained in the methodology described in the previous chapter, a subset of the oc-

cluded cyclone database used in Chapter 2 is constructed by finding those identifications

with a CloudSat-CALIPSO orbit that is coincident in time and space with the structure.

This database was derived using the method described in Naud et al. (2018), which used

5 years of MERRA-2 data from 2006-2011. During this time period, 13,185 occluded

snapshots were objectively identified using the methodology described in Chapter 2. It

should be noted that this stark reduction in occluded identifications from Chapter 3 is

mostly a result of the shorter span of time considered for this initial analysis. To further

reduce the sample size, only 2,595 cases of the 13,185 total occluded identifications were

found to have CloudSat-CALIPSO observations available within the transect area of the
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OTR. The hydrometeor information derived from the vertical profiles along the orbit

within this region was collapsed onto a single cross-section traversing through the OTR

at the same angle as the cross-section transect in Fig. 2.4. This cross-section begins on

the western edge of the OTR and cuts through the structure poleward with the D0 line

at the center (vertical dashed line) in each of the composites presented in this chapter.

5.1 Verification of hydrometeor compositing method

Figure 5.1a shows the composite vertical ✓e structure for all identifications with a co-

incident CloudSat-CALIPSO transect constructed from the boreal winter (DJF) cases

during the 5-year analysis period. An occluded thermal structure can be observed in this

cross-section with a slightly poleward-tilting axis of maximum ✓e at the intersection of

the warm and cold fronts. Due to the Earth’s curvature and the resultant convergence of

meridians near the poles, polar orbiters such as CloudSat and CALIPSO tend to “see”

more storms close to the poles than at lower latitudes. As a result, Fig. 5.1a is more likely

to be influenced by “colder” occlusions, thereby limiting the tilt of the axis of maximum

✓e � consistent with the relationship found in Chapter 3 between 700 hPa maximum ✓e

and the tilt of the TROWAL axis. When compared with a composite ✓e cross-section

that includes all the identified OTRs in the occluded cyclone database (not shown), Fig.

5.1b demonstrates that the decrease in sample size from the Naud et al. (2023) database

resulted in negligible variations from the canonical occluded thermal structure.

Also described in the previous methodology section was the notion that all portions of
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CloudSat-CALIPSO orbits that fell within the transect area of each identified OTR were

considered in the compositing process. Figure 5.1c exhibits the vertical thermal structure

generated by using the ”nearest neighbor approach” outlined in Chapter 4 to composite

MERRA-2 grid point values from the NH winters during 2006-2011. Employing the

aforementioned compositing method, where all available observations along each satellite

path were taken into account, results in a robust occluded thermal structure similar to

the ”colder” identifications depicted in Fig. 3.4, as demonstrated by the comparable

tilt and stratification in the axis of maximum ✓e. While the warm front resembles the

warm-frontal portion of the canonical TROWAL structure, the bundle of moist isentropes

representing the cold front contrasts with those shown in Fig. 3.4. Given the larger

number of occlusions “seen” by CloudSat-CALIPSO at higher latitudes, orbits are more

likely to observe the poleward edge of the OTR than the equatorward edge. This would

lead to more profiles taken through the warm front than the cold front of NH cyclones,

producing the more robust warm frontal structure in Fig. 5.1c.

In addition to describing the inclusion of all orbits within the transect area, Chapter

4 also noted that the satellite paths rarely crossed through the median point of the

associated OTR structure at a right angle. In fact, a nonnegligible number of paths

observed no part of the qualifying cluster itself, only the hydrometeors on either flank of

the structure. It may therefore seem that there might be an imbalance of information

provided by the satellite profiles depending on the quantity and orientation of orbits

travelling through each region of the transect. However, the composite di↵erence in

Fig. 5.1d indicates that only modest disparities exist between a composite constructed
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using all CloudSat-CALIPSO profiles within the ”transect area” and one created by

only using information along the cross-section transect through the median point (not

shown). Specifically, the largest magnitude di↵erences lie 500+ km poleward of the

transect midpoint with an absolute value of 3 K at most. The minor contrast found in

the center of the OTR (< |1| K) is present in a shallow layer right above the boundary

layer. The lack of significant discrepancies between the two verify that using every vertical

profile along the orbit segment produces similar results to just using those few orbits that

intersect the OTR through the median point at a right angle. As a result, either method

can be used somewhat interchangeably. Employing the larger collection of data allows

more information about the hydrometeor structure within the occluded quadrant to be

highlighted instead of focusing on the very few profiles that intersect the OTR at a nearly

perpendicular angle.

5.2 Structure of composite hydrometeor frequency

of occurrence from 2006-2011

5.2.1 Northern Hemisphere composites

Figures 5.2a-b depict the hydrometeor frequency of occurrence across all satellite-observed

OTRs in the NH during boreal winter from 2006-2011. A distinct tower of hydrometeors

most frequently forms at the center of the OTR and extends poleward with increasing

height. This robust tower is connected to a thin band of hydrometeors in the lower

cold sector that is present in 40-50% of cases in the analysis period. Within the tower,
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hydrometeors tend to be present most often with a frequency of 90% of the time at

the surface, at the midpoint of the composite cross section and within 100 km on the

poleward side. The overlaid composite vertical ✓e profile in Fig. 5.2a demonstrates

that the hydrometeor tower follows the tilt of the axis of maximum ✓e characteristic of

the occluded thermal structures in the database. The horizontal extent of the updraft

shown in the ! contours in Fig. 5.2b also follows the tilt of the axis of maximum ✓e.

These simultaneous results corroborate a connection between the trajectory of the upward

moving air within the TROWAL and the lofting or creation of hydrometeors by this

same vertical motion. This is especially true at the center of the cross-section where the

maximum in hydrometeor frequency is collocated with the most intense values of !.

Expanding the NH composites to average all seasons throughout the 5-year analysis

period forges the hydrometeor structures displayed in Fig. 5.3. A tower similar to that

in Fig. 5.2 still remains, however averaging all seasons diminishes the overall magnitude

of hydrometeor frequency. The particles observed in the cold sector of the NH winter

composite (Fig. 5.2) are less frequent in both spatial extent and magnitude, stopping

short of 1200 km southwest from the ridge with a frequency of only 40%. The hydrometeor

maximum finds itself localized to the layer closest to the surface throughout all seasons

as it does in boreal winter, which is immediately in the center of the OTR axis and

extending 200 km to the northeast. Hydrometeors were present in this location in ⇠60%

of cases and 50% of the time in the layer immediately above it. The tilt of the TROWAL

axis deepens and steepens in the ✓e composite cross-section on Fig. 5.3a, becoming more

comparable to the canonical occluded thermal structure described in Chapter 1 and shown



41

in the “warmest” occluded identifications in Chapter 3. The exaggerated tilt of the axis

of maximum ✓e is accompanied by the same steepening of the updraft at the center of

the OTR axis in Fig. 5.3b, with a slight displacement of the maximum vertical motions

toward the pole. The magnitudes of both the ✓e and ! distributions are relatively the

same as those in Fig. 5.2, despite expanding the sample size of cases in the composites.

Similar to the composite results found in Chapter 3, further detail regarding the NH

hydrometeor structures during the 2006-2011 analysis period is a↵orded by stratifying

them by maximum value of ✓e at 700 hPa in the OTR. Using the same distribution as in

Fig. 3.2, the hydrometeor masks along each of the median cross-section transects for each

identification in Bin I-VI is composited to create the structures shown in Fig. 5.4. The

3 core contours of MERRA-2 ✓e data (solid black) in each composite demonstrates the

warm-occluded thermal structure for all cases in each bin. Figure 3.4 demonstrates the

steepening of the TROWAL axis with warmer 700 hPa maximum ✓e. The warm frontal

portion in the “coldest” bin (Bin I; Fig. 5.4a) appears intact, however the dilapidated cold

front is discordant with the canonical occluded thermal structure. As discussed earlier in

Chapter 3, cataloguing occluded identifications by their 700 hPa maximum ✓e e↵ectively

results in a sorting by latitude. Figure 3.3a showed that the OTRs in Bin I formed at

higher latitudes. Due to the orientation of occluded cyclones and the angle at which polar

orbiters intersect with the structure at those latitudes, it is likely that the satellites are

mostly viewing the warm frontal portion of the occluded thermal structure and very little

of the cold front within the OTR. This latitudinal bias that accompanies a polar orbit

likely compromises the amount of data used to construct that portion of the structure in
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Bin I. It is also possible that the 3 moist isentropes that capture the TROWAL on the

warm frontal side of the OTR are confined to the surface in the cold sector. The poleward

tilt of the axis of maximum ✓e is at its most intense in the “warmest” bin (Bin VI; Fig.

5.4f), akin to the Bin VI in Fig.3.4f.

Similar to the NH structure in Fig. 5.3a, the orientation of the hydrometeor tower also

follows the general tilt of the canonical axis of maximum ✓e in all bins of Fig. 5.4. Unlike

the updrafts in Fig. 3.5 that adhere to the changing slopes of the TROWAL axis that

vary with the 700 hPa maximum ✓e values found in each bin of Fig. 3.2; the incline of

the hydrometeor tower remains constant for each bin in Fig. 5.4. However, the vertical

development of the hydrometeors within the tower, increases with warmer 700 hPa ✓e

values. This can be seen by comparing the “cloud top” in the Bin I composite (Fig.

5.4a) at 400 hPa or 8 km, with the “cloud top” in Bin VI (Fig. 5.4f) at 220 mb or 11

km. The magnitude of hydrometeor occurrence does not share this seemingly monotonic

relationship between vertical growth and 700 hPa ✓e values. Whereas a majority of the

hydrometeors were generally observed near the surface, the intensity of their frequencies

of occurrence and the spatial expanse of the low-level maximum fluctuated between each

bin. This could be a result of the unequal and minimal sample size of identified OTRs

in each bin. Although magnitudes varied inconsistently across all the composites, the

“warmest” tower consists of the lowest frequency of hydrometeors overall throughout the

full structure. Figure 3.2 showed that the most intense vertical motions and highest ✓e

in the TROWAL for identifications in Bin VI provided evidence to support the sugges-

tion that LHR exerts a substantial influence in producing a canonical occluded thermal
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structure. The relatively low magnitudes in Fig. 5.4f contradict this hypothesis as the

large upward vertical motions and attendant LHR that are likely to be occurring in Bin

VI OTRs would be associated with greater occurrences of hydrometeors.

5.2.2 Southern Hemisphere composites

Similar hydrometeor frequency structures form when compositing all SH cases from 2006-

2011 (Fig. 5.5). The tilt of the hydrometeor tower present in the center of the cross-

section is comparable to that in the NH composites, though the vertical and horizontal

extent is di↵erent from the structures seen in Fig. 5.3. Hydrometeors extend farther

poleward than seen in the NH composites with greater frequencies in general throughout

the structure. Hydrometeor formation also maximizes within the layer closest to the

surface at the center of the TROWAL in the SH, but with larger magnitudes and greater

vertical extent. Hydrometeors were present at this location in ⇠80% of cases from 2006-

2011, which is 20% more than in the NH. This departure from the NH continues aloft,

where the frequency gradually diminishes from 70% to 40% at the top of the tower.

The same thin band of hydrometeors present in NH winter occluded identifications (Fig.

5.2) also occurs in the SH and with a more robust structure than the all-inclusive NH

composite (Fig. 5.3). On the other hand, the vertical motion structure within the OTR

does not vary greatly between hemispheres. The updraft shown in Fig. 5.5b exhibits

a similar tilt and magnitude of ! to that in Fig.5.3b, despite the stronger stratification

on the warm frontal side as compared to that in Fig. 5.3. As explained in Chapter 3,

synoptic-scale vertical motions within the TROWAL are primarily driven by PVA by the
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thermal wind (Sutcli↵e, 1947), a mid-tropospheric forcing. Regions of high local static

stability, such as the layer between 900-650 mb in Fig. 5.5, should dampen the vertical

motions at that level in the column. Therefore, the wave-scale forcings below and at the

level of the warm front must be stronger in the SH occluded identifications than the NH.

Since PVA by the thermal wind is often most robust above this layer, another synoptic

forcing may play a role.

The discrepancies in hydrometeor presence between hemispheres presents a curious result.

A majority of the SH is open water with fewer land masses than the NH. Such a maritime

landscape would likely be characterized by fewer cloud condensation nuclei and therefore,

a lower number of larger cloud droplets than their continental counterparts. A larger

initial droplet size encourages the collision-coalescence process to produce precipitation-

sized droplets faster, increasing the chances of hydrometeors precipitating out of the cloud.

While this enhanced precipitation could lead to the broader area of high frequencies of

occurrence seen in the SH hydrometeor tower, it would also lead to shorter residence

times for precipitation-sized droplets in the lower atmosphere. Also, a majority of the

OTRs identified in the SH were in Bin II of Fig. 3.6 (i.e., the second “coldest” bin) and

therefore have “colder” 700 hPa ✓e values than most of the ridges identified in the NH

(Fig. 3.2). This speculation is corroborated by the minimal tilt in the TROWAL axis in

Fig. 5.5a. Due to the colder nature of SH occlusions, the attendant precipitation is most

likely confined to the near-surface layer with clouds dominating most of the upper levels.

Therefore, the low-level hydrometeor maximum observed in Fig. 5.5 can be reasonably

assumed to be precipitation particles and the SH structures are precipitating in ⇠80%
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of the 6h analysis times recorded. Continuous drizzle is characteristic of the stratiform

clouds often observed along and ahead of the warm front and on the warm side of an

OTR axis (Mason, 1952; Tracton, 1969; Hobbs, 1978; Nicholls, 1987; Wood, 2005). A

low-level maximum in cloud cover is most likely tied to widespread stratiform clouds that

get trapped in the marine boundary layer (Verlinden, et al., 2011; Mace and Protat,

2018), which has been commonly observed in other studies (Klein and Hartmann, 1993;

Mace et al., 2009; Verlinden et al., 2011; Haynes et al., 2011; Mace and Protat, 2018 and

others). The area of 70% hydrometeor occurrence present directly above the precipitating

surface layer and to the north-east of the OTR axis in Fig. 5.5 points to the long-term

occupancy of the such stratiform structures associated with this region of a cyclone.

This distribution of hydrometeors suggests a diabatic explanation of the agreement in

vertical motions between hemispheres, despite the di↵erence in stratification within their

respective TROWAL structures. With the precipitation sequestered to the lowest layer,

very little evaporative cooling remains to o↵set latent heat release of condensation when

clouds form throughout the remainder of the column. This excess diabatic heating could

fuel stronger upward vertical motions above the marine boundary layer in addition to the

stronger synoptic forcing to explain the vigorous ! values observed in Fig. 5.5b.
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5.3 Structure of composite hydrometeor frequency

of occurrence from 2006-2017

The reduced number of occluded identifications with available CloudSat-CALIPSO obser-

vations likely increased the sensitivity of the composites to outliers and small deviations

from the true average hydrometeor structure within an OTR. Dividing this smaller quan-

tity into 6 bins in Fig. 5.5 seemingly exacerbated this issue. In order to enhance the

robustness of the hydrometeor composites, the compositing process outlined in Chapter

4 was conducted for an 11-year analysis period from 2006-2017, similar to Naud et al.

(2023) and Chapter 2. Out of 22,329 occluded 6h snapshots identified in the Naud et

al. (2023) database, 4,828 coincided with a CloudSat-CALIPSO orbit within the tran-

sect area from 2006-2017. The composite structures constructed from these cases showed

that the NH lacked the quantity of identifications detected in the SH (not shown). This

discrepancy between the hemispheres forced the use of fewer 700 hPa maximum ✓e bins

to allow any detectable signal to emerge. Fewer bins would also alleviate the sensitivity

demonstrated by the composite structures in Fig. 5.5. Figure 5.6 shows the cumulative

distribution function of frequency of occurrence for each value of 700 hPa maximum ✓e in

occluded identifications throughout 2006-2017 (solid). Using this global distribution for

all transects, thresholds were determined to separate the population into terciles. The

“coldest” bin (240 – 293 K) contains the least frequent cases, whereas the most identi-

fications had a 700 hPa maximum ✓e within the range of 294 – 304 K. The frequency

of occurrence then began to diminish once again in the “warmest” bin (305 – 360 K).
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Histograms of NH (dashed) and SH transects (dot-dashed) were also constructed with the

same thresholds in Fig. 5.6. NH cases are shifted towards warmer values of 700 hPa max-

imum ✓e, with the most frequent cases having a maximum ✓e of ⇠306 K at 700 hPa. The

SH distribution is “colder” in general, where OTRs were identified to have a maximum ✓e

of ⇠295 K most frequently. Since there are more cases observed by CloudSat-CALIPSO

in the SH than the NH, the overall distribution (solid) resembles the SH distribution

(dot-dashed). In order to examine this di↵erence further, each hemisphere’s population

is partitioned into terciles separately, resulting in unique 700 hPa maximum ✓e bins for

both.

Partitioning the NH cases in the 11-year database into terciles required ✓e values of 298 K

and 312 K for the thresholds, following the clear shift towards warmer 700 hPa maximum

✓e from the global population shown in Fig. 5.6. Figure 5.7 depicts the composite hydrom-

eteor structures of the identifications in each bin. The gray lines in Fig. 5.7a-c indicate

the MERRA-2 vertical ✓e structure along the cross-section, which shows the canonical oc-

cluded thermal structure and more increasingly so with warmer ✓e values. Similar to Fig.

5.4, the extent of the hydrometeor structure expands upward and poleward with higher

✓e, according to the 50%+ contour in 5.7d-f. The magnitude of overall frequency of occur-

rence throughout the tower maximizes in the center bin (298K< ✓e <312 K), where the

surface layer (<2 km) contains magnitudes up to 85-90% and the 50%+ contour extends

to 10 km (Fig. 5.7e). It was shown in Fig. 3.5 and Chapter 3 that the most vigorous

upward vertical motions and supposed attendant LHR were located within the TROWAL

region of the ”warmest” occluded identifications. With the superimposition of these two
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related phenomena, greater magnitudes of hydrometeors occurring at higher frequencies

should be observed. However, while the vertical extent of the tower continues to increase

into the “warmest” bin, there is a significant decrease in hydrometeors mainly above 5

km, mimicking the result found in Fig. 5.4f and contradicting the expected hypothesis.

This contradiction may well be confined to NH occluded structures because the same

discrepancy does not appear in the SH composites constructed over the same time period

(Fig. 5.8). The MERRA-2 vertical ✓e structure contains similar characteristics to the

2006-2011 composite in Fig. 5.5a, with less tilt in the axis of maximum ✓e and higher

stratification within the TROWAL region than the NH composite. The SH terciles are

bound by 700 hPa maximum ✓e values of 291 K and 301 K, which are substantially

colder than the thresholds that similarly stratify the NH identifications. Magnitudes of

hydrometeor frequency within the overall structure continue to increase with “warmer”

✓e values, as one would expect, with the 50%+ and 75%+ contour extending vertically

through the tower. While a greater number of hydrometeors are present at higher altitudes

in occluded identifications with “warmer” 700 hPa maximum ✓e values, the top of the

hydrometeor tower remains at the same height with only a slight ascent from 10 km

to 11 km in the “warmest” bin. Similar to the 5-year composite in Fig. 5.5, adding 6

years of observations confirms that there are generally greater frequencies of hydrometeor

occurrence within the TROWAL of SH occluded cyclones than in their counterparts in

the NH. The absolute maximum of 85-90% frequency present in the lower-levels of the

NH composite (Fig. 5.7) is also present in all 3 SH bins with a vertical extension up to

3 km in Fig. 5.8e and as high as 6 km in the “warmest” composite (Fig. 5.8f).
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The curious di↵erences between the NH and SH composite hydrometeor structures seen

in the 2006-2011 analysis resurfaces here, despite almost doubling the sample size of cases

considered between 2006-2017. The SH composite hydrometeor structures generally lean

towards “colder” 700 hPa maximum ✓e values for both the 5-year and 11-year analysis

periods. Other disparities that could lead to a di↵erence in hydrometeor presence within

the TROWAL of occluded cyclones include terrain, land cover, climatological jet inten-

sity and location as well as the presence of the Southern Ocean, a vigorous band of cold

water circulating around Antarctica that dampens heat release from the ocean surface to

the atmosphere (Cai et al., 2023). On the other hand, sharp decreases in hydrometeor

frequencies at upper-levels may not be specific to NH occluded structures. If such a phe-

nomenon were to occur in SH occluded cyclones, but at lower frequencies, its occurrences

might be lost in a climatological average. One could restrict the histogram bin thresholds

to remain consistent for each hemisphere’s hydrometeor composite to evaluate whether

or not the sharp decrease in the “warmest” category is truly sequestered to the NH. This

peculiar asymmetry warrants further investigation that is not included in this study.

It was shown in Fig. 5.6 that the global distribution of hydrometeor frequency of occur-

rence closely followed the SH distribution as a result of the bias in sample size since the

number of SH occluded identifications observed by CloudSat-CALIPSO was far greater

than in the NH. Figure 5.9 shows the composite hydrometeor frequencies of occurrence

when combining all cases across the globe, which demonstrates the partiality towards

the SH hydrometeor tower and occluded thermal structures (Fig. 5.9a-c) in Fig. 5.8.

However, the influence of the NH hydrometeor structure is not completely absent as the
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distribution of frequencies in Fig. 5.9d is similar to Fig. 5.9e, with a notable decrease

throughout the tower in the “warmest” bin. The maximum frequency remains within the

layer closest to the surface, with the magnitudes increasing from 75-80% in the “coldest”

bin (Fig. 5.9d) to 85-90% in Fig. 5.9e, then decreasing down to 80% in the “warmest”

bin (Fig. 5.9f). The hydrometeor top also exhibits the same vertical expansion with

increasing 700 hPa maximum ✓e as the NH composites, growing from 8 km in Fig. 5.9d

to 10.5 km in Fig. 5.9f. The vertical growth in the tower, which can be clearly seen by

the 50%+ contour in Fig. 5.9d-f, is consistent with the vertical motion and ✓e composites

constructed in Naud et al. (2023).

Unsurprisingly, the full hydrometeor frequency composite averaging all identified NH

cases from all seasons throughout the 11 years (Fig. 4.4c) incorporates most of the

characteristics in each of the bins in Fig. 5.7. The composite hydrometeor tower tilts

poleward with height, reaching ⇠ 9.5 km at the top. Hydrometeors occur just north of

the OTR axis at 2 km in 85-90% of cases. The notable drop in hydrometeors above 5 km

depicted in Fig. 5.7f appears in this global composite with the next largest magnitude

of 70-75% frequency concluding at 5 km, and then decreasing with height within the

structure. Although the 25%+ contour extends as far as 700 km poleward of the OTR,

the hydrometeors within the 50%+ contour remains proximal to the OTR axis and fairly

erect, similar to the structure in the “coldest” NH bin (Fig. 5.7d). CloudSat-CALIPSO

observed hydrometeors more frequently in the SH, according to the grand composite in

Fig. 5.10, which shows an absolute maximum of 85-90% frequency of occurrence in the

first 3 km within the core of the tower, a full 5-10% greater than the absolute maximum



51

in the NH (Fig. 4.4c). Similar to the 2006-2011 composite in Fig. 5.5, the vertical

extent of the hydrometeor tower maximizes around ⇠8.5-9 km. Despite the shallower top

height, the 50%+ contour extends to higher altitudes within the SH tower (8 km) than

in the NH structure, similar to the results found during the 2006-2011 period. Unlike the

5-year composite, however, Fig. 5.10 demonstrates a more dramatic tilt than was shown

in Fig. 5.3 and Fig. 5.5, which showed relatively consistent slopes in both structures.

Another di↵erence of note between the hemispheres is the horizontal expansion of the main

hydrometeor tower, specifically the 25%+ contour, does not penetrate as far poleward in

the SH as the same contour in the NH. Therefore, cloud/precipitation structures within

OTRs in the SH are shallower, but substantially cloudier than their NH counterparts.

The composited global cloud distribution across OTRs from 2006-2017 (Fig. 5.11a) is

consistent with the distribution of both ✓e (also shown in Fig. 5.11a) and the vigorous

upward vertical motions shown in Naud et al. (2023). The understanding that the

largest portion of cloudiness and precipitation within an occluded cyclone is strongly

linked to the TROWAL and not the surface fronts is corroborated by the stark maximum

of hydrometeors present at the center of the OTR axis in Fig. 5.11a. Based on the

vertical ✓e structure, the surface occluded front is most likely located between 100 and

200 km equatorward of the 700 hPa ridge line, where the hydrometeor presence does not

extend beyond 5 km in altitude and only in 50-65% of cases. Whereas at the center of

the OTR axis, hydrometeors were present in 85-90% of all cases throughout the 11-year

period, decreasing in even intervals with height until the top of the tower at ⇠10 km with

a magnitude of 40%.



52

Using the same CloudSat-CALIPSO observation dataset, Naud et al. (2010; 2012) con-

structed hydrometeor composites across warm fronts and Naud et al. (2015;2016; 2018)

did the same across cold fronts. The latter were identified at 850 hPa using a combina-

tion of the thermal gradient method from Hewson (1998) applied to MERRA-2 and the

wind direction change method of Simmonds et al. (2012) applied to MERRA-2 winds.

The warm fronts were also obtained using Hewson (1998)’s method applied to MERRA-2

data at 1 km above mean sea level. Figure 5.11b and Fig. 5.11c shows the frequency of

occurrence across cold and warm fronts, respectively, from 2006-2017 across the globe.

The canonical occluded thermal structure shown in the MERRA-2 ✓e cross-section in

Fig. 5.11a is completely unique and does not share any resemblance to the ✓e structure in

either frontal region. In Fig. 5.11b, moist isentropes maintain a relatively stable config-

uration in the cold sector and only slightly bow down towards the low-level hydrometeor

maximum (40%) within 100 km into the warm sector. The moist isentropes in Fig. 5.11c

slope upwards across the warm front and above the surface cold air ahead of the warm

front. The hydrometeors across the cold front do not exceed a magnitude of 40% and

are mostly concentrated in the warm sector out ahead of the front. On the other hand,

hydrometeors are more frequent across the warm front with a maximum of 60% frequency

occurring immediately ahead of the frontal boundary. However, it is clear that hydrom-

eteor frequencies are considerably larger in occluded quadrants than they are in warm

frontal regions and even more so in the case of cold fronts. This is partially caused by a

lower variability in hydrometeor distribution across OTRs compared to warm fronts. But

overall, Fig. 5.11a provides observational evidence that during the years 2006-2017, the
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lion’s share of cloudiness and precipitation associated with occluded identifications falls

within the occluded quadrant, separate from the surface occluded front, by a generous

margin irrespective of location on the globe.
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Chapter 6

Discussion and Conclusions

The post-mature phase structure of a mid-latitude cyclone is characterized by a 3-D,

sloping thermal ridge, that scientists at the Canadian Meteorological Service termed the

TROugh of Warm air ALoft (TROWAL). The TROWAL is the essential structural fea-

ture of a warm-occluded cyclone, and its development not only links to cyclone dynamics,

but also influences the distribution and intensity of precipitation. Though a number of

studies (e.g., Wallace and Hobbs, 1977; Schultz and Mass, 1993; Martin, 1998a,b; 1999a,b;

Posselt and Martin, 2004; Schultz and Vaughan, 2011) have considered the aspects of the

structure, evolution and dynamics of occluded cyclones, there has been no attempt to de-

velop an automated scheme to identify occlusions in gridded data sets. In fact, the present

study represents the first contribution that constructs a climatology of occluded cyclones

based upon identification of their canonical 3-D thermal structure. Consequently, current
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understanding of the structural evolution, dynamics and cloud and precipitation distri-

bution associated with occluded cyclones is derived predominantly from the analyses of

individual case studies and/or model simulations. In order to expand this rather limited

perspective on investigations of the occluded stage of the cyclone life cycle, this study

describes an automated method to identify such occluded thermal structures and illus-

trates its applications. Such applications include the analysis of the global distribution

of occluded identifications, as well as the construction of thermodynamic, kinematic, and

hydrometeor composite cross-sections through the occluded thermal ridge (OTR) to learn

more about the structure within occluded extratropical cyclones.

The detection method, quantified using the F -parameter derived in Chapter 2, arises

from the evaluation of the divergence of the unit vector in the direction of the 1000-

500 hPa thickness gradient. Regions of convergence of the unit vector identify thickness

ridges while regions of divergence detect thickness troughs. With only minor empirical

adjustments, the F -parameter was found to consistently and accurately identify the OTR,

and therefore, occluded cyclones, in any gridded data set. Though it is possible to usefully

employ the F -parameter without a priori knowledge of cyclone positions and tracks, our

experience suggests that doing so invites a level of uncertainty that can compromise

the results. Coupled with a cyclone tracking algorithm involving synoptically-informed

parameters , however, F can be used to identify the position and track of occluded

cyclones around the globe. Using this methodology, Naud et al. (2023) compiled a

collection of all occluded cyclones from the Naud et al. (2018) cyclone database during

the operational time frame of CloudSat and CALIPSO (2006-2017). This new database
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allowed for the exploration of the composite characteristics of 22,329 6-hourly occluded

identifications throughout the analysis period.

The composites revealed that Northern Hemisphere (NH) occlusions occur most fre-

quently during the winter season (DJF) and most often poleward of the mean jet in

the Pacific basin and in a strip from the Labrador Sea to the Greenland coast in the

Atlantic Ocean. On the other hand, occluded identifications tend to occur poleward of

40°S throughout most of the year in the Southern Hemisphere (SH), and maximize in

frequency in SH autumn (MAM). Binning winter occluded identifications according to

the value of their respective 700 hPa ✓e maximum along the thickness ridge axis allows

for further categorization of these features, as well as new insights regarding the influence

of the temperature and moisture of mid-troposphere warm sector air on the robustness of

the resulting occluded thermal structures. Two-thirds of all NH occluded identifications

had a maximum 700 hPa ✓e in the range of 293-313 K, while the extremes ranged from

as low as 275 K to as high as 335 K. In the SH, two-thirds of wintertime occlusion

identifications had a lower maximum 700 hPa ✓e in the range of 288 – 304 K. Perhaps

unsurprisingly, the analysis found that in both hemispheres the intensity of the composite

vertical motion in the TROWAL was generally inversely proportional to the latitude at

which the occlusion was identified, presumably as a result of the weakly stratified air

found in occluded sectors of “warmer” storms. The “colder” composites in both hemi-

spheres also suggested that such high-latitude cyclones tend to have a shallower version of

the canonical occluded thermal structure and also exhibit less tilt to the axis of maximum

✓e.
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The variability in occluded thermal structures and in the intensity of the vertical motion

characterizing the 6 groups of occlusions in each hemisphere are almost certainly phys-

ically related. Martin (1999a) found that the convergence of the along-isentrope ( ~Qs)

component of the ~Q-vector (Hoskins et al., 1978), closely related to PVA by the ther-

mal wind (Sutcli↵e, 1947; Trenberth, 1978), simultaneously accounts for the production

of the OTR and provides the predominant dynamical forcing for ascent in the occluded

quadrant of cyclones. The TROWAL air stream, a cyclonically ascending air stream,

that originates in the warm sector boundary layer and flows through the TROWAL is

supported by this quasi-geostrophic forcing. The fact that the “warmer” occlusion in the

present analysis have both higher ✓e feeding the TROWAL air stream and larger vertical

motion within the TROWAL leads them to also produce larger amounts of LHR in the

occluded quadrant. Consequently, a couplet of lower tropospheric cyclonic PV production

and upper-tropospheric PV erosion is clearly evident in these composite cross-sections.

Additionally, as the maximum 700 hPa ✓e in the TROWAL increases, so does the robust-

ness of the associated occluded thermal structure (Fig. 3.8 and Fig.3.4). The coincidence

of these structural characteristics in the composites depicted here o↵ers new evidence for

the suggestion made by Posselt and Martin (2004) that LHR plays an important role

in the production of the canonical occluded thermal structure. The more concentrated

and vigorous composite vertical motions of the NH wintertime occlusions revealed in the

analysis, however, remains in need of explanation.

The automated objective identification method described here permits the quantitative

exploration of many other aspects of occluded cyclones, including the distribution of
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clouds and precipitation across occluded sectors. CloudSat and CALIPSO observations

were utilized to construct composite cross-sections of hydrometeor frequency of occur-

rence. In addition to the full duration of the satellites’ residence time in the A-Train

constellation (2006-2017), a composite analysis during a subset of the time period (2006-

2011) was conducted. Out of 13,185 occluded cyclone identifications identified during

2006-2011, only 2,595 had concurrent CloudSat-CALIPSO observations available. Ex-

tending the database out to 11 years added 2,233 daytime-only snapshots with available

CloudSat observations into the composite structures.

The analysis relied on the construction of composite cross-sections of hydrometeor fre-

quency along a transect line perpendicular to the occluded thermal ridge (OTR), anchored

at the point of maximum 700 hPa ✓e at each point along the OTR axis. In order to arm

this 2D composite with the greatest number of observations available, the full 3D data

volume provided along the CloudSat-CALIPSO transect was used. This proved to be suf-

ficient for reconstructing the hydrometeor distribution along a hypothetical cross-section

parallel to the cross-section transect (see Chapter 2) that cuts through the OTR at the

same angle as the cross-section transect. Figure 5.1d showed the di↵erences between a

composite constructed in this way (Fig. 5.1d) and one created using the methodology in

Chapter 2 (Fig. 5.1a), which proved to be negligible (< |3| K).

Consistent with the results of prior case studies (e.g., Crocker et al, 1947; Godson, 1951;

Penner, 1955; Martin, 1998a, b), the majority of hydrometeors in the composites pre-

sented here is found at the center of the OTR axis and within the area poleward of the
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OTR, i.e., the TROWAL region, and not at the surface occluded front. Additionally, the

main hydrometeor tower follows the tilt of the TROWAL axis, similar to the updrafts

discussed in Chapter 3. Overall, hydrometeor structures across NH OTRs are more hori-

zontally extensive, deeper, and displaced farther poleward than SH structures; while the

maximum magnitude in frequency throughout the hydrometeor tower is larger in the

SH than the NH. To better understand these di↵erences, the hydrometeor cross-sections

across all OTRs in the database were stratified by 700 hPa maximum ✓e.

Stratifying cases in this way revealed a tendency for hydrometeor coverage to expand

vertically with increasing ✓e across all OTRs. The reduced sample size of occluded identi-

fications used in this analysis compelled employment of terciles to divide the cases evenly,

instead of the 6 categories used in Chapter 3. Doing so unveiled a ✓e threshold in the NH

that, when surpassed, results in a decline of the hydrometeor maximum in the TROWAL.

Such a result is unexpected for a region characterized by strong synoptic-scale ascent (Fig.

3.9). This phenomenon was not present in the SH composites, despite a similar distri-

bution of !. A decrease in hydrometeor frequency in regions of vigorous upward vertical

motion may be the signature of high-frequency embedded convection. Such convection

has been observed in or near the comma head of extratropical cyclones (Rosenow et al.,

2014; Plummer et al., 2015; Rauber et al., 2015), and in warm conveyor belts (Crespo and

Posselt, 2016; Binder et al., 2016; Oertel et al., 2019; Binder et al., 2021). The SH showed

comparable updraft intensities to the vertical motions in the NH without the decrease in

upper-level hydrometeors in the “warmest” bin. The local static stability on the warm

frontal side of the SH OTR (Fig. 5.5a) was found to be stronger than the same region
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in the NH composite (Fig. 5.3a). Therefore, the synoptic-scale forcings (i.e., PVA by the

thermal wind) must be greater in the SH at the level of the axis of maximum ✓e or below

to overcome the relatively stable stratification present in the SH TROWAL environment.

The observations presented here suggest that hydrometeors are more frequently observed

in OTRs in the SH than in the NH. Aside from di↵erences in sample size between the

hemispheres, any number of physical processes or variables and their combinations might

underlie this contrast such as variations in static stability, frequency of convection, or

the type of hydrometeors. The mechanisms driving this discrepancy warrant further

investigation. Future exploration into the ice and liquid water content profiles within the

hydrometeor structures could shed light on the type of hydrometeors present within the

column. For the hypothesis o↵ering convection frequency as a reason for the disparity

between hemispheres, future work will explore the diabatic heating distribution across

OTRs using Global Precipitation Measurement profiles.

Using an automated identification scheme, this study set out to observe the hydrometeor

distribution within occluded quadrants and lay the ground work for new insights about

the microphysics that occur within that region of the ubiquitous extratropical cyclone.

The same scheme can be applied to the evaluation of the global distribution of occlusions

as portrayed in a free-running integration of di↵erent versions of the Goddard Institute

for Space Studies global climate model (GCM) (Kelley et al., 2020). Preliminary results

of that analysis suggest that model extratropical cyclones tend to form farther poleward

than those in the reanalysis data. And, though the model produces occlusions that
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appear realistic, it does so nearly twice as frequently as the reanalysis data. These and

other questions regarding the nature of occluded cyclones in a warmer climate can now

be considered quantitatively through application of the objective identification method

outlined in this thesis. Future e↵orts to build upon this foundation will no doubt yield

fruitful and new insights regarding the late stages of the extratropical cyclone life cycle.
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MERRA-2 (1.25� ⇥ 1�) MERRA-2 (2.5� ⇥ 2�) NCEP-NCAR (2.5� ⇥ 2.5�)

Fmax -10�9 m�1 -0.5⇥10�9 m�1 -0.5⇥10�9 m�1

Nmin 8 4 4
StdSurfmax 300 m 150 m 150 m

Dmax 300 km 300 km 300 km

Table 2.1: Parameter values for each data set and grid resolution used in this study.
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Figure 1.1: Occluded thermal structure observed over the central United States on
0000 UTC 20 January 1995. (a) 700 hPa equivalent potential temperature (✓e) at this
analysis time. ✓e (K) is contoured every 2 K. Cross-section along line A-A’ shown
in Fig. 1.1b. (b) Vertical cross-section of ✓e along line A-A’ in Fig. 1.1a (from St.
Cloud, MN (STC)), to Peachtree City,GA (FFC) at the aforementioned time. Solid
lines are moist isentropes labeled in K and contoured every 3 K. Dashed line indicates
the canonical axis of maximum ✓e that slopes upward and poleward in a warm occlusion.
Light (dark) shading represents the cold (warm) frontal baroclinic zone involved in this

occluded structure. Adapted from Martin (1998a).
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Figure 1.2: Schematic illustration of the trowal conceptual model. The blue shaded
surface represents the warm edge of the cold frontal baroclinic zone. The pink shaded
surface represents the warm edge of the warm frontal baroclinic zone. The thick dashed
line (marked ”TROWAL”) represents the 3-D sloping intersection between the cold and
warm frontal zones characteristic of warm occlusions. Schematic precipitation band is
indicated as are the positions of the surface warm, cold and occluded fronts. Dark
solid line through the precipitation band represents the projection of the trowal to the

surface. Adapted from Martin (1999a)
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Figure 1.3: Illustration of the relationship between the treble clef tropopause-level
potential vorticity (PV) and the warm-occluded thermal structure in the underlying
troposphere. (a) Tropopause-level (250-300 hPa) PV from the CFSR valid at 1800
UTC 19 January 1995. PV is labeled in potential vorticity units (PVU) (1 PVU =
10�6 m2 s�1 K kg�1) and shaded every 1 PVU starting at 1 PVU. Cross-section along
A-A’ is shown in Fig. 3b. (b) Cross-section along A-A’ in Figure 3a of ✓e (thin green
lines) labeled in K and contoured every 3 K. Gray shading is PV labeled in PVU and

shaded every 1 PVU beginning at 1 PVU.
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Figure 2.1: (a) 1000-500 hPa thickness (solid red) and n̂, the unit vector in the
direction of r�0, from the CFSR valid at 0600 UTC 7 January 2008. Thickness is
labeled in dam and contoured every 6 dam. Unit vectors are portrayed at every 5th

grid point for clarity of presentation. (b) 1000-500 hPa thickness (solid red) labeled
and contoured as in Fig. 2.1a. Convergence of n̂ (thin blue lines) contoured every
�1 ⇥ 10�5 m�1 starting at �1 ⇥ 10�5 m�1. (c) Sea-level isobars (dashed blue) and
1000-500 hPa thickness (solid red) from the CFSR valid as in (a). Isobars labeled in
hPa (with leading ”9” or ”10” dropped) and contoured every 4 hPa. Thickness labeled
and contoured as in Fig. 2.1a. Negative F parameter (see text) shaded in yellow and
contoured every �1⇥10�9 m�1 starting at �1⇥10�9 m�1. Vertical cross-section along
B-B’ is shown in Fig. 2.1d. (d) Vertical cross-section of ✓e and ! along line B-B’ in
Fig. 2.1c. ✓e labeled in K and contoured every 3 K with the 300 K isoline colored in
blue. Upward vertical motion (gray shading) labeled in dPa s�1 and contoured every
-2 dPa s�1 starting at -2 dPa s�1. (e) Isobaric topography of the 300-K ✓e surface from
the CFSR dataset. Thin white dashed lines are isobars on that surface and the thick
dashed line is the location of the TROWAL (see text). (f) Blue asterisks identify CFSR
grid points at which F < �1 ⇥ 10�9 m�1 at 0600 UTC 7 January 2008. Red crosses
identify points on the coarsened MERRA-2 grid at which F < �1 ⇥ 10�9 m�1 at the
same time. These grid points are highlighted as black crosses in gray squares in Fig.

2.2e.
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Figure 2.2: Illustration of the cluster tracking method. (a) Track of a cyclone in
the north Atlantic from 0600 UTC to 1800 UTC 8 January 2008 from the MERRA-2
reanalysis data. Crosses represent the position of the cyclone center at each 6-hr time,
red squares indicate times at which a qualifying cluster deemed the storm occluded,
and ”Peak” indicates the time and location of the storm’s peak intensity. (b) 1000-500
hPa thickness (blue solid lines) and sea-level isobars (SLP, dotted black lines) at 1200
UTC 6 January 2008 from the MERRA-2 data. Thickness (m) is contoured every 60
m. SLP (hPa) is contoured every 4 hPa. Red and black crosses are grid points at
which F < Fmax. Blue triangles are grid points at which STDSurfmax exceeds 300
m. Green star is the location of the SLP minimum. Black crosses with gray shaded
squares represent grid points in a qualifying cluster (see text for explanation). (c) As
in Fig.2.2b but for 1800 UTC 6 January 2008. (d) As in Fig.2.2b but for 0000 UTC
7 January 2008. (e) As in Fig.2.2b but for 0600 UTC 7 January 2008, time of peak

intensity.
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Figure 2.3: Cyclone-relative grid with SLP minimum at (0,0). (a) Red crosses indicate
the qualifying cluster identified at 1200 UTC 6 January 2008 for the cyclone whose track
is considered in Fig. 2.2. (b) As in 2.3, but with red crosses indicating the qualifying
cluster identified at 1800 UTC 6 January 2008 and the gray crosses indicating qualifying
clusters identified at all prior 6-hr snapshots of the cyclone depicted in Fig. 2.2. (c)
As in Fig. 2.3b but with red crosses indicating the qualifying cluster at 0000 UTC 7
January 2008. (d) As in Fig. 2.3b but with red crosses indicating the qualifying cluster

at 0600 UTC 7 January 2008.
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Figure 2.4: Illustration of the method by which the composite cross-section transect
line is determined for the objective occlusion identification. Blue crosses are schematic
grid points constituting a qualifying cluster. Green solid lines are 700 hPa ✓e isentropes.

Red solid line is the cross-section transect line.
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Figure 3.1: Distribution of all (6-hr) ETC centers that are occluded organized by
hemisphere and season. Color bar refers to the number of occlusion identifications per
5�⇥5� box in (a) Northern Hemisphere (NH) winter (DJF), (b) Southern Hemisphere
(SH) winter (JJA), (c) NH spring (MAM), (d) SH spring (SON), (e) NH summer (JJA)
(f) SH summer (DJF), (g) NH autumn (SON), and (h) SH autumn (MAM). SOlid white
(dashed black) lines in each panel indicate the 100 (150) cyclones per grid box contour

for the given season.
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Figure 3.2: Cumulative distribution function of all NH wintertime occluded identifi-
cations stratified by the 700 hPa ✓e maximum along their respective thermal ridge axes.

The 6 categories are referred to as Bins I-VI in the text.
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Figure 3.3: Geographic distribution of ETC centers that are occluded in (a) Bin I,
(b) Bin II, (c) Bin III, (d) Bin IV, (e) Bin V, and (f) Bin VI as identified in Fig. 3.2.
Dashed lines are the DJF average 30 and 50 m/s isotachs at 300 hPa from 2006-2017

from the MERRA-2 dataset.
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Figure 3.4: Composite vertical cross-sections of ✓e through the OTR in NH occlusions
comprising (a) Bin I, (b) Bin II, (c) Bin III, (d) Bin IV, (e) Bin V, (f) Bin VI as
identified in Fig. 3.2. Black solid lines are ✓e isentropes labeled in K and contoured and
shaded (according to legend) every 3 K. Thick solid (dashed) line is the 1.5 potential
vorticity units (PVU) (0.5 PVU) isertel. Thin dotted line at x = 0 in each cross-section
identifies the intersection of the composite transect line and the adjusted thermal ridge
axis. Distance along the cross-section is indicated in km; positive for poleward and

negative for equatorward.
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Figure 3.5: Composite vertical motions through the OTR in NH occlusions comprising
(a) Bin I, (b) Bin II, (c) Bin III, (d) Bin IV, (e) Bin V, (f) Bin VI as identified in Fig.
3.2. Thin solid (dashed) lines are upward (downward) vertical motion labeled in units
of dPa s�1 and contoured every 4 dPa s�1 starting at -2 (2) dPa s�1. Thicker gray lines
in each panel are three consecutive ✓e isentropes from the respective panels in Fig. 3.4,
each centered on the isentrope that straddles the 0-point along the x-axis at 700 hPa.
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Figure 3.6: Cumulative distribution function of all SH wintertime occluded identifi-
cations stratified by the 700 hPa ✓e maximum along their respective thermal ridge axes.

The 6 categories are referred to as Bins I-VI in the text.
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Figure 3.7: Geographic distribution of SH ETC centers that are occluded in (a) Bin
I, (b) Bin II, (c) Bin III, (d) Bin IV, (e) Bin V, and (f) Bin VI as identified in Fig. 3.6.
Dashed lines are the JJA average 30 m/s isotachs at 300 hPa from 2006-2017 from the

MERRA-2 dataset.



90

Figure 3.8: Composite vertical cross-sections of ✓e through the OTR in SH occlusions
comprising (a) Bin I, (b) Bin II, (c) Bin III, (d) Bin IV, (e) Bin V, (f) Bin VI as
identified in Fig. 3.6. Black solid lines are ✓e isentropes labeled in K and contoured and
shaded (according to legend) every 3 K. Thick solid (dashed) line is the 1.5 potential
vorticity units (PVU) (0.5 PVU) isertel. Thin dotted line at x = 0 in each cross-section
identifies the intersection of the composite transect line and the adjusted thermal ridge
axis. Distance along the cross-section is indicated in km; positive for poleward and

negative for equatorward.
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Figure 3.9: Composite vertical motions through the OTR in SH occlusions comprising
(a) Bin I, (b) Bin II, (c) Bin III, (d) Bin IV, (e) Bin V, (f) Bin VI as identified in Fig.
3.6. Thin solid (dashed) lines are upward (downward) vertical motion labeled in units
of dPa s�1 and contoured every 4 dPa s�1 starting at -2 (2) dPa s�1. Thicker gray lines
in each panel are three consecutive ✓e isentropes from the respective panels in Fig. 3.8,
each centered on the isentrope that straddles the 0-point along the x-axis at 700 hPa.
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Figure 4.1: Occluded cyclone in the Labrador Sea on 1 December 2006, with a center
at 58.25°N, 59.21°W. (a) MODIS visible imagery mosaic from EOSDIS worldview, Aqua
overpass at center at 1550 UTC 1 December 2006. “L” indicates the SLP minimum
position while red, blue and purple lines indicate the surface warm, cold and occluded
front positions, respectively, as determined by 900 hPa vorticity and ✓e analysis using
MERRA-2 data from 1200 UTC 1 December 2006. (b) SLP (dashed black) and 1000-
500 hPa thickness (blue) analysis from MERRA-2 valid at 0600 UTC 1 December. SLP
is labeled in hPa and contoured every 4 hPa starting at 985 hPa. Thickness is labeled in
m and contoured every 60m starting at 4942m. Red line marks the CloudSat-CALIPSO
orbit path through the OTR at 0500 UTC 1 December. (c) CloudSat reflectivity tran-
sect along the orbit between 45°N and 70°N. (d) 2B-GEOPROF-LIDAR derived cloud
mask (maroon for cloudy), between the cloud base (green) and cloud top heights (blue)
from the same orbit path. (e) Along-orbit precipitation-type identifications according

to the legend. Solid black line shows rain rates where a retrieval was available.
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Figure 4.2: Illustration of the automated method to estimate the distance of each
CloudSat profile along the orbit to the OTR. The OTR shown that which is displayed
in Fig. ?? for an identification on 06 UTC on 1 December 2006. (a) As in Fig. 2.4,
but with the adjusted D0 line (pink curve) depicting the 700 hPa ✓e ridge axis. Gray
lines show the MERRA-2 grid columns at each grid point. (b) As in 4.2a but with the
”transect area” outlined in red. (c) Grid created with ”distance” lines parallel to the
D0 line (solid black) corresponding to 100 km increments and colors representing either
side of the ridge (blue-cold frontal side; red -warm frontal side). (d) as (c) with the
vertical CloudSat transect across the “transect area”, with the dashed line showing the

projection of each profile onto the transect line.
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Figure 4.3: Illustration of individual steps of cloud compositing method. (a) His-
togram showing the distance of profiles from the OTR with 100 km wide bins for the
identification at 06 UTC on 1 December 2006. (b) Accumulated number of ”cloudy”
cells per 100 km distance bin and 250 m thick ”altitude bin” (see text) at same analysis

time as in (a).
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Figure 4.4: (a) Composite histogram showing the distance of all CloudSat-CALIPSO
profiles through OTRs in the NH (2006-2011) from their respective grid clusters. (b)
Composite histogram showing the accumulated number of ”cloudy” cells per 100 km
distance bin and 250 m thick ”altitude” bin for all 2B-GEOPROF-LIDAR hydrometeor
masks through OTRs in the NH (2006-2011). (c) Grand composite of hydrometeor
frequency across all identified OTRs in the NH (2006-2017) with <25%, <50% and

<75% frequency of occurrence areas outlined in black lines.
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(d) Difference in θe: CloudSat orbit minus perpendicular at median
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Figure 5.1: (a) MERRA-2 ✓e composite transect across all NH winter (DJF) occluded
identifications (2006-2017) with CloudSat-CALIPSO observations using the methodol-
ogy outlined in 2.4. (b) ✓e di↵erence composite cross-section between (a) and the com-
posite cross-section constructed with all occluded identifications in the database from
2006-2017. (c) As in (a), but using the the full 3D data volume provided by CloudSat-
CALIPSO observations collapsed onto a vertical cross-section using the method illus-

trated in 4.2. (d)f ✓e composite di↵erence cross-section between (a) and (c).
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Figure 5.2: Composite transects of hydrometeor frequency of occurrence (shading) us-
ing CloudSat-CALIPSO observations through NH winter (DJF) occluded identifications
(shaded pixels) and MERRA-2 variables from 2006-2011. (a) Composite cross-section
of hydrometeor frequency of occurrence with thermodynamic structure overlaid. Black
contours depict MERRA-2 ✓e (K) contoured every 3 K starting at 271 K. (b) Com-
posite cross-section of hydrometeor frequency with kinematic structure overlaid. Black

contours depict MERRA-2 column ! (hPa/hr).
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Figure 5.3: Composite transects of hydrometeor frequency of occurrence (shading)
using CloudSat-CALIPSO observations through NH occluded identifications (shaded
pixels) and MERRA-2 variables from 2006-2011. (a) Composite cross-section of hy-
drometeor frequency of occurrence with thermodynamic structure overlaid. Black con-
tours depict MERRA-2 ✓e (K) contoured every 3 K starting at 278 K. (b) Composite
cross-section of hydrometeor frequency with kinematic structure overlaid. Black con-

tours depict MERRA-2 column ! in hPa/hr.
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Figure 5.4: Composite transects of hydrometeor frequency of occurrence (shading)
across all NH occluded identifications (2006-2011) comprising (a) Bin I (b) Bin II (c)
Bin III (d) Bin IV (e) Bin V (f) Bin VI as identified in Fig 3.2. Black solid lines are 3
consecutive and representative isentropes from MERRA-2 data in K, contoured every

3 K.
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Figure 5.5: Composite transects of hydrometeor frequency of occurrence (shading)
using CloudSat-CALIPSO observations through SH occluded identifications (shaded
pixels) and MERRA-2 variables from 2006-2011. (a) Composite cross-section of hy-
drometeor frequency of occurrence with thermodynamic structure overlaid. Black con-
tours depict MERRA-2 ✓e (K) contoured every 3 K starting at 275 K. (b) Composite
cross-section of hydrometeor frequency with kinematic structure overlaid. Black con-

tours depict MERRA-2 column ! in hPa/hr.
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Figure 5.6: Cumulative distribution function of hydrometeor frequency of occurrence
across all transects through OTRs in the NH (dashed line), SH (dot-dashed line) and
globally (solid line) stratified by their maximum 700 hPa ✓e from 2006-2017. The whole
population is divided into 3 equal subsets of maximum ✓e separated by the vertical

dotted lines at 293 K and 304 K.
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Figure 5.7: Composite transects of hydrometeor frequency of occurrence (shading) for
all NH occluded identifications (2006-2017) with a (a) 700 hPa maximum ✓e < 298 K,
(b) 298 K < 700 hPa maximum ✓e < 312 K and (c) 700 hPa maximum ✓e ¿ 312 K. Grey
lines in (a-c) depict MERRA-2 ✓e composited from the cases in those respective bins.
Gray lines in (d-f) outline areas with <25%, <50% and <75% frequency of hydrometeor

occurrence.
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Figure 5.8: Composite transects of hydrometeor frequency of occurrence (shading) for
all SH occluded identifications (2006-2017) with a (a) 700 hPa maximum ✓e < 291 K,
(b) 291 K < 700 hPa maximum ✓e < 301 K and (c) 700 hPa maximum ✓e > 301 K. Grey
lines in (a-c) depict MERRA-2 ✓e composited from the cases in those respective bins.
Gray lines in (d-f) outline areas with <25%, <50% and <75% frequency of hydrometeor

occurrence.
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Figure 5.9: Composite transects of hydrometeor frequency of occurrence (shading)
for all OTRs identified globally (2006-2017) with a (a) 700 hPa maximum ✓e < 293 K,
(b) 293 K < 700 hPa maximum ✓e > 304 K and (c) 700 hPa maximum ✓e < 304 K.
Grey lines in (a-c) depict MERRA-2 ✓e composited from the cases in those respective
bins. Gray lines in (d-f) outline areas with < 25%, < 50% and < 75% frequency of

hydrometeor occurrence.
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Figure 5.10: As in Fig. 4.4c, but for all SH occluded identifications throughout 2006-
2017.
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(b) Cold fronts
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(c) Warm fronts
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(a) Occlusion: thermal ridge
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Figure 5.11: Composite transects of hydrometeor frequency of occurrence (shading)
as obtained for all seasons globally from 2006-2017, across (a) OTRs, (b) cold fronts,

and (c) warm fronts.


