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Abstract

Development and Application of Adjoint Sensitivity to Potential Vorticity

and Unbalanced Flows in a Numerical Weather Prediction Model

by Nuo Chen

The adjoint of a numerical model provides a tool to measure the sensitivity of a chosen

forecast aspect to small model state perturbations in the earlier time. For the response

function describing the growth or behavior of extratropical and tropical systems, the

sensitivity gradient provides dynamical information about certain aspects of storm devel-

opment.

Previous studies employed Numerical Weather Prediction (NWP) models with either

their adjoint or ensemble experiments to investigate dynamical mechanisms contributing

to the change in the response function. However, most of them focus on the impact of

individual model variable perturbation on the response function. This study is one of

the first to derive the sensitivities to three-dimensional Quasi-geostrophic (QG) potential

vorticity (PV) and Ertel PV that combine different sensitivity variables and the first to

provide a “PV thinking” in the adjoint framework.

Same to the invertibility of PV, provided a balance constraint, a balanced model state

sensitivity can be obtained from sensitivity to PV. Using balanced sensitivity fields as the

adjoint forcing is shown to alleviate the geostrophic adjustment process often seen in the

adjoint integration which emanates an unphysical high-frequency wave that contaminates
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the interpretation of the adjoint analysis result. In addition to the balanced adjoint

dynamics, the physical meaning of the deviation from the geostrophic balance, imbalance,

is explored under the adjoint framework for the first time.

Sensitivities to QGPV, geostrophic imbalance, and Ertel PV all integrate wind and tem-

perature sensitivities. Applying these tools to different cases reveals their individual

attributes that help understand the dynamical mechanism of storm intensification. The

case study of the March 2020 Atlantic midlatitude cyclone development confirms the gen-

eral application of sensitivity to QGPV. In the case study of the November 1998 Winter

Storm, sensitivity to winds is found to be dominated by the balanced component recovered

from sensitivity to QGPV, while the sensitivity to potential temperature is dominated

by the unbalanced component recovered from sensitivity to geostrophic imbalance. Fur-

ther, the collocation between the unbalanced temperature sensitivity and diabatic heating

separates the temperature sensitivity into adiabatic and diabatic sources. Balanced and

unbalanced initial small perturbations are found to insert a similar amount of impact on

the storm development. The ability of sensitivity to Ertel PV to integrate the features

of sensitivity to QGPV and sensitivity to geostrophic imbalance suggests the better com-

patibility of “adjoint nonlinear balance” than the “adjoint geostrophic balance” in the

case study of Hurricane Ian (2022).
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Chapter 1

Introduction

1.1 Potential Vorticity

Due to its unique characteristics of conservation and invertibility, potential vorticity (PV)

has been used as both a forecasting and pedagogical tool to understand large-scale dynam-

ical processes in meteorology. PV was first developed in the 1940s by Ertel and Rossby

and studied in the 1950s by Kleinschmidt. In 1985, Hoskins, McIntyre, and Robertson

reviewed its utility by plotting the Ertel PV on isentropic surfaces and combining the

surface temperature to identify dynamical processes for the development of midlatitude

cyclones, Rossby wave propagation, and blocking events. The conservation property of

PV states that for inviscid flows, without any diabatic source, PV is conserved following

the fluid motion.
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Ertel’s potential vorticity can also be simplified into several forms based on the applicabil-

ity of simplifying assumptions for the atmospheric flow. Shallow water PV is often used

in theoretical development and understanding due to its simplifying the flow as effectively

2D barotropic Quasi-geostrophic (QG) PV is extensively used in the midlatitudes given

the midlatitude cyclone is subject to QG assumptions of small Rossby number and small

Froude number.

The invertibility principle of PV states that the three-dimensional distribution of PV

inside the domain and on the domain boundary uniquely determines the balanced velocity

and temperature field (or the streamfunction and geopotential). One of the first successful

numerical models, described as the barotropic model by Charney et al. (1950), used the

geostrophic wind that is inverted from QGPV to advect QGPV.

The erosion of otherwise conserved PV is a crucial indicator for weather forecasting,

usually caused by latent heating redistributing the upper-level PV to the low level. Adi-

abatic heating creates the low-level positive PV anomaly and, at the same time, erodes

upper tropospheric PV (e.g., Stoelinga 1996). This erosion of the upper tropospheric PV

serves to steepen the slope of the PV isopleth downstream of the upper-level positive PV

anomaly. Such steepening is the PV equivalent of shortening the wavelength between the

upper-level trough and the downstream ridge which was emphasized in the description of

self-development (e.g., Sutcliffe and Forsdyke (1950)).
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1.2 Balance Constraint

The PV invertibility is defined by which balance is chosen. The most general balance

constraint is the nonlinear balance (e.g., Charney 1955; Allen 1991; Raymond 1992),

which is obtained by omitting the divergence-related term in the divergence equation.

Other balances more commonly known are dependent on stricter assumptions about the

atmospheric flow. The geostrophic balance between the pressure gradient force and the

Coriolis force is a good approximation in mid- and high-latitude flow; the gradient wind

balance among the pressure gradient force, the Coriolis force, and the centrifugal force

is often used in tropical cyclone studies; the cyclostrophic balance is used in mesoscale

meteorology studies. Averaging over a time period long enough, the atmosphere’s basic

state is always in balance, and any perturbation will be adjusted towards the balanced

state such as geostrophic balance in mid- and high-latitude (e.g., Holton and Hakim

2019 Section 5.6) and weak temperature gradient in the tropics. Beyond the real world,

the balance constraint is also important in the numerical model simulation, where an

unbalanced initial condition will cause the generation of unphysical inertio-gravity waves

(e.g., Charney 1955).

However, it is the deviation from these balanced states that leads to various kinds of

weather phenomena. Besides forcings from external sources such as surface friction,

diabatic heating, etc., the violation of balance can happen inside the atmospheric process.

The most famous example is the geostrophic paradox which states near the jet core, the

geostrophic momentum advection destroys the geostrophic balance. Other violations of



4

balance constraint can be found in the tropical cyclone’s outflow (e.g., Cohen et al. 2017;

Wang et al. 2020), and in jet exit region (e.g., Charney and Stern 1962; Zhang et al.

2000; Thompson and Schultz 2021). Zhang et al. (2000) found the violation of nonlinear

balance in the jet exit region leads to the generation of high-frequency gravity waves using

the Mesoscale Model (MM5).

1.3 Adjoint Sensitivity

A numerical weather prediction (NWP) model integrates a system of partial differential

equations that describes fundamental principles of fluid dynamics, thermodynamics, and

conservation of mass to compute the time tendencies of the atmospheric model state. At

the most abstract level, the nonlinear NWP model repeatedly calculates the prognostic

variables (state variable) at the future time step as a function of the current and/or

previous time steps. The NWP model has become more and more complicated in recent

years, including different microphysics schemes for calculating precipitation types and

amounts, parameterization schemes for describing boundary layer turbulent processes,

and land/ocean-air mass/momentum flux exchanges, radiation schemes for calculating the

longwave and shortwave radiation that also takes aerosols into account. Thus the state-of-

art numerical weather model is an integration of knowledge across several research fields

in geoscience and the model itself is highly nonlinear. The nonlinearity of the natural

system and the numerical model is widely known as the butterfly effect, recognized by

(Lorenz, 1963), a term frequently misused by the general public. In his 1963 paper, he

demonstrated even with a simple system with just three variables and three equations,
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the long-term integration results can be very different due to a small perturbation in the

initial condition. Although the finding dims the light on long-range weather forecasts,

it addresses the importance of obtaining precise initial conditions and the necessity of

ensemble weather prediction.

The dependence of any given aspect of the model forecast state (defined as the response

function, R, later) on the perturbation of any collection of model variables at the initial or

any previous time step is generalized as the term “sensitivity”. For high-impact weather,

the forecast output aspects can be some measure of the model forecast error, intensity

of a weather system by either pressure, wind speed, total rainfall, or other dynamical

or thermodynamical aspects — essentially anything of interest that one would like to

research if the response function can be well represented (Errico, 1997). The model

variable could be some variable at the interior points of the model domain, at the model

boundary, or even the model parameters defined either on a map grid or as spectral

coefficients.

Two popular ways to evaluate sensitivity are direct methods (e.g. Dickinson and Gelinas

1976) and adjoint methods (e.g. Hall and Cacuci 1983). The direct method compares the

results among an ensemble of perturbation experiments to determine which combination

of perturbations could lead to the largest change in the response function. Thus the

direct method is called ensemble sensitivity as well. The ensemble sensitivity analysis

utilizes a collection of model forecasts to sample the probability density function of the

model state (e.g., Ancell and Mass 2006; Hakim and Torn 2008; Torn and Hakim 2008).
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A relationship between the response function and the initial condition can be established

by calculating the variance in the ensemble state vector. Ancell and Mass (2006) revealed

that the ensemble sensitivities exhibit syntopic-scale, tropospheric-deep structures near

the major synoptic feature of interest.

In this study, the adjoint method views the sensitivity as the first-order derivative of

the response function to the state vector or some diagnostics variable by performing the

first-order Taylor series expansion,

R(x+ x′) = R(x) +
∂R(x)

∂x
x′ +O(x′2) (1.1)

which infers that the sensitivity gradient of the response function ∂R(x)/∂x could describe

the impact of a small perturbation on the response function to the first order. The ability

to indicate the most sensitive region of a model forecast error made the adjoint and other

sensitivity analysis techniques useful tools for targeted observation field campaigns. These

techniques include the ensemble sensitivity method (e.g., Aberson 2003; Ancell and Mass

2006; Brown and Hakim 2015) and singular vector method (e.g., Pu et al. 1997; Wu

et al. 2007; Jung et al. 2010). Having knowledge of the most sensitive regions allows

an effective observation platform deployment, such as truck-mounted radar and aircraft

reconnaissance, to observe specific regions of the atmosphere that demands the smallest

initial condition error for the most accurate forecast.

In addition to being an indication of the region and variable that the final forecast state
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is most sensitive to, sensitivity is also an essential part of data assimilation. The in-

troduction of data assimilation improves the quality and accuracy of numerical weather

prediction. In three-dimensional variational data assimilation, the adjoint sensitivity or

the error covariance matrix propagates the information (innovation) on the observation

point to the surrounding grid point. In the four-dimensional variational data assimilation

(4D-Var), observations (from satellite, sounding, etc.) taken at different times in the

assimilation time window are assimilated into the prior model output at the beginning

of the assimilation time window (analysis time) carried by the adjoint backward integra-

tion (e.g., Lewis and Derber 1985; Dimet and Talagrand 1986; Thacker and Long 1988;

Zhang et al. 2013). Using the ensemble method, the background covariance matrix (e.g.

GSI, DART; Hu et al. 2018; Anderson et al. 2009) can also propagate the forecast error

from the next analysis time back to the previous analysis time. The analysis that gained

new information from the observation will serve as a more accurate initial condition for

the next forecast cycle. By performing a singular value decomposition on the adjoint

sensitivity matrix, one can get singular vectors. These singular vectors provide a set

of orthogonal vectors that represent the dominant patterns in the initial condition and

the leading vectors added to the initial condition will grow fastest. Thus in ensemble

forecasting, the ensemble initial condition seeded by singular vectors could capture the

widest range of possible forecast direction and uncertainty (e.g. 500 hPa geopotential

spaghetti plot or tropical cyclone ensemble track forecast).

The development of an adjoint model includes first linearizing the nonlinear expressionM

(1.2) about the nonlinear NWP model trajectory to obtain the tangent linear model M
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operates on the small perturbation x (1.3). Then the adjoint model MT can be obtained

by transposing the TLM model in most cases under the Euclidean norm (1.4).

xt+1 =M(xt) (1.2)

x′
t+1 = Mx′

t (1.3)

∂R

∂xt
= MT ∂R

∂xt+1

(1.4)

If we denote ⟨f, g⟩ as the norm or the inner product of f and g, the adjoint of an operator

L, L∗ should satisfy ⟨f, Lg⟩ = ⟨L∗f, g⟩ under the Euclidean norm (or other norms if

specified). In many cases, with a homogeneous boundary condition, the adjoint of an

operator is the same as the transpose of this operator, L∗ = LT . Two simple rules of

adjoint are followed in this work: 1) the adjoint of a constant is itself; 2) the adjoint of a

derivative operator, such as d/dx, is its additive inverse, −d/dx.

Practically, the adjoint of a numerical model is developed by adjointing the model line-

by-line and reserving the order of each code line. However, as NWP becomes increasingly

complicated and coupled with other models, the adjoint model becomes difficult to de-

velop. The ensemble method like Ensemble Kalman Filter (EnKF), though it requires

more computation resources, is compatible with most models (e.g. DART; Anderson

et al. 2009).
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The adjoint technique has other limitations. The biggest limitation is that the adjoint

is linear. If the response function or the model is nonlinear, there will likely be a per-

turbation size for which the linearization becomes inadequate since both using a tangent

linear model and using an adjoint suggest the wrong response to the perturbation is the

nonlinear model (Errico, 1997). That is why the moisture adjoint sensitivity should be

taken with caution because the parameterization of microphysics procures contains too

many “if-else” statements, which are presented by nonlinear Heaviside function, along

the phase change of water vapor or species change of hydrometeors.

The adjoint sensitivity analysis is also constrained by the validity of the first-order Taylor

series approximation, meaning the second-order term should be small enough to neglect.

This requires the perturbations to be relatively small compared to the basic state through

the integration period. Once the perturbations become too large either due to being ini-

tially prescribed so or due to the dynamical nonlinearity or computational or dynamical

instability, the usefulness of the adjoint sensitivity should be scrutinized. Many aspects

contribute to the constraints on the accuracy and utility of adjoint models, such as turbu-

lent, diabatic heating related to phase change of water, topographical effect, etc. These

assumptions restrict the quantitative accuracy of the adjoint-derived sensitivity to 72

hours if only dry physics is considered or less than 24 hours if the weather system is highly

nonlinear and associated with deep convections and topographical effect (e.g., Park and

Droegemeier 1997; Errico and Raeder 1999). Of course, the second-order adjoint model

can alleviate the time limitation (Godinez and Daescu, 2009) but this is beyond the scope

of this proposed work. Finally, noted by Ancell and Mass (2006), adjoint sensitivity from
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the weather forecast and research has its predominance in the lower troposphere, as we

will see in this study.

1.4 Research Questions

This work seeks to explore the derivation of the sensitivity to PV, present the physical

interpretation of the sensitivity to PV and to imbalance, along with various implemen-

tations of the sensitivity to PV in different case studies. Through the case studies, the

ability of the sensitivity to PV shall be examined, as either a diagnostic tool to under-

stand the dynamic process that leads to the weather system’s development or an auxiliary

procedure that has the potential to improve the result of adjoint sensitivity analysis and

data assimilation. The research questions (RQs) to be considered include:

RQ1: How to derive the sensitivity to PV, to geostrophic imbalance, and other related

variables? How does one interpret the sensitivity to PV, and to the geostrophic imbal-

ance?

RQ2: For real case studies, we can use sensitivity to QGPV to generate a geostrophically

balanced adjoint forcing in the adjoint model. The following shall be tested: 1) can this

balanced adjoint forcing filter out the gravity wave pattern in the adjoint sensitivity field?

2) How do balanced perturbations and unbalanced perturbations, when added to the

model initial condition, contribute to the evolution of an intensifying mid-latitude cyclone

and an intensifying tropical cyclone? 3) Can the sensitivity to PV be approximated by

the PV perturbation? 4) Is sensitivity to the geostrophic imbalance important?
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RQ3: Derivation of the sensitivity to Ertel PV. What is the difference between the

sensitivity to Ertel PV and to QGPV when applied to the same tropical cyclone case? Is

sensitivity to Ertel PV a better measurement than sensitivity to QGPV?

Chapter 2 shows two different approaches to the derivation of the different forms of

sensitivity to PV with a focus on QGPV. Some basic applications of sensitivity to QGPV

is demonstrated with a mid-latitude winter storm case study. Chapter 3 focuses on the

notion of geostrophic imbalance and the understanding of sensitivity to the geostrophic

imbalance in the context of a mid-latitude winter storm. The sensitivity to Ertel PV is

fully derived in Chapter 4 and is compared with sensitivity to QGPV and sensitivity to

the geostrophic imbalance in a tropical cyclone case study. Chapter 5 summarizes the

results of these studies and points out future research directions related to current work.
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Chapter 2

Sensitivity to QGPV

2.1 Overview

Adjoint-derived sensitivity analysis is an efficient means to diagnose the sensitivity of a

numerical weather prediction (NWP) model forecast state to changes in the model state

at earlier times. Adjoint sensitivity analysis has been used in numerous case studies

of weather systems (e.g., Rabier and Courtier 1992; Langland et al. 1995; Kleist and

Morgan 2005; Hoover and Morgan 2011; Doyle et al. 2014; Goldstein 2018). For a

forecast trajectory defined on the time (t) interval from 0 ≤ t < tf , an adjoint-derived

sensitivity at time t = τ is defined as the gradient of a response function (R), representing

a function of interest of the forecast state at final forecast time t = tf , with respect to

the model state, (xτ ), ∂R/∂xτ . The sensitivity is a complete and succinct representation
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of how changes to the model state at time t = τ change the response function at time

t = tf .

Sensitivities are most efficiently calculated using an adjoint model (Errico, 1997). The

adjoint of an NWP model is defined as the transpose of the tangent linear model (TLM)

linearized about the forecast trajectory of a nonlinear NWP model. The adjoint model is

initialized with the gradient of R with respect to the final time model state, xtf (∂R/∂xtf )

and is integrated backward along a forecast trajectory defined by the nonlinear NWP

model to arrive at the sensitivity of R with respect to the model state at an earlier time.

The response function can be any function of the model final state that is differentiable

with respect to the model state variables. The impact of any perturbation at forecast

time, τ , (x′
τ , 0 ≤ τ < tf ) on R is easily estimated quantitatively as the inner product of

the perturbation and the sensitivity gradient with respect to the model state at time τ :

∆R ∼= δR = ⟨ ∂R
∂xτ

, x′τ ⟩ (2.1)

where ∆R represents the difference between R calculated from a perturbed nonlinear

forecast state and R calculated from a control (i.e., unperturbed) nonlinear forecast state.

The inner product of the sensitivity with the perturbation is an estimate (δR) of the

impact of the perturbation on the response function subject to the limitations of the

TLM’s linearity and any physical processes omitted or simplified in the TLM for the sake

of linearization.
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Most modern NWP models have included a tangent linear approximation to microphysics

and the adjoint of moist variables in their adjoint component. However due to the com-

plexity of the nonlinear procedure – a Heaviside function that switches between sensitivity

to different hydrometeors along the forward forecast trajectory, it is difficult to learn the

underlying dynamical process that leads to the change in the response function. Even

in a dry-dynamics-only model, it is challenging to provide the physical interpretation of

these gradients with respect to model forecast fields like horizontal wind and temperature

due to the adjustment process during the geostrophic adjustment time for the backward

integration. It is desirable to distill the substantive implications that each model state

sensitivity reveals into a single sensitivity field (e.g., Arbogast 1998; Kleist and Mor-

gan 2005; Romero et al. 2005; Kim and Beare 2011). Arbogast (1998) argues that for

quasi-balanced flows, that desired sensitivity field is the sensitivity to potential vorticity

(PV).

In their review, Hoskins et al. (1985) discussed the principles of conservation and invert-

ibility of PV. The invertibility principle states that the three-dimensional distribution of

PV within some domain and boundary conditions on that domain uniquely determine

the velocity and temperature distribution consistent with a particular balance constraint.

The conservation principle states that for inviscid flows in which the gradient of diabatic

heating does not project onto the local absolute vorticity vector, PV is conserved follow-

ing the fluid motion. Together, conservation and invertibility imply that the dynamics of

quasi-balanced (“nearly” balanced) flows may be expressed simply and entirely in terms

of the distribution of PV and the boundary conditions necessary in the inversion of the
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PV (Morgan and Nielsen-Gammon, 1998). There are many “flavors” of PV ranging from

the absolute vorticity, the linearized shallow water PV, the quasi-geostrophic (pseudo-)

potential vorticity (QGPV; Charney and Stern 1962), to the Ertel PV (Ertel, 1942).

Adjoint-derived sensitivity gradients have been used to objectively define optimal per-

turbations to NWP model initial conditions that produce a desired forecast impact (e.g.,

Vukićević and Raeder 1995; Errico 1997; Doyle et al. 2014; Hoover 2015). Such pertur-

bations produce a prescribed change to the response function, ∆R, while keeping the

change added to the model initial state,x′
0, to a minimum. The adjoint-derived optimal

perturbation technique has been used to study physical mechanisms and predictability of

tropical cyclogenesis (e.g., Doyle et al. 2011; Doyle et al. 2012; Hoover 2015), Kelvin wave

interactions with tropical cyclones (Reynolds et al., 2016), extratropical cyclone intensity

(e.g., Reynolds et al. 2001; Romero et al. 2005; Argence et al. 2009; Doyle et al. 2014;

Doyle et al. 2019), mesoscale convective systems (e.g., Xu et al. 2001), and atmospheric

rivers (e.g., Reynolds et al. 2019; Demirdjian et al. 2020).

Some of these studies used the optimal perturbation technique to investigate the impact

of a PV perturbation on the forecast (e.g., Vukićević and Raeder 1995; Fehlmann and

Davies 1997; McTaggart-Cowan et al. 2004; Doyle et al. 2019). In these studies, the

physical mechanisms responsible for the sensitivity of the response function to changes

to the model initial state are investigated through a perturbation-response technique in

which optimal perturbations for a given response function and optimization norm are
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computed, inserted into the initial conditions, and evolved in the nonlinear model to

observe the result.

It is important to note that vorticity (or PV) perturbations computed from optimal hor-

izontal wind (and temperature) perturbations however, are not optimized in the same

sense as being proportional to the sensitivity gradient with respect to vorticity or PV.

A QGPV perturbation derived from optimal perturbations to the constituent wind and

temperature fields is presumed to project onto the sensitivity of QGPV but doesn’t nec-

essarily conform to the spatial scale of the QGPV sensitivity itself (Doyle et al., 2019).

In order to compute a truly optimized QGPV perturbation, a sensitivity with respect to

QGPV is required as is an appropriate energy weighting norm operator.

The goals of the present study are to first demonstrate two means for computing the

sensitivity with respect to QGPV, given sensitivities with respect to the state variables of

the model (horizontal wind and potential temperature) in section 2.2. The interpretation

of the sensitivity to QGPV is provided in section 2.3. Followed by the derivation of sensi-

tivity to other forms of PV in section 2.4. Then in section 2.5 we apply this technique to a

simulation of an explosive Atlantic cyclogenesis event to demonstrate how the sensitivity

to QGPV can be used to interpret the sensitivity of the forecast intensity of the cyclone

to small QGPV perturbations to the model initial state. Additionally, we derive expres-

sions for “balanced” adjoint sensitivities to horizontal wind and hydrostatic temperature

and demonstrate in the case study how adjoint integration of these balanced sensitivities
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removes large oscillations of the sensitivity representing sensitivity to unbalanced pertur-

bations undergoing adjustment from the adjoint integration while preserving the balanced

information contained in the sensitivity to QGPV for certain response function. Finally,

a comparison between the spatial distribution of the sensitivity to QGPV and the QGPV

perturbation created by inserting the initial optimal wind and temperature perturbations

is presented to answer the validity of treating the PV perturbation as an approximation

for sensitivity to PV used in many previous studies1. Section 2.6 concludes this chapter.

2.2 Derivation of Sensitivity to QGPV Using Energy

Norm

2.2.1 QGPV

In the quasigeostrophic (QG) system, the quasigeostrophic potential vorticity (also known

as the pseudo-PV) is conserved following the geostrophic flow (Charney and Stern, 1962).

In isobaric coordinates, the QGPV is given by:

qp = f +
1

f0
∇2φ′ +

∂

∂p
(
f0
S

∂φ′

∂p
) = f + ℘(φ′) (2.2)

where f is the planetary vorticity, f0 is the planetary vorticity averaged over the domain

within which the QGPV is calculated, S = S(p) is a reference state static stability

parameter (defined below), and p is pressure. This definition of QGPV is also a statement

1Most of this chapter is from a revised version of a paper submitted to Monthly Weather Review
following the reviewers’ comments.
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of the invertibility principle: through a three-dimensional, elliptic operator, ℘, the QGPV

is related to perturbation geopotential, φ′(x, y, p, t) = Φ−Φ̄(p), defined as the deviation of

the full geopotential from a horizontally-averaged hydrostatic reference state geopotential,

Φ̄(p) where ∂Φ̄
∂p

= −Rd

p

(
p
p0

)Rd
cp
θ̄, θ is the potential temperature, and the overbars indicate

horizontal averaging. In the example to follow, the reference state used is the U.S.

Standard Atmosphere with the associated reference state stratification, S(p) = − ᾱ
θ̄
∂θ̄
∂p

where ᾱ is the reference state specific volume. The deviations of the geopotential from

its reference state, φ′, are associated with geostrophic flow, Vg =
k
f0

×∇φ′ = ugi + vgj.

The potential temperature perturbation is defined as θ′ = − p
Rd

(
p0
p

)Rd
cp ∂φ′

∂p
, where Rd is

the dry gas constant. With these definitions, the perturbation QGPV, defined as the

difference between the full QGPV and the planetary vorticity, may be written also in

terms of the geostrophic wind components and potential temperature deviations:

q′p = qp − f =
∂vg
∂x

− ∂ug
∂y

− ∂

∂p

(
f0
S

RT ′

p

)

q′p =
∂vg
∂x

− ∂ug
∂y

− ∂

∂p

(
f0
S
γθ′
)

(2.3)

where γ = Rd

p

(
p
p0

)Rd
cp
.



19

2.2.2 Optimal Perturbations and an Energy Norm

To answer the question “What is the smallest change to the model initial state, x′
0, that

produces a prescribed change to the response function”, it is intuitive to put perturbations

in the most sensitive region. Specifically, we wish to minimize the W weighted initial

perturbation energy norm, E = ⟨x′
0,Wx′

0⟩, subject to the constraint that the specified

change in R satisfies: δR = ⟨ ∂R
∂x0

,x′
0⟩. The prescribed change in the response function, δR,

represents the first-order Taylor series expansion of the change in the response function

due to changes in the initial state. The weighting matrix W (which can also be viewed

as a linear operator) defines the coefficients of an energy norm (e.g., Ehrendorfer et al.

1999) and allows for a scalar quantity with dimensions of energy per unit mass to be

defined from the model state variables with different dimensional attributes. In this way,

the smallest perturbation to the model initial state that produces the prescribed change

in the response function is the perturbation that minimizes the energy norm.

This constrained minimization problem may be formulated as a Lagrangian L :

L = E + λ

(
δR−

〈
∂R

∂x0

,x′
0

〉)

where the initial energy E = ⟨x′
0,Wx′

0⟩ and λ is the Lagrange multiplier. The minimum

is found where ∇x0L = ∇λL = 0. ∇x0L = Wx′
0 + λ ∂R

∂x0
= 0 gives formulation for the

optimal initial condition x′
0 = W−1λ ∂R

∂x0
. Substitute λ back into δR =

〈
∂R
∂x0

,x′
0

〉
gives
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the expression for λ

λ =
δR(

∂R
∂x0

W−1 ∂R
∂x0

) (2.4)

Note that the optimal initial condition perturbation (x′
0) is proportional to the adjoint-

derived sensitivity gradient ( ∂R
∂x0

). Each component of the sensitivity to the initial condi-

tion state vector is multiplied by the inverse of the weighting operator used to define an

energy norm for the variables under consideration. In addition, the initial perturbations

are scaled by the same Lagrange multiplier, λ. This suggests that any other optimal

perturbation that is a function of the model state, i.e., a′ = f(x0), may be written:

a′ = λW−1
a

∂R

∂a
= λW−1

a â (2.5)

where Wa is the energy-norm defining operator for that variable. Provided a linearized

relationship (e.g. (2.3)), an appropriate Wa, and other prognostic sensitivities, we can

solve for the unknown sensitivity, â = ∂R
∂a

2.

2.2.3 QGPV Energy Norm

The technique to calculate the sensitivity to QGPV (q̂) is motivated by the observation in

(2.5) that while each of the model state variables comprising the optimal adjoint-informed

initial condition state vector have unique weights to calculate an energy norm, all of the

variables are scaled by a common factor, the Lagrange multiplier, λ. In this derivation,

2In the sequel, for convenience, we adopt the “hat” notation so that the sensitivity to a variable a,
â = ∂R/∂a
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we wish to express all the perturbation terms in (2.3) with the sensitivity using (2.5).

Therefore we need to first find the energy norm weighting suitable for QGPV, W−1
qp .

The choice of the energy norm follows the conservation of energy criteria, meaning the

kinetic energy and thermal energy can be converted into each other while keeping the

total energy conserved. The energy norm should also be constructed by variables whose

sensitivity is available from the WRF adjoint model. Thus we define an energy norm that

is consistent with QG dynamics in terms of the model state variables (here u, v, θ) that

can also be computed from the QGPV. This is the quasi-geostrophic pseudo-energy, EPE,

which may be written as:

EPE =
1

2

∫∫∫ u′2g + v′2g +

(
∂φ′

∂p

)2
S

 dxdydp

=
1

2
⟨(u′,v′, θ′) ,Wu,v,θ (u

′,v′, θ′)
T ⟩

The weighting matrix

W = Wu,v,θ =


I 0 0

0 I 0

0 0 γ2

S
I


is block diagonal with the identity matrix along the diagonal for the wind components

and γ2/S for the elements multiplying the potential temperature components of the state
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vector.

2.2.4 Sensitivity to QGPV

We seek the sensitivity to QGPV, a variable not in the state vector of the NWP model,

with qp(x) = qp(u,v, θ). Consider the optimal initial condition with the state vector

that inserts minimal QG pseudo-energy:

x′ = (u′,v′, θ′) = λ

(
û, v̂,

S

γ2
θ̂

)

The weighting matrix, Wqp , is determined by that matrix defining the perturbation

pseudo-energy per unit mass, EPE that can be written in terms of the perturbation geopo-

tential (assuming that the perturbation geopotential, perturbation geostrophic wind, and

perturbation potential temperature field vanish along the domain boundaries) as:

EPE =
1

2

∫∫∫ u′2g + v′2g +

(
∂φ′

∂p

)2
S

 dxdydp

=
1

2

∫∫∫
(u′2g + v′2g +

γ2

S
θ′2)dxdydp

We can also express EPE in the form of the inner product of potential vorticity and

geopotential:

EPE = − 1

2f0

∫∫
q′pφ

′dxdydp = − 1

2f0
⟨q′

p, φ
′⟩
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or using the inverse of the QGPV calculation operator ℘−1 defined in (2.2)

EPE = −1

2
⟨q′

p,
1

f0
℘−1q′

p⟩ =
1

2
⟨q′

p,Wqpq
′
p⟩

where we find the weighting matrix to be Wqp = − 1
f0
℘−1.

Given (2.5) that u = λW−1
u û = λû, v = λW−1

v v̂ = λv̂, and θ = λW−1
θ θ̂ = λ S

γ2
θ̂, the

optimal initial condition for QGPV is then:

q′
p = λW−1

qp
q̂p =

∂

∂x
(λv̂)− ∂

∂y
(λû)− ∂

∂p

(
f0
γ

S

(
λ
S

γ2
θ̂

))

−f0℘q̂p =
∂v̂

∂x
− ∂û

∂y
− ∂

∂p

(
f0
γ
θ̂

)

q̂p = − 1

f0
℘−1

[
∂v̂

∂x
− ∂û

∂y
− ∂

∂p
(
f0
γ
θ̂)

]
(2.6)

or,

q̂p = ℘−1

(
1

f0
ψ̂ + φ̂

)

The sensitivity to QGPV may also be writ ten in terms of the sensitivity to the three-

dimensional geostrophic streamfunction, ψg = ψg(x, y, p, t) =
φ′

f0
: that satisfies:

q′p = ∇2ψg +
∂

∂p

(
f 2
0

S

∂ψg
∂p

)
= ℘̃(ψg)
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where ℘̃ = f0℘ is a self-adjoint operator3. As a consequence, the sensitivity to geostrophic

streamfunction is:

ψ̂g = ℘̃q̂p, ψ̂g =
1

f0
ψ̂ + φ̂ (2.7)

so that the sensitivity to QGPV is given by:

q̂p = ℘̃−1ψ̂g

The sensitivity to the geostrophic streamfunction4 is therefore:

ψ̂g = −
[
∂v̂

∂x
− ∂û

∂y
− ∂

∂p

(
f0
γ
θ̂

)]
(2.8)

This derivation largely depends on whether one is able to find the appropriate energy

norm and weighting for the streamfunction and PV, in the next section, a general and

more straightforward formulation of sensitivity to PV will be shown following Arbogast

(1998).

2.2.5 Derivation of Sensitivity to QGPV using Arbogast 1998

A second and more general method to derive the sensitivity to any kind of PV would

be to follow the derivation proposed in Arbogast (1998). This method does not require

any specification of the energy norm which is consistent with the fact that although we

3A self-adjoint operator, ℘, is one for which ⟨f , ℘g⟩ = ⟨℘f ,g⟩.
4(Romero et al., 2005) presented an expression (their equation 8) for the sensitivity to QGPV that uses

the sensitivity to the two-dimensional, non-divergent streamfunction (as the forcing on the right-hand
side of their elliptic equation.
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invoked the energy norm in the previous section, the final expression for the sensitivity to

QGPV does not explicitly include the energy norm. The method also lays the foundation

for the following chapters in this dissertation.

Here we restate the derivation in Arbogast (1998), first by denoting L as the linear

operator that calculates a general form of PV and B as the balance operator acting on

the streamfunction Ψ and geopotential Φ, with the deviation from the balance constraint

defined as the imbalance a = ā + a′. 5 Since the mean state of the atmosphere is under

the balance constraint, we assume ā = 0 = B(Ψ̄, Φ̄) and a = a′. The potential vorticity

perturbation (q′) and balance constraint can be expressed in the following linearized form

as:


q′ = L(Ψ′,Φ′)

a′ = B(Ψ′,Φ′)

or in the matrix form, since both operators are linear,

LΨ LΦ

BΨ BΦ


Ψ′

Φ′

 =

q′
a′

 (2.9)

5a in this section is different from a in section 2.2.4 which refers to a general variable, and a in the
remaining part of this dissertation represent the imbalance or geostrophic imbalance unless otherwise
specified.
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By performing the adjoint of (2.9), the adjoint sensitivity to streamfunction (Ψ̂), to

geopotential (Φ̂), to PV (q̂), and to the imbalance (â) can be obtained as following:

L∗
Ψ B∗

Ψ

L∗
Φ B∗

Φ


q̂
â

 =

Ψ̂

Φ̂

 (2.10)

We call L∗ the adjoint of L if ⟨f, Lg⟩ = ⟨L∗f, g⟩ and use the superscript * to denote

the adjoint of an operator. In many cases, with a homogeneous boundary condition, the

adjoint of an operator is the same as the transpose of this operator, L∗ = LT . If both

B∗
Ψ, B

∗
Φ and L∗

Ψ, L
∗
Φ are commutable, (2.10) can be simplified into:

B∗
ΦL

∗
Ψ −B∗

ΨL
∗
Φ 0

0 L∗
ΦB

∗
Ψ − L∗

ΨB
∗
Φ


q̂
â

 =

B∗
ΦΨ̂−B∗

ΨΦ̂

L∗
ΦΨ̂− L∗

ΨΦ̂


or, 

(B∗
ΦL

∗
Ψ −B∗

ΨL
∗
Φ)q̂ = B∗

ΦΨ̂−B∗
ΨΦ̂

(L∗
ΦB

∗
Ψ − L∗

ΨB
∗
Φ)â = L∗

ΦΨ̂− L∗
ΨΦ̂

(2.11)

In the case of QGPV, we use the geostrophic balance constraint between the stream-

function and the perturbation streamfunction Ψ = Φ′

f0
. The geostrophic balance is ob-

tained by omitting the Jacobian term in the nonlinear balance (Charney, 1955) ∇2Φ =

∇ · (f∇Ψ) + 2∂(∂Ψ/∂x,∂Ψ/∂y)
∂(x,y)

, and that is ∇2Φ = ∇ · (f∇Ψ). The form used here is a

further simplified version if we invoke the f-plane assumption, f = f0, and cancel out the

Laplace operator on both sides. Therefore the linearized geostrophic balance constraint
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gives the equation set to solve for sensitivity to QGPV:


q′ = ∇2Ψ′ +

∂

∂p
(
f0
S

∂

∂p
)Φ′ (2.12a)

a′ = Ψ′ − Φ′

f0
(2.12b)

Where the definition for f0, S, ᾱ, and θ̄ are the same as in section 2.2.4. Comparing

(2.12a), (2.12b) and (2.9), we can easily find

LΨ = ∇2; LΦ =
∂

∂p
(
f0
S

∂

∂p
) BΨ = 1 BΦ = − 1

f0

Note these operators are all self-adjoint, meaning for an operator L and its adjoint L∗

under any norm ⟨f, Lg⟩ = ⟨L∗f, g⟩ = ⟨Lf, g⟩, or simply put as L = L∗ if we denote ⟨f, g⟩

as the inner product of f and g. Therefore

L∗
Ψ = ∇2; L∗

Φ =
∂

∂p
(
f0
S

∂

∂p
); B∗

Ψ = 1; B∗
Φ = − 1

f0
(2.13)

Substitute the above expressions into (2.11) gives the formulation of sensitivity to QGPV

and to the geostrophic imbalance

(
− 1

f0
∇2 − ∂

∂p

(
f0
S

∂

∂p

))
q̂ = − 1

f0
Ψ̂− Φ̂(

∂

∂p

(
f0
S

∂

∂p

)
+

1

f0
∇2

)
â =

∂

∂p

(
f0
S

∂

∂p

)
Ψ̂−∇2Φ̂

(2.14)

Remember the perturbation QGPV can be written as a function of perturbation geopo-

tential alone (e.g. (2.2)), where we denoted the QGPV operator as ℘ = 1
f0
∇2 − ∂

∂p
(f0
S

∂
∂p
).
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We can simplify (2.14) into

q̂ = ℘−1

(
1

f0
Ψ̂ + Φ̂

)
(2.15)

This is exactly the same expression for the sensitivity to QGPV as found in section 2.2.4.

In addition, the sensitivity to geostrophic imbalance (shortened to imbalance thereafter)

is given by:

â = ℘−1

(
∂

∂p

(
f0
S

∂

∂p

)
Ψ̂−∇2Φ̂

)
(2.16)

To find the sensitivity to QGPV, we need to know Ψ̂ and Φ̂. Luckily both are easy to

calculate with the sensitivity of state variables in many standard NWP adjoint models.

Kleist and Morgan (2005) derived the expression of sensitivity to streamfunction with

sensitivity to horizontal winds. The sensitivity to the geopotential can be obtained by

taking the adjoint of the expression for perturbation potential temperature ∂Φ′

∂p
= −γθ′,

where γ is defined on each pressure level p following Eliassen (1962) as γ = Rd

p
( p
p0
)Rd/Cp ,

p0 is the reference pressure, Cp is the heat capacity under constant pressure, and Rd is

the dry gas constant:

Ψ̂ = −
(
∂v̂

∂x
− ∂û

∂y

)
= ∇2ζ̂ (2.17)

Φ̂ =
1

γ

∂θ̂

∂p
(2.18)
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2.3 Interpretation of Balanced Sensitivities

2.3.1 Sensitivities to Geostrophic Wind and Hydrostatic Poten-

tial Temperature

Similar to the invertibility of PV, the sensitivity to QGPV is also invertible in the sense

that we can recover the “balanced” sensitivities to the geostrophic wind components and

hydrostatic potential temperature. These sensitivities, which follow from the adjoint of

(2.3) are expressed as gradients of the sensitivities to QGPV:



ûg =
∂q̂

∂y
(2.19a)

v̂g = −∂q̂

∂x
(2.19b)

θ̂ =
f0γ

S

∂q̂

∂p
(2.19c)

These sensitivities may be used to initialize the adjoint model with a (thermal wind-like)

balanced initial state that should reduce (but not necessarily remove) the amplitude of

the high-frequency waves seen in adjoint integrations (Morgan, 2018).

2.3.2 Interpretation of Sensitivity to QGPV

Equation 2.15 describes an elliptic partial differential equation relating the sensitivity to

QGPV to the curl of the sensitivity to the (geostrophic) wind and the weighted vertical

gradient of sensitivity to potential temperature. Figure 2.1 is a schematic depicting the

relationships between sensitivities to wind and temperature with sensitivities to QGPV. A
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positive vertical component of the curl of the sensitivity to the horizontal wind (Fig. 2.1a)

is associated with a local maximum in the sensitivity to QGPV. Because homogeneous

boundary conditions are applied, that local maximum is associated with a positive sen-

sitivity to QGPV. Similarly, a positive vertical gradient to potential temperature (Fig.

1b) is associated with positive sensitivity to QGPV. That is, a positive sensitivity to

QGPV is surrounded by cyclonic sensitivity to horizontal winds, with warm sensitivity

above and cold sensitivity below. These results are fully consistent with the concepts of

PV invertibility (Hoskins et al., 1985), equation set (2.19), and the sensitivity to Ertel

PV demonstrated in Arbogast (1998). Practically, in adjoint case studies, one can point

to the single variable – sensitivity to QGPV, to determine the dry dynamical aspect of

cyclone development using the “PV thinking” instead of examining the sensitivity to

horizontal winds and to potential temperature individually. One can take a step further

to extrapolate towards the sensitivity to vertical motion using “PV thinking” since the

advection of PV leads to upward vertical motion.

2.3.3 Thermal Wind Balance between Sensitivity Fields

The adjoint model is similar to the nonlinear forward model on the computational coding

level when we view the adjoint variable as the state variable. Thus physical laws such as

thermal wind balance should have a complementing adjoint counterpart. For example, if

we consider the thermal wind balance between the geostrophic wind ug and temperature,

∂ug
∂p

= R
fp

∂T
∂y
, and substitute T with θ using θ = T

(
p0
p

)R/Cp

and γ = Rd

p

(
p
p0

)R/Cp

.

∂ug
∂p

= 1
f
R
p

(
p
p0

)R/Cp
(
p0
p

)R/Cp
∂T
∂y

= γ
f
∂θ
∂y
. Take the adjoint of the thermal wind equation
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and apply the same procedure to the meridional component:

∂θ̂

∂p
=
γ

f

∂ûg
∂y

∂θ̂

∂p
= −γ

f

∂v̂g
∂x

Combining the “thermal wind balance” between geostrophic wind and potential temper-

ature sensitivity with (2.18) gives

γϕ̂ =
γ

f

(
∂ûg
∂y

− ∂v̂g
∂x

)
=
γ

f
ψ̂

ϕ̂ =
1

f
ψ̂

The above result circles back to the adjoint form of our simplified geostrophic balance

Ψ = Φ′/f0. Morgan (2018) also pointed out that in a shallow water system, the sensitivity

to perturbation height and winds will eventually achieve a balanced state given enough

integration time. If a thermal wind/geostrophic balance exists for the adjoint model, we

should hypothesize the existence of “geostrophic adjustment” in the adjoint model and

that these adjustment processes will generate high-frequency waves (e.g. inertio-gravity

waves) just like in the NWP model (Charney, 1955). After achieving the geostrophic

balance among sensitivity states, small amplitude inertio-gravity waves will continue to

be produced if forcings from the nonlinear model are continuously added to the adjoint

integration and knock the sensitivity states out of balance.
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2.4 Derivation of Sensitivity to Other Forms of PV

2.4.1 Sensitivity to Vorticity Using Energy Norm

In this section, we demonstrate the extensibility of the technique for diagnosing the

sensitivity to potential vorticity for the two-dimensional non-divergent barotropic flow

and for “two-dimensional” divergent barotropic flow (i.e., shallow water flow).

The vorticity is conserved in two-dimensional, non-divergent barotropic flow, thus we can

treat it as a form of PV. The areal-integrated kinetic energy per unit mass over a given

domain may be written as:

EKE =
1

2

∫∫
(u′2 + v′2)dxdy =

1

2
⟨x′

0,Wx′
0⟩

where the state vector, x′ = (u′,v′)T has only the horizontal wind components u and v

at the initial time. For this system, the weighting matrix, W = I is the identity matrix.

We seek the sensitivity to vorticity, a variable not being used in the state vector of the

NWP model; however, we note: a = ζ(x) = ζ(u,v). Consider the calculation of the

sensitivity to barotropic vorticity, ζ, calculated from the sensitivities to the zonal (u) and

meridional (v) wind components.

x′
0 = λW−1 ∂R

∂x0

= (u′
0,v

′
0) = λI

(
∂R

∂u0

,
∂R

∂v0

)
= λ

(
∂R

∂u0

,
∂R

∂v0

)
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because, as noted above, Wu = Wv = I.

The state vector for the (vertical component of) vorticity may be calculated from the

state vector components of the zonal and meridional winds as:

ζ ′ =
∂v′

∂x
− ∂u′

∂y

Use (2.5) to express optimal initial condition for vorticity, u, and v:

ζ ′ =
∂

∂x
(λv̂)− ∂

∂y
(λû) = λ

(
∂v̂

∂x
− ∂û

∂y

)
= λW−1

ζ ζ̂

or

W−1
ζ ζ̂ =

∂v̂

∂x
− ∂û

∂y
(2.20)

The weighting matrix, Wζ , is determined by the matrix (operator) defining the kinetic

energy. We recognize first that the kinetic energy per unit mass may be written in terms

of streamfunction (assuming that the streamfunction or wind field vanishes at the domain

boundaries) as:

EKE = −1

2

∫∫
ζ ′ψ′dxdy

= −1

2

∫∫
ζ ′∇−2ζ ′dxdy = −1

2
⟨ζ ′,∇−2ζ ′⟩

=
1

2
⟨ζ ′,Wζζ

′⟩
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where the integral is written as an inner product of the discretized vorticity state vector

(ζ). It is obvious that Wζ = −∇−2 and therefore, W−1
ζ = −∇2. Thus (2.20) may be

rewritten as:

−∇2ζ̂ =
∂v̂

∂x
− ∂û

∂y

or ζ̂ = −∇−2

(
∂v̂

∂x
− ∂û

∂y

)

which is the same as shown by Kleist and Morgan (2005). Note that the result is in-

dependent of the Lagrange multiplier and therefore the size of the prescribed energy

norm or the size of the response function change, δR. We further note that for two-

dimensional non-divergent flow, a streamfunction, ψ, may be defined such that, ∇2ψ = ζ,

so that ∂R
∂ζ

= ∇2
(
∂R
∂ψ

)
. This gives us the sensitivity to streamfunction (e.g. (2.17))

ψ̂ = −
(
∂v̂
∂x

− ∂û
∂y

)
.

2.4.2 Sensitivity to Shallow Water PV Using Energy Norm

For two-dimensional, divergent, barotropic flow (i.e., shallow water flow), the energy per

unit area for the linearized system may be written as:

ESW =
1

2

∫∫ (
u′2 + v′2 +

gη2

H

)
dxdy

=
1

2
⟨(u′,v′, η) ,Wu,v,η (u

′,v′, η)
T ⟩
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The weighting matrix

W = Wu,v,η =


I 0 0

0 I 0

0 0 g
H
I


is block diagonal with the identity matrix along the diagonal for the wind components

and g/H for the elements multiplying the perturbation fluid depth (η) component of the

state vector.

We seek the sensitivity to shallow water potential vorticity (SWPV) with qSW (x) =

qSW (u,v, η). Consider the optimal initial condition with the state vector:

x′ = (u′,v′, η′) = λ

(
I
∂R

∂u
, I
∂R

∂v
,
H

g
I
∂R

∂η

)
= λ

(
∂R

∂u
,
∂R

∂v
,
H

g

∂R

∂η

)

with minimum SW energy. The weighting matrix, Wqp , is determined by that matrix

defining the SW energy per unit mass, ESW may be written in terms of the geopotential

(assuming that the geopotential, geostrophic wind, or potential temperature field vanishes

along the domain boundaries) as:

ESW =
1

2

∫∫
(u′2 + v′2 +

gη2

H
)dxdy

= −gH
2f0

∫∫
q′SWη

′
bdxdy =

1

2
⟨q′

SW ,−
gH

f0
η′b⟩

where ηb is the balanced height perturbation. The geostrophic balance states Ψ′ = Φ′

f
=

gη
f
. Substitute into the SWPV definition q′ = 1

H
∇2Ψ′ − fη

H2 = 1
H
∇2 gη

f
− fη

H2 = 1
H2 (∇2 −
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f2

gH
)gH
f
η. Denote the SWPV inversion operator as ℘SW = ∇2 − f20

gH
, we can equate

H2q′SW = ℘SW
gH
f
η and rewrite the above equation:

ESW =
1

2
⟨q′

SW ,−H2℘−1
SWq′

SW ⟩ = 1

2
⟨q′

SW ,WqSW
q′
SW ⟩

which reveals the weighting matrix WqSW
= −H2℘−1

SW .

Use (2.5) to express optimal initial condition for η, u, and v:

q′
SW =

1

H

[
∂

∂x
(λv̂)− ∂

∂y
(λû)

]
−
(
λ
f0
H2

H

g
η̂

)
= λW−1

qSW
q̂SW = − λ

H2
℘SW q̂SW

q̂SW = −H2℘−1
SW

[
1

H

(
∂v̂

∂x
− ∂û

∂y

)
− f0
gH

η̂

]
= ℘−1

SW

[
Hψ̂ +

f0H

g
η̂

]
(2.21)

The final expression (2.21) is exactly the expression derived in Morgan (2018) relating

the sensitivity to linearized SWPV and the sensitivity to “balanced” height, ηb. We can

define a sensitivity to the balanced “height” similar to (2.8): η̂b = Hψ̂ + f0H
g
η̂.
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2.4.3 Sensitivity to Shallow Water PV Using Arbogast method

First, define the shallow water PV and use the geostrophic balance.

q′ =
1

H
∇2Ψ′ − fη

H2

a′ = Ψ′ − g

f0
η

H is the basic state height, η is the perturbation height. Substituting the operators on

Φ as the operators on η find the operators in (2.11), we find

LΨ =
1

H
∇2; Lη = − f

H2
; BΨ = 1; Bη = − g

f0

All the operators are self-adjoint. Substitute the above expressions into Eq. (2.11),

(∇2 − f 2
0

gH
)q̂ = HΨ̂ +

f0H

g
η̂

−(∇2 − f 2
0

gH
)â =

f 2
0

gH
Ψ̂ +

f0
g
∇2η̂

Using the SWPV operator ℘SW to simplify the above equation yields the same expression

as (2.21):

q̂ = ℘−1
SW (HΨ̂ +

f0H

g
η̂)

â = ℘−1
SW (− f 2

0

gH
Ψ̂− f0

g
∇2η̂)



38

2.5 Case study of an Atlantic Cyclogenesis in March

2020

2.5.1 Case and Methodology

We demonstrate the calculation and interpretation of the sensitivity to QGPV by solving

(2.15) using output from the Weather Research and Forecasting (WRF) model V3.8.1

(Skamarock and Klemp 2008) and the WRF adjoint model V3.8.1 (Zhang et al., 2013)

on a centered finite difference with the successive over-relaxation (SOR) algorithm. The

discussion that follows is not intended to be a complete case study, but rather a demon-

stration of the insights that may be drawn from this calculation. The case under con-

sideration is that of an explosive, western Atlantic cyclogenesis event that occurred over

the 24-h period beginning 1200 UTC 6 March 2020 (e.g., Fig. 2.2a). The simulation was

initialized using the ERA5 reanalyses (Hersbach et al., 2020) at 1200 UTC 6 March 2020.

The simulation was conducted on a 30 km grid with 41 equally spaced layers from the

surface to 50 hPa. The response function chosen for this example is minus the column

dry air mass perturbation (WRF model variable, µ): R = −µ̄′ within the simulated 988

hPa sea level pressure isobar at forecast hour 24 (Fig. 2.2b). The negative sign in the re-

sponse function is chosen so that a positive (negative) perturbation in regions of positive

(negative) sensitivity corresponds to perturbations that would intensify the cyclone (more

specifically, lowering the surface pressure within the region enclosed by that isobar). The
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forward and adjoint model outputs were interpolated vertically to equally spaced iso-

baric surfaces from 1000 hPa to the 50 hPa model top using wrf-python (Ladwig, 2017).

Adjoint sensitivities for all variables below ground were set to zero.

The nascent cyclone was located within a broad sea level pressure minimum over the

western Atlantic to the east of Cape Hatteras, NC at the beginning of the simulation.

Two minima appeared in the analysis with mean sea level pressures below 1004 hPa. The

deepening of the cyclone commenced upon the arrival of a vigorous upper-tropospheric

shortwave trough from the Midwest. By 6 hours into the simulation a vigorous cyclonic

500 hPa geostrophic vorticity maximum (Fig. 2.3) was located upshear of the developing

surface cyclone, suggestive of the potential for strong baroclinic growth for the remaining

18 hours of the simulation.

2.5.2 Distributions of Sensitivities to QGPV

The cyclonic geostrophic vorticity maximum (Fig. 2.3) was associated with a local QGPV

maximum (Fig. 2.4a) located inland over coastal North Carolina within the base of the

500 hPa geopotential trough. Upstream of the trough axis, a strip of cyclonic QGPV

extended west and northwest along the cyclonic shear region of the flow. Sensitivity to

QGPV, calculated following (2.15) is shown in Fig. 2.4b. Two conspicuous dipoles in

sensitivity to QGPV are noted at this time - one located over the southeastern US with

the maximum positive sensitivity over North Carolina, while the second was located over

southeastern Canada and New York state (Fig. 2.4b). As anticipated from (2.19), the

sensitivity to the geostrophic wind is characterized by a cyclonic (anticyclonic) sensitivity
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to horizontal wind distribution about the positive (negative) sensitivity to QGPV in

accord with Fig. 2.1.

The co-location of the 500 hPa QGPV maximum with the maximum sensitivity to 500

hPa QGPV indicates that increasing the QGPV in the region of already cyclonic QGPV

(Fig. 2.4) would subsequently intensify the surface cyclone relative the control simulation

18 hours later (forecast time F24). A vertical cross-section of sensitivities to both QGPV

and potential temperature, taken nearly parallel to the baroclinic shear, reveals strongly

upshear-tilted sensitivities to both fields (Fig. 2.4c). The relationship between the sen-

sitivity to QGPV and to potential temperature again is as depicted in the schematic

(Fig. 2.1b) with θ̂ < 0 (θ̂ > 0) below (above) a q̂ > 0. Figure 2.4d provides a vertical

cross-section dissecting the jet upstream of the trough axis at 300 hPa. The maximum

sensitivity to QGPV sits along the edge of the jet core, where high PV is anticipated

from the tropopause overfold. Also shown is the sensitivity to geostrophic wind normal

to the cross-section with positive values (red). It indicates that the F24 cyclone intensity

is associated with stronger geostrophic wind normal to the cross-section. The distribution

of sensitivity to the geostrophic wind normal to the cross-section suggests that a more

anticyclonically sheared flow southwest of the jet at forecast hour 6 (F06) would result

in a lower surface pressure at the final time, F24.
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2.5.3 Creation of “QG Balanced” Sensitivity Fields

Interpretation of adjoint sensitivity output from short-term, backward adjoint model

integration is complicated by the emergence of strongly divergent high-frequency wave-

like structure emanating from the location of specified adjoint forcing (e.g., Vukićević

and Raeder 1995; Morgan 2018) and possibly reflecting back into the domain if not ab-

sorbed at the boundaries (e.g. Fig. 2.5a). The sensitivity to QGPV and the associated

sensitivities to geostrophic winds (2.19a, 2.19b) and potential temperature (2.19c) offer

another way to dynamically balance the adjoint integration by effectively filtering the

high-frequency structure, other than the widely used normal mode initialization (e.g.,

Machenhauer 1977; Daley 1978) and averaging over time (Doyle, personal communica-

tion). This “balanced” adjoint would be similar to an initialization step in a forward

model. Comparing Figs. 2.5a and 2.5b, we notice during the backward integration, the

sensitivities for the balanced state show lower amplitude high-frequency wave structures

than for the full (“unbalanced”) integration. As discussed in section 2.3.3 and suggested

in Morgan (2018), no matter with a forward model or with an adjoint model integration,

any perturbation or sensitivity gradients need to first adjust to a dynamically balanced

state. If a balanced field is initially provided, little to no adjustment will be expected and

the adjoint sensitivity gradients from the backward adjoint integration may be easier to

interpret during the “spin-up” period.

As a demonstration of this concept, the adjoint model is initialized with the gradient of
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a response function measuring the circulation about a box enclosing a middle-to-upper-

tropospheric cyclonic vorticity maximum defined on the model’s native “eta” coordinate

levels 13, 14, and 15. We will call this “exp 1”. Because the response function is only a

function of u and v, the only non-zero adjoint forcings are û and v̂. The balanced adjoint

forcing is calculated as described in the preceding paragraph and necessarily includes not

only û and v̂, but also θ̂. The detailed procedure is shown in Fig. 2.9 and we will call

it “exp 2”. Another experiment which we will call “exp 3” lets the adjoint from “exp 1”

integrate backward for 1 hour and invert the balanced forcing at F23, restate the adjoint

forcing then integrate backward from F23 to F00, as described in Fig. 2.8.

Figure 2.6 shows that at F00, the sensitivities to QGPV initialized by the balanced and

unbalanced adjoint forcing either from F24 or from F23 are similar - suggesting that the

salient aspects of the forcing (as defined by the sensitivity to QGPV) were preserved

during the balancing process.

However, this conservation of sensitivity to QGPV should be taken with a grain of salt

when we choose the response function to be µ as in section 2.5.1. Figure 2.7a shows the

equivalent of “exp 1” and Figure 2.7b is the equivalent of “exp 3”. When comparing

these two experiments, they exhibited a phase shift of the sensitivity pattern. “Exp 1”

prefers more QGPV over the midwest while “exp 3” which is initialized with balanced

adjoint forcing inserted at F23 prefers less QGPV at the same location. The inability to

conserve the sensitivity to QGPV might be contributed to not having a balanced moisture

sensitivity at F23. When the response function is R = −µ (close to the surface) more
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moisture processes are involved, while when the circulation at mid-troposphere is chosen

as the response function, it might not involve too much moisture sensitivity.

During the backward adjoint integration, the adjoint states associated with the balanced

adjoint forcing exhibited smaller amplitude high-frequency wave structures compared

with the integration of the unbalanced forcing. As an example, a simple comparison of

the 500 hPa û sensitivities at F20 from the experiments initialized by unbalanced forcing

at F24 and balanced forcing at F23 both using R = −µ is shown in Fig. 2.5. The

unphysical high-frequency wave that bounces back from the model domain is clear with

the unbalanced forcing experiment. In comparison, the sensitivity initialized with the

balanced forcing removes the unphysical wave while retaining the main dipole feature of

the wind sensitivity offshore of the Carolinas.

2.5.4 Does the QGPV Perturbation Project onto the Sensitivity

to QGPV

In section 2.2.2, we demonstrated that given a prescribed amount of perturbation energy

measured by E we can find the optimal distribution of state variable perturbation (2.5)

proportional to the adjoint sensitivity by a factor of λ (2.4). This is called adjoint-

informed optimal perturbation and has been used in many studies to investigate the role

of PV in developing storms as an approximation of sensitivity to PV. To test its validity, an

optimal perturbation is created from balanced adjoint sensitivity at F00 and added to the

initial condition and the comparison of 500 hPa QGPV between the perturbed and control
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run is shown in the first column in Fig. 2.10 from F00 to F18. The second column shows

the distribution of the sensitivity to QGPV at the corresponding time step. QGPV dipole

strips due to feature shifts and sparse dots associated with convections are common in the

perturbations. In contrast, sensitivity to QGPV has a much broader spatial appearance

than QGPV perturbation since an inverse-laplacian-like inversion was applied during its

calculation (2.15). Up until F12, the main feature of QGPV perturbation is nascent to

the QGPV sensitivity. At F18 QGPV perturbation at F18 lags behind the sensitivity to

QGPV. For a fair comparison, sensitivity to balanced winds and temperature recovered

from sensitivity to QGPV in the second column are added to WRF output at each

time step. Again differences in QGPV between unperturbed and additional balanced

perturbation is calculated and shown in column 3, with positive values in column 1

overlaid in magenta contour. At F00, two QGPV perturbations are the same since the

state vector perturbation added is the same. As time evolves, only some parts of two

sets of QGPV perturbation overlap. It cannot be concluded whether QGPV perturbation

can represent the sensitivity to QGPV and future research should use this approximation

with caution.

2.6 Conclusion

In this chapter, an expression for sensitivity to QGPV and SWPV is derived with two

methods: one based on the well-established relationships for adjoint optimal initial condi-

tion perturbations; another based on the previous work from Arbogast (1998). Addition-

ally, given sensitivities to QGPV, sensitivities to geostrophic wind and hydrostatically
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balanced potential temperature perturbations are also derived. The calculation of the

sensitivity to QGPV opens up a number of new avenues for case study applications in-

volving the interpretation of adjoint-derived forecast sensitivities and for “surgically”

identifying where and how modifications to QGPV along a simulation forecast trajectory

would influence a given response function.

A case study of an explosive Atlantic cyclogenesis event was conducted to demonstrate

some applications of this new tool. Firstly, in addition to interpreting each individual sen-

sitivity like the wind or the temperature, one can now examine the location of sensitivity

to QGPV relative to ridges and troughs, which provides an easier dynamical understand-

ing of the storm development. Then we showed the ability of a balanced sensitivity field

to eliminate the high-frequency waves generated by the adjustment process in the adjoint

backward integration, along with the questionable conservation of sensitivity to QGPV.

Finally, using this cyclogenesis event we provided the relationship between QGPV pertur-

bation and sensitivity to QGPV and questioned the validity of using QGPV perturbation

to approximate sensitivity to QGPV that was assumed in many previous studies (e.g.,

Vukićević and Raeder 1995; Fehlmann and Davies 1997; McTaggart-Cowan et al. 2004;

Doyle et al. 2019).
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Figure 2.1: Schematic depicting the sensitivity to PV (qp) diagnosed from sensitiv-
ities to zonal (u) and meridional (v) wind and sensitivities to potential temperature
(θ). Variables with “hats” denote the sensitivity to that variable. Panel (a) depicts a
horizontal, isobaric cross-section with sensitivities to horizontal winds (shown as sensi-
tivity vectors, Kleist and Morgan 1995a) associated with a positive sensitivity to QGPV
(orange). Note that the sign of the vertical component of the curl of the sensitivity
to winds is positive. Panel (b) depicts a vertical cross-section with sensitivities to po-
tential temperature (positive red, negative blue) and the sensitivities to the meridional
wind (X positive, dot negative) associated with a positive sensitivity to QGPV. In this
scenario, the vertical gradient of sensitivity to potential temperature is positive (i.e.,

−∂θ̂/∂p > 0).

Figure 2.2: Mean sea level pressure (black, contoured every 4hPa) and surface poten-
tial temperature (purple, contoured every 3K) for (a) forecast time t = t0 =00h valid
1200 UTC 6 March 2020 and (b) forecast time t = tf =24h valid 1200 UTC 7 March.
Light blue region indicates adjoint forcing, i.e., the gradient of response function at

t = tf , ∂R/∂µ
′ = −1.
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Figure 2.3: Mean sea level pressure isobars (interval 4 hPa, grey); 1000-to-500 hPa
thickness (interval 60 m, blue); and 500 hPa geostrophic vorticity (fill interval, 1 x

10−4 s−1) forecast time 06h valid 1800 UTC 6 March 2020.
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Figure 2.4: (a) 500 hPa QGPV (fill interval, 1 x 10−4 s−1, and geopotential height
isohypses (interval 60 m, black); (b) 500 hPa geopotential height (interval 60 m, gray)
with sensitivity to QGPV (fill, interval 1 x 103 hPa s) and sensitivity to geostrophic
wind (vector, reference vector shown in lower right); (c) cross-section of sensitivity to
QGPV (contoured), the along-jet component of the sensitivity to the geostrophic wind
(shaded), and isotach (interval 10 ms−1, gray) for forecast time 06h valid 1800 UTC 6
March 2020. Inset shows the 300hPa wind speed (shaded) and the cross-section (red
line across the jet above the Midwest); and (d) cross-section of sensitivity to QGPV
(interval 40000 hPa s, black), cross-section normal component of the sensitivity to the
geostrophic wind (shaded), and isotach (interval, 10 ms−1 gray). Insets show cross-
section orientation (red line) along (c) mean 1000-to-500 hPa shear, and (d) normal
to 300hPa wind speed (shaded). All fields are for forecast time F06 valid 1800 UTC 6

March 2020.
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Figure 2.5: 500 hPa sensitivity to zonal wind at F20, integrated backward from a)
traditional adjoint forcing at F24 and from b) balanced adjoint forcing at F23.

Figure 2.6: Sensitivity to QGPV at F00 when using the circulation at eta level 13, 14,
15 as the response function for a) unbalanced adjoint forcing integrated from F24, b) for
balanced adjoint forcing integrated from F24, and balanced adjoint forcing integrated
from F23. Panel (d) shows the difference between panels (b) and (c). Colorbar scaling

is the same for all panels.
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Figure 2.7: Sensitivity to QGPV at F00 for (a) unbalanced adjoint forcing and (b)
for balanced adjoint forcing. Panel (c) shows the difference between panels (b) and (a).

Colorbar is the same for all three panels.
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Figure 2.8: Adjoint backward integration flowchart for traditional adjoint forcing in
Fig. 2.5a and Fig. 2.5b starting at F23.
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Figure 2.9: Adjoint backward integration with balanced adjoint forcing starting at
F24.
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Figure 2.10: 500 hPa PV perturbation (shaded, in PVU) as the difference between
the unbalanced optimal perturbation run and the unperturbed run (column 1). 500 hPa
Sensitivity to PV (shaded, column 2). 500 hPa Perturbation QGPV (shaded) when the
balanced perturbation is introduced at each time step (column 3) with a positive value
from column 1 contoured in magenta. Time step F00, F06, F12, F18 are shown in rows

in ascending order.
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Chapter 3

Sensitivity to Imbalance

3.1 Overview

In Arbogast (1998) a general form of sensitivity to PV was derived as shown in Chapter

2 section 2.2.5 (2.15). The sensitivity to imbalance (3.5) comes as a by-product and was

noted by Arbogast that it may be computed if, and only if, an invertibility principle

for PV exists. However, the notion of imbalance and the interpretation of sensitivity to

imbalance was largely undiscussed in Arbogast’s original paper.

The imbalance is defined as the deviation from a “balanced“ state, as described by a

chosen balance constraint. The commonly-used balance constraints are geostrophic bal-

ance in midlatitude cyclone studies, gradient wind balance in tropical cyclone studies.

For example, the mismatch between the streamfunction and the geopotential or between
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the wind and temperature is then often discussed in the context of ageostrophic wind

and its contribution to the secondary circulation in surface front development and jet

dynamics (e.g., Keyser and Shapiro 1986; Cunningham and Keyser 2004; Kaplan et al.

2011; Thompson and Schultz 2021) or in the context of agradient wind (sub- or super-

gradient wind) in tropical cyclone boundary layer processes (e.g., Kepert and Wang 2001;

Montgomery and Smith 2017) and outflow dynamics (e.g., Wang et al. 2022; Cohen et al.

2017). Taken from “ageostrophic” and “agradient”, we denote imbalance (or unbalance)

as a.

The nonlinear balance (e.g., Charney 1955; Allen 1991; Raymond 1992) is less used in the

conceptual understanding of atmospheric phenomena due to its complexity. But it is often

used in numerical computation like Ertel PV inversion (e.g., Davis and Emanuel 1991;

Wu 1993; Ziemiański and Thorpe 2003) and numerical simulation such as constructing

the TC bogus in high-resolution models (Rappin et al. 2013). Zhang (2004) found the

nonlinear imbalance exists in the region left of the jet exit and is responsible for the

generation of gravity waves. Cohen et al. (2017) discussed the importance of imbalance

at the upper troposphere of the tropical cyclone outflow level using the Rossby Number,

though they emphasized the misalignment of vortices on different levels.

In the other parts of the tropics, where the geopotential field is smooth and divergence

is dominant over rotational motions, part of the mismatch between streamfunction and

the geopotential is rephrased into the weak temperature balance.
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In this chapter, we will try to build an understanding of the geostrophic imbalance a in

section 3.2, then extend the interpretation of the sensitivity to the geostrophic imbalance â

which is left unexplained in Arbogast (1998) in section 3.3. Section 3.4 derives sensitivities

to other diagnostic variables and section 3.5 shows the optimal perturbation method. All

these tools will be applied to a mid-latitude cyclogenesis event in November 1998 in

section 3.6. We conclude this chapter with section 3.7.

3.2 Notion of Geostrophic Imbalance

The geostrophic balance Ψ′ = Φ′/f0 is obtained by omitting the Jacobian term in the

nonlinear balance (e.g., Charney 1955), ∇ · ∇Φ = ∇ · (f∇Ψ) + 2∂(∂Ψ/∂x,∂Ψ/∂y)
∂(x,y)

, assuming

an f-plane, and finally cancelling out the Laplace operator on both sides. The geostrophic

imbalance a = Ψ′ − 1
f0
Φ′,

a = Ψ′ − Φ′

f0
(3.1)

is the deviation of the geostrophically balanced streamfunction (Φ′/f0) from the full

streamfunction. We can decompose the imbalance into the basic state and the perturba-

tion a = ā+ a′. Because the basic state is in balance, ā = Ψ̄− Φ̄′/f0 = 0, the imbalance

is therefore fully represented by its perturbation, a = a′.

To understand the physical meaning of a, we can separate it into the streamfunction/wind

part and the geopotential/temperature part. Figure 3.1 shows the situations where the

perturbation streamfunction, Ψ′, exceeds the 1/f0-scaled perturbation geopotential height

(a > 0) and where Ψ′ has a deficit (a < 0). The total positive streamfunction would result
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in an anticyclonic wind anomaly and a deficit of streamfunction results in a cyclonic wind

anomaly. In the North Hemisphere, if we allow sufficient time for the Coriolis effect to

influence the winds, this configuration of a > 0 above and a < 0 below will result in

convergence above and divergence below, leading to a downward vertical motion to fulfill

the fluid continuity.

When considering the imbalance in terms of perturbation geopotential or temperature,

we should take into account its vertical arrangement (Fig. 3.2) and its vertical gradient as

suggested by the definition of potential temperature, θ = −∂Φ
∂p
. A configuration of a > 0

above and a < 0 below implies a downward bending geopotential height on an upper-

level isobaric surface and an upward bending geopotential height on a lower-level isobaric

surface. This configuration compresses the column thickness, which is equivalent to a cold

temperature anomaly. Furthermore, if we use the geostrophic adjustment argument, the

cold temperature anomaly will induce a downward vertical motion which creates adiabatic

warming to balance the cold temperature anomaly. Similarly, when a < 0 is above and

a < 0 is below, this imbalance setup corresponds to a warm temperature anomaly in

between, resulting in an upward vertical motion.

This interpretation of a positive imbalance as a more anticyclonic wind anomaly or as

stretching between two isobaric surfaces (decrease in static stability) is similar to that

a positive PV anomaly can be modified either by changing the vertical vorticity or by

changing the static stability.
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It would be intuitive to compare the unbalanced winds with the ageostrophic wind since

both their definitions are related to the deviation from the geostrophy. If we denote

all unbalanced components by the subscript i hereafter, the differences between imbal-

ance/unbalanced wind, ui, and ageostrophic winds can be found by taking the curl of

(3.1)


vi =

∂a

∂x
=
∂Ψ

∂x
− 1

f

∂Φ′

∂x
= vr − vg = vag − vd (3.2a)

ui = −∂a
∂y

= −∂Ψ
∂y

+
1

f

∂Φ′

∂y
= ur − ug = uag − ud (3.2b)

where ur and vr are the rotational components of the wind, ud and vd are the divergent

components, ug and vg are the geostrophic components, uag and vag are the ageostrophic

components of the wind defined as the difference between the geostrophic wind and the

full wind vag = v − vg. Since the geostrophic wind is non-divergent by definition, it

is clear that the unbalanced component of the wind is the ageostrophic wind excluding

the divergent part. Davis et al. (1996) partitioned the ageostrophic wind into three

components: balanced irrotational, balanced nondivergent, and the remainder (e.g. their

Fig. 7) and showed the balanced nondivergent ageostrophic wind is dominant, especially

in a strongly curved flow like in a mid-latitude cyclone.

Although there is no divergent component in the unbalanced wind or in the imbalance

definition, it is possible to relate them to the concept of divergence by observing the
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divergence equation. Using the two-dimensional shallow water system as an example


∂u

∂t
= −∂Φ

′

∂x
+ fv (3.3a)

∂v

∂t
= −∂Φ

′

∂y
− fu (3.3b)

If we take ∂
∂x

of (3.3a) and add it onto ∂
∂y

of (3.3b), we get the divergence equation:

∂δ

∂t
= fζ −∇2Φ′

∂χ

∂t
= f0(Ψ

′ − 1

f
Φ′)

∂χ

∂t
= fa (3.4)

This suggests that the local tendency of velocity potential and divergence has a component

coming from the Coriolis force acting on the imbalance, similar to the divergent isallobaric

wind term in the geopotential tendency equation. If we take the gradient of (3.4), we will

notice the Coriolis force torques the non-divergent unbalanced wind into the divergent

component of the wind.

∂

∂t

∂χ

∂x
= f

∂a

∂x
→ ∂ud

∂t
= f

∂(vr − vg)

∂t

∂

∂t

∂χ

∂y
= f

∂a

∂y
→ ∂vd

∂t
= −f ∂(ur − ug)

∂t
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3.3 Sensitivity to Geostrophic Imbalance and its In-

terpretation

The derivation of sensitivity to geostrophic imbalance has already been presented in

Chapter 2 section 2.2.5 following Arbogast (1998):

â = ℘−1

(
∂

∂p

(
f0
S

∂

∂p

)
Ψ̂−∇2Φ̂

)
(3.5)

where ℘ = 1
f0
∇2 − ∂

∂p
(f0
S

∂
∂p
) is the QGPV operator. In our explanation of sensitivity to

QGPV in Chapter 2 section 2.3, we treated the sensitivity to any variable as putting a

small perturbation into the balanced state at the instantaneous time. Following this line

of thought, the interpretation of the sensitivity to the imbalance is similar to that of the

imbalance itself (Fig. 3.3). Ignoring the contribution from Φ̂, (3.5) is simplified into ℘â =

∂
∂p
(f0
S

∂
∂p
)Ψ̂. Because both ℘ and ∇2 are second-order derivative operators, â and Ψ̂ must

share the same sign, just as a′ and Ψ′ share the same sign. Therefore, a positive â would be

surrounded by an anticyclonic wind sensitivity, while a negative â would be accompanied

by a cyclonic wind sensitivity. The anticyclonic wind sensitivity will later turn into

convergence sensitivity while the cyclonic wind sensitivity turns into divergence sensitivity

when torqued by the Coriolis force. To obey the continuity equation, a sensitivity to

downward vertical motion (ω̂ > 0) will be induced to fulfill the “mass” vacancy between

the sensitivity to convergence above and sensitivity to divergence below.

Similarly, (3.5) simplifies to ℘â = −∇2Φ̂) by ignoring the contribution from Ψ̂. The
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simplified equation indicates that â and Φ̂ should have opposite signs. If we treat the

sensitivity as an approximation to an instantaneous perturbation and refer to Fig. 3.2,

then a cold temperature sensitivity should exist between a positive â above and a negative

â below. The geostrophic adjustment argument infers a sensitivity to downward vertical

motion which is accompanied by a sensitivity to warm temperature (adiabatic heating),

shall be induced to adjust to the geostrophic equilibrium. The diagnostic sensitivities to

vertical motion are consistent when viewing from both streamfunction and geopotential

perspectives under the same vertical configuration of sensitivity to imbalance.

3.4 Sensitivity to Other Diagnostic Variables

3.4.1 Sensitivity to Geostrophically Unbalanced States

The sensitivity to geostrophically balanced states (2.19) was derived in Chapter 2 section

2.3.1 by simply taking the adjoint of the QGPV definition equation. However, since the

notion of imbalance was not well explored by previous studies, there is no clear relation

that can be used for a simple adjoint procedure like in the case of QGPV.

Whether the adjoint field is balanced or unbalanced, the general relationship between

θ̂ and Φ̂ is given by (2.18). The general relationship between v̂ and Ψ̂ can be found

by taking the adjoint of the horizontal vorticity definition ζ = ∂v
∂x

− ∂u
∂y
, which gives
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v̂ = − ∂ζ̂
∂x
, û = ∂ζ̂

∂y
. Substituting ∇2ζ̂ = Ψ̂ in (2.17) yields:


v̂ = −∂ζ̂

∂x
= −∂∇

−2ψ̂

∂x
(3.6a)

û =
∂ζ̂

∂y
=
∂∇−2ψ̂

∂y
(3.6b)

From the adjoint form of the imbalance perturbation definition a′ = Ψ′ − Φ′

f0
, the un-

balanced sensitivity to streamfunction and to geopotential are consequently Ψ̂i = â and

Φ̂i = − 1
f0
â. We can substitute them into the equation set above (3.6a) and get:



v̂i = −∂∇
−2â

∂x
(3.7a)

ûi =
∂∇−2â

∂y
(3.7b)

θ̂i =
∂

∂p

−1(
− γ

f0
â

)
(3.7c)

3.4.2 Sensitivity to Ageostrophic Winds

The ageostrophic wind is defined as the departure of the full wind from the geostrophic

wind. Inspired by the derivation of sensitivity to the ageostrophic wind in a two-

dimensional shallow water system in Morgan (2018):

uag = u− ug = −∂Ψ
∂y

+
∂χ

∂x
+

1

f

∂Φ

∂y

vag = v − vg =
∂Ψ

∂x
+
∂χ

∂y
− 1

f

∂Φ

∂x

q′ = ∇2Ψ+
∂

∂p
(
f

S

∂Φ

∂p
)



62

which can be written in the matrix form:


uag

vag

q′




− ∂
∂y

∂
∂x

1
f
∂
∂y

∂
∂x

∂
∂y

− 1
f
∂
∂x

∇2 0 ∂
∂p
( f
S
∂
∂p
)

 =


Ψ

χ

Φ


and taking the adjoint of it:


Ψ̂

χ̂

Φ̂




∂
∂y

− ∂
∂x

∇2

− ∂
∂x

− ∂
∂y

0

− 1
f
∂
∂y

1
f
∂
∂x

∂
∂p
( f
S
∂
∂p
)

 =


ûag

v̂ag

q̂



where we can express the sensitivity to streamfunction Ψ̂, to velocity potential χ̂, and to

geopotential Φ̂ as:



Ψ̂ =
∂ûag
∂y

− ∂v̂ag
∂x

+∇2q̂ (3.8a)

χ̂ = −∂ûag
∂x

− ∂v̂ag
∂y

(3.8b)

Φ̂ = − 1

f

∂ûag
∂y

+
1

f

∂v̂ag
∂x

+
∂

∂p
(
f0
S

∂q̂

∂p
) (3.8c)

Combine (3.8a) and (3.8b), the sensitivity to ageostrophic wind can be expressed as:


∇2ûag =

∂

∂y
(Ψ̂−∇2q̂)− ∂χ̂

∂x
(3.9a)

∇2v̂ag = − ∂

∂x
(Ψ̂−∇2q̂)− ∂χ̂

∂y
(3.9b)
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Note that, combining (3.8a) and (3.8c) brings us back to the expression for sensitivity to

QGPV (2.15).

Remember the sensitivity to streamfunction and to velocity potential can also be ex-

pressed in terms of the sensitivities to full winds Ψ̂ = −( ∂v̂
∂x

− ∂û
∂y
) = ∇2ζ̂ and χ̂ = −(∂û

∂x
+

∂v̂
∂y
) = ∇2δ̂ (e.g., (2.17); Kleist and Morgan 2005). If we expand ∇2q̂ = ∂/∂x(∂q̂/∂x) +

∂/∂y(∂q̂/∂y) and substitute (2.19a) and (2.19b) in (3.8a), the equation becomes Ψ̂ =

(∂ûag
∂y

+ ∂ûg
∂y

) − (∂v̂ag
∂x

+ ∂v̂g
∂x

). This suggests that the sensitivity to the full wind can be

decomposed into sensitivity to geostrophic wind and sensitivity to ageostrophic wind,

just like the full wind can be decomposed into the geostrophic wind and the ageostrophic

wind. Likewise, the adjoint sensitivity χ̂ is solely constructed through v̂ag, resembling

how divergence can be entirely attributed to the ageostrophic wind in the forward model.

Morgan (2018) pointed out that in a 2D shallow water system, the sensitivities to the

ageostrophic components of the flow will eventually become the sensitivities to the irro-

tational flow when the system achieves the geostrophic equilibrium.

3.4.3 Sensitivity to Vertical Velocity

Equation 3.4 reveals the connection between the local time tendency of velocity potential

and the geostrophic imbalance. Considering that velocity potential is linked to divergence

and, consequently, linked to the vertical velocity following the continuity equation, it

is possible to derive a diagnostic relationship for sensitivity to vertical velocity in the
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pressure coordinate, ω. To achieve this, we can take the adjoint of (3.4):

−∂â
∂t

= fχ̂ (3.10)

From the continuity equation: −∂ω
∂p

= δ = ∇2χ, we can get its adjoint form: ∂χ̂
∂p

= ∇2ω.

Plug χ̂ from (3.10) into the adjoint continuity equation gives the sensitivity to vertical

velocity ω̂:

ω̂ = ∇−2∂χ̂

∂p
= ∇−2 ∂

∂p

(
− 1

f

∂â

∂t

)
(3.11)

3.5 Optimal Perturbation

The optimal perturbation experiment is used to study the impact of balanced and unbal-

anced initial perturbation on the development of an explosive winter storm conducted in

section 3.6. The methodology follows section 3c in Hoover (2015) and is briefly described

in Chapter 2 section 2.2.2.

Given sensitivity gradients, one can construct perturbations to achieve the prescribed

amount of change in the response function. The perturbation is optimal in the sense that

it inserts minimal energy E into the system. Here the energy is represented by a norm

which is the sum of kinetic energy and thermal energy.

E =
1

2

(
u′20 + v′20 +

cp
Tref

T ′2
0

)
=

1

2
⟨x′

0,Wx′
0⟩ (3.12)

The weighting matrix
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W = Wu,v,T =


I 0 0

0 I 0

0 0 cp
Tref

I


is block diagonal with the identity matrices for weighting the kinetic energy and cp

Tref
for

weighting the thermal energy norm, where Tref = 300K is the reference state tempera-

ture. Various norms can produce optimal perturbations that evolve differently and have

different growth rates (Snyder and Joly, 1998). In this study, to obtain the optimal ini-

tial perturbation, we minimize the energy norm subject to the first-order differentiation

constraint, δR = ⟨∂R
∂x
,x′⟩

min E

s.t. δR = ⟨∂R
∂x

,x′⟩

The minimization can be solved by minimizing the Lagrangian, with the Lagrange mul-

tiplier λ

min L = E + λ

(
δR−

〈
∂R

∂x
,x′
〉)

From the first order necessary condition for minimization, ∂L /∂x0 = 0, we get the

expression for x′
0 which is proportional to the initial sensitivity gradient, ∂R

∂x0
:

x′
0 = λW−1 ∂R

∂x0

(3.13)
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We can plug x′
0 into the first order differentiation, δR = ⟨∂R

∂x
, λW−1 ∂R

∂x0
⟩, which gives the

expression for the optimal Lagrange multiplier: λ = δR
⟨ ∂R
∂x
,W−1 ∂R

∂x0
⟩ . Finally, insert λ back

into (3.13)

x′
0 =

δRW−1 ∂R
∂x0

⟨∂R
∂x
,W−1 ∂R

∂x0
⟩

(3.14)

3.6 Case Study of November 1998 Winter Storm

The November 1998 winter storm, known as the November Witch, brought intense convec-

tive precipitation to the Midwest and southern plains and produced widespread damaging

winds exceeding 20 m · s−1 and gust frequently over 35 m · s−1 across the upper Great

Lakes region in Wisconsin and Minnesota. We wish to use this case as an example to

illustrate the application of adjoint sensitivity to QGPV and imbalance in understanding

the development of a typical midlatitude cyclone.

3.6.1 Synoptic Overview

The ERA5 reanalysis (Hersbach et al., 2020) shows that a low-pressure system was or-

ganizing over eastern Colorado at 1200 UTC 9 November (e.g. Fig. 3.4a). At this time,

the 500 hPa trough is located west of the Rockies and is characterized by a linear PV

maximum and intense baroclinicity. Over the next 12 hours, the trough tracks east of

the Rockies and acquires a negative tilt (e.g. Fig. 3.4b). The thermal wind advection of

PV forces the upward vertical motion over the region of minimum sea level pressure in

central Kansas. Starting from Kansas, the storm rapidly develops in the next 24 hours,
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with the sea level pressure dropping from 996 hPa at 0000 UTC 10 November to 967 hPa

around 0000 UTC 11 November just east of Duluth, MN. At 1200 UTC 10 November, the

500 hPa cut-off low stacks directly on the surface low, with the PV strip wrapping the

trough like a comma shape (e.g. Fig. 3.4c). The negatively tilted trough is accompanied

by a pronounced ridge downstream. At 0000 UTC 11 November, the PV strip detaches

from the center of the 500 hPa cut-off low possibly due to the erosion by the latent heat

release (e.g. Fig. 3.4d). By the morning of November 11th, the low was located in north

central Ontario.

Examining the upper-level forcing, a polar jet core is over California at 1200 UTC 9

November (e.g. Fig. 3.5a). Over the midwest and the southern plains, the polar jet is

parallel to the subtropical jet. At 0000 UTC 10 November, the polar jet starts to curve

as the upper-level ridge starts to build up. Over the Central Plains, the storm starts to

develop with the minimum sea level pressure located beneath the polar jet core (e.g. Fig.

3.5b). The subtropical jet and polar jet start to merge together at 1200 UTC 10 November

which creates a starker meridional temperature gradient and stronger baroclinicity that

feeds energy into the surface cyclone development beneath the jet’s exit region (e.g. Fig.

3.5c).

3.6.2 Numerical Simulation

A numerical simulation of this extreme cyclogenesis event is carried out by the Weather

Research and Forecasting (WRF) model (Skamarock et al., 2008) and the WRF adjoint

model (V3.8.1, Zhang et al. 2013). We simulate the case from 1800 UTC November
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9 (forecast hour 00, F00) to 1800 UTC November 10 (F24), initialized with 0.25 de-

gree NCEP’s FNL reanalysis (National Centers for Environmental Prediction, National

Weather Service, NOAA, U.S. Department of Commerce, 2015), with 24 km grid spacing

and 41 vertical levels from the surface to 50 hPa. In the simulation, the storm reaches

an intensity of 961 hPa at 1800 UTC 10 November, which exceeds the real-world in-

tensity within an even shorter development time. We chose the response function to be

negative perturbation average surface dry air mass in the column: R = −µ̄′ within the

980 hPa sea level pressure contour at F24 (e.g. Fig. 3.6). The negative sign in the

response function infers that a positive perturbation of positive sensitivity corresponds

to perturbations that would lower the surface pressure, which is equivalent to deepening

the storm intensity within the response function area. The forward and adjoint model

outputs are interpolated vertically to equally spaced isobaric surfaces from 1000 hPa to 50

hPa model top using WRF-python (Ladwig, 2017). Adjoint sensitivities for all variables

below ground are set to zero.

Adjoint sensitivity to QGPV (q̂) and sensitivity to geostrophic imbalance (â) are calcu-

lated using successive over-relaxation on a centered finite-difference grid following (2.15)

q̂ = ℘−1

(
1

f0
Ψ̂ + Φ̂

)

q̂ = ℘−1

(
1

f0

(
∂û

∂y
− ∂v̂

∂x

)
+

1

γ

∂θ̂

∂p

)
(3.15)

where sensitivities to winds (û, v̂) and to potential temperature (θ̂) are obtained from
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WRFPLUS adjoint output and interpolated from sigma levels to isobaric levels for the

convenience of calculation.

Figure 2.8 describes the simulation procedure: The initial condition is provided for the

WRF nonlinear forward integration that generates the forecast trajectory. Given the

chosen response function, the adjoint forcing ∂R
∂xt

is specified, which in this case, is just

∂R
∂µ̄′

= −1 inside the 980 hPa contour. Integrating the adjoint model backward along the

stored trajectory from F24 for one hour gives the sensitivity output at F23, ∂R
∂xt−1

. We

apply the sensitivity to QGPV to filter out gravity waves in the wind and temperature

sensitivity fields, which are then used as the adjoint forcing ∂R
∂xt−1,bal

for a new adjoint

backward integration starting at F23 with all other sensitivity variables set to 0, including

∂R
∂µ̄′

. Figure 3.7 shows the comparison between the 500 hPa θ̂ at F22 from the original

adjoint simulation initialized at F24 and from the experiment initialized at F23 with the

balanced adjoint forcing. In addition to showing no large-scale gravity wave sensitivity

pattern, the balanced adjoint initialization experiment also presents a preference for colder

upper-level temperatures for the storm to develop in the next two hours, which fits the

cold-core nature of a midlatitude cyclone. Therefore, in this study, we use the adjoint

sensitivity from the balanced adjoint initialization experiment and refer to its outputs as

“WRF-adjoint”.

JRA reanalysis1 at 1200 UTC 10 November 1998 is used to validate the schematic of

1JRA reanalysis provides the streamfunction field while ERA5 or GDAS FNL reanalysis does not.
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geostrophic imbalance in Fig. 3.1. At 900 hPa, a positive imbalance overlaps the sur-

face cyclone. As deduced in section 3.2, the unbalance component of the wind and the

ageostrophic wind are similar. Both winds are anticyclonic around a maximum, except

the ageostrophic wind has a convergent component pointing toward the low-pressure cen-

ter. At 300 hPa, the strongest ageostrophic wind locates at the jet core and between

the largest horizontal gradient of the imbalance. The ageostrophic wind shows a clear

divergent pattern in the upper Midwest.

3.6.3 Horizontal Analysis

Figure 3.9 displays the adjoint sensitivity from WRF-adjoint at F14. The physical mean-

ing of sensitivity is that if one perturbs the model state at this time step proportional to

the sensitivity, these perturbations will lead to the deepening of the storm (in the case

of R = −µ̄) 10 hours later at F24. A cyclonic pattern of sensitivity to winds is evident

near the 500 hPa trough in the Central Plains, indicating a demand for increased posi-

tive vorticity. Moreover, the sensitivity to southeasterly wind over Saskatchewan implies

that a more negatively tilted trough to the north would benefit the storm development.

The sensitivity to temperature is broadly negative behind the upper front and positive

ahead, aligning with the frontal precipitation area (not shown). This configuration, with

more cold air upstream and warm air downstream naturally intensifies the frontal system.

A pronounced warm sensitivity area at the Nebraska-Kansas border contrasts with the

broad cold sensitivity pattern behind the front and will be elaborated on in section 3.6.5.

Sensitivity to QGPV q̂ and geostrophically balanced winds v̂g calculated following (2.15),
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(2.19a) and (2.19b) are shown in Fig. 3.10 for time step F14. The q̂ maximum overlays

the 500 hPa trough in southern Kansas, with the 500 hPa Ertel PV strip on its south-

eastern edge. It suggests adding a positive PV perturbation within the cut-off low could

potentially deepen the storm. Notably, q̂ extends northwest to the Dakotas and v̂g in-

verted from it is almost identical to that from the WRF-adjoint output (e.g. Fig. 3.9).

At the same time, a dipole of sensitivity to imbalance â straddles the Ertel PV strip.

Referring back to Fig. 3.1 where a dipole of imbalance constructs an easterly unbalanced

wind in the westerly jet core, the dipole of â suggests adding a more southwesterly wind

that is perpendicular to the cyclonic v̂g recovered from q̂ will help the storm intensify 10

hours later.

3.6.4 Surface Front Vertical Cross Section

Figure 3.11 shows cross-section locations, one across the surface front (red line) and the

other across the upper-level jet (black line). The cross-sections are used to investigate

the vertical distributions of q̂ and â in the surface front and the upper-level jet at forecast

hour F14.

Figure 3.12 depicts the cross-section of the surface front. In Figure 3.12a, q̂ is shown

to tilt westward with height, in alignment with the frontal structure. Notably, the q̂

maximum coincides with intense low-level frontal baroclinicity. Cyclonic geostrophically

balanced sensitivity to wind v̂g suggests that reinforcing the southerly wind ahead of the

front and the northerly wind behind it would lead to a stronger surface cyclone after 10

hours. The hydrostatically balanced sensitivity to temperature, θ̂g, is positive above q̂
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maximum and negative below it. Since q̂ is negatively tilted, θ̂g also displays this slanting

pattern, emulating the condition for storm intensification that rely on a robust zonal

temperature gradient. This upshear negative tilted structure has been documented in

previous sensitivity studies (e.g., Ancell and Mass 2006; Doyle et al. 2014) and can be

attributed to the vortex unshielding based on the Orr Mechanism (e.g., Orr 1907; Nolan

and Farrell 1999).

Figure 3.12b shows the relative position of q̂ and â in the same northwest-southeast

cross-section. In the lower level, negative â is downstream of the q̂ axis and is positive

upstream. While there is not much upper-level structure of q̂ in this cross-section, there

is a clear 500hPa vertical dipole of â near 99◦W. Unlike the balanced component which

calls for colder air near the surface for the storm to intensify, the unbalanced sensitivity

to potential temperature, θ̂i, is consistently positive along the surface front, extending

to the 500 hPa (e.g. Fig. 3.12c). This warm sensitivity feature is likely associated with

the latent heating released by the frontal precipitation in the forward trajectory (e.g.

Fig. 3.12d). Maximum convective accumulated precipitation aligns with the lower level

θ̂i maximum, while maximum stratiform accumulated precipitation matches the 500 hPa

θ̂i maximum (e.g. Fig. 3.11). Following the physical interpretation in section 3.2, this

warm sensitivity could prompt sensitivity to adiabatic upward vertical motion to “cool

down” the warm temperature sensitivity later on. This argument is consistent with the

characteristic frontal upward vertical motion.

Focus on the unbalanced wind sensitivity around â minimum near 94◦W in Fig. 3.12c, we
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can observe unbalanced component of sensitivity to horizontal wind v̂i inverted from â is

cyclonic around negative â. Although the magnitude of the unbalanced component of the

wind sensitivity is much smaller than the balanced component, v̂i still favors northerly

behind and southerly ahead of the front.

3.6.5 Upper Front Vertical Cross Section

Figure 3.13 shows a cross-section of the 400 hPa jet, with the tropopause overfold marked

by high Ertel PV wrapping on the poleward flank of the jet core. The maximum posi-

tive sensitivity to QGPV is located on the lower poleward edge of the 2 PV unit (PVU)

tropopause. This suggests that shifting the existing PV intrusion downward, effectively

bringing the tropopause further into the troposphere, can lead to surface storm intensifi-

cation at the final time.

The sensitivity to geostrophically balanced wind shifts sharply on the northern edge of

the Ertel PV. Furthermore, θ̂g inverted from q̂ suggests that a warmer air layer above

and a colder air layer beneath the tropopause would be favorable for storm development.

This configuration enhances the static stability, which in turn strengthens both PV and

the upper front.

At 500 hPa, a positive sensitivity to imbalance â emerges at the same location as the

maximum q̂ beneath the poleward flank of the jet. A negative counterpart appears at

650 hPa with cold unbalanced temperature sensitivity (θ̂i < 0) positioned between the

dipole. To achieve a positive â according to (2.14), the sensitivity to geopotential Φ̂
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has to be either negative or much smaller than the sensitivity to the streamfunction Ψ̂.

Consequently, deepening the 500 hPa geopotential height on the poleward flank of the

polar jet could lead to further development. The negative θ̂i supplements the balanced

component θ̂g to tighten the temperature gradient across the upper-level front. Using the

geostrophic adjustment argument, sensitivity to downward vertical motion will prompt

an unbalanced cold temperature sensitivity. This descent would help bring tropopause

PV further down, potentially resulting in a deeper storm 10 hours later.

The same unbalanced warm temperature sensitivity (θ̂i > 0) at 500 hPa near 40◦N, 99◦W

on the Nebraska-Kansas border, as shown in Fig. 3.12c, is also apparent in Fig. 3.13b.

This feature is accompanied by a negative â above and a positive â below and is not closely

related to the circulation around the jet. Interestingly, θ̂g > 0 inverted from q̂ is only

slightly positive at this location, indicating that sensitivity to QGPV is unable to capture

this feature. This warm temperature sensitivity may imply a reduction in stratification

and an increase in baroclinicity in the mid-troposphere (700 hPa - 400 hPa). As discussed

in the surface front cross-section, there exhibits a collocation of accumulated precipitation

and a positive sensitivity to temperature. This observation suggests that the unbalanced

component of temperature sensitivity is closely related to latent heat release.

In a previous case study of this winter storm, Posselt (2001) demonstrated the significant

impact of latent heat release in the development of a trough of warm air aloft (TROWAL,

Martin 1999) during the occlusion phase of this storm by comparing simulation with and

without diabatic processes. The presence of warm sensitivity supports this finding and
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further emphasizes the importance of stratiform precipitation-induced latent heating in

the development of mid-latitude cyclones.

Figure 3.14 is presented to better illustrate the relative contribution of the balanced and

unbalanced components to the total sensitivity fields at 500 hPa. Figure 3.14 a,c,e show

both balanced and unbalanced û favors a stronger westerly jet, but it is clear that the

zonal wind sensitivity is dominated by the geostrophically balanced component. With

sensitivity features tilting into the background horizontal shear created by the lower

edge of the jet (e.g. Fig. 3.13 inset cross-section), the sensitivity over New Mexico and

northern Texas implies exploitation of barotropic growth potential on either side of the

jet. A similar pattern is observed in east Pacific tropical cyclogenesis cases along the east

Pacific low-level jet (Hoover, 2015) and in an idealized mid-latitude cyclogenesis case

along the westerly jet (Langland et al., 1995). Hoover (2015) decomposed û into non-

divergent component, ûnd, and irrotational component, ûir, and found û ≈ ûnd+ ûir. The

summation of geostrophic balanced and unbalanced sensitivities to wind, ûg+ûi, however,

does not recover the dipole sensitivity pattern over the eastern CONUS. It suggests that,

since both ûg and ûi are non-divergent, this wind sensitivity pattern is purely driven by

the sensitivity to divergence which is generated by the gravity wave adjustment process.

Figure 3.14b,d,f suggest that at 500 hPa the temperature sensitivity is dominated by the

unbalanced component θ̂i inverted from â. The addition of balanced and unbalanced

components in both wind and temperature sensitivity matches the total sensitivity from

the WRF-adjoint output. We might conclude that the sensitivity associated with QG
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balance mainly considers the dry dynamical process while the sensitivity associated with

the imbalance covers the remaining diabatic process.

3.6.6 Sensitivities to Vertical Motion and to Ageostrophic Winds

The section serves as an illustration of the derivation discussed in section 3.4. Figure

3.15 shows the comparison between the normalized ŵ directly from the WRFPLUS

adjoint output and the normalized −ω̂ calculated from â using (3.11) in the same cross-

section taken across the jet. ω̂ is negated so that the positive value would suggest that

positive vertical motion will help the storm development. Both metrics exhibit an upward-

downward vertical motion dipole beneath the jet core. The magnitude of ω̂ computed

here is on the order of 1 ∼ 10, while the magnitude of ŵ is on the order of 0.1 ∼ 1,

therefore ω̂ ≈ 10ŵ. If we adjoint the expression ω = −ρgw which gives

ŵ = −ρgω̂ ≈ 10ω̂

where ρ ∼ 1kg/m3 and g ∼ 10m/s2. This shows that in theory, ω̂ ≈ 0.1ŵ which

conflicts with the observed ratio (ω̂ ≈ 10ŵ) obtained from the adjoint model. Instead

of delving into the WRFPLUS model code, consider focusing on the straightforward

relationship: ∆R = ⟨∂R
∂x
, δx⟩. If we assume that perturbing each variable contributes

a similar amount of change in the response function ∂R
∂xi
δxi = ∆Ri to the total ∆R,

where xi is the ith variable in the state vector x, then the corresponding sensitivity of a

variable that has a smaller magnitude should be larger. For example, the typical value
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for û is on the scale of 1 ∼ 10 and its perturbation should have a magnitude of 100

such that the small perturbation approximation is not violated. This makes the product

⟨∂R
∂u
, δu⟩ to be on the scale of 101. The typical value for sensitivity to water vapor mixing

ratio (q̂vapor) is 10
2 ∼ 103 and its perturbation is usually on the scale of 10−3 kg/kg, so

⟨ ∂R
∂qvapor

, δqvapor⟩ ∼ 100. Therefore, if the contribution to the change in response function

from u and w are on the same magnitude, it would be mind-boggling to have the scale of

ŵ to be smaller than û (0.1 ≪ 1) when the vertical velocity perturbation is also smaller

than the horizontal wind perturbation (0.1 ≪ 1).

Figure 3.16 shows the qualitative sensitivity to ageostrophic winds at 900 hPa and at 500

hPa at F14. At 900 hPa, the sensitivity to ageostrophic wind exhibits an anticyclonic pat-

tern around the surface trough from Iowa to Arkansas. A noticeable shift in the direction

of sensitivity to ageostrophic wind is observed between the 1010 and 1020 hPa contours,

extending from Quebec to Tennessee. At 500 hPa, the sensitivity to ageostrophic wind

is less rotational compared to 900 hPa, with convergence centered on Oklahoma and the

Great Lakes, and divergence centered on Dakotas.

3.6.7 Optimal Perturbation

Three optimal perturbation experiments were conducted (e.g. Fig. 3.17) to investigate

the validity of balanced and unbalanced adjoint sensitivities. The first experiment, labeled

“exp WRF-adj”, is informed by the WRF-adjoint sensitivity output at the initial time

(û0, v̂0, θ̂0). The second experiment, “exp bal”, is informed by the balanced adjoint

sensitivity (ûg,0, v̂g,0, θ̂g,0), and the last one, “exp imb”, is informed by the unbalanced



78

adjoint sensitivity (ûi,0, v̂i,0, θ̂i,0). The original WRF simulation is labeled by “ctrl”.

The value of ∆R signifies the total perturbation energy introduced into the system. The

optimal initial perturbations are created following section 3.5, with an aim of lowering

the sea level pressure (SLP) inside the 980 hPa contour by an average of 5 hPa (∆R =

394500).

The first column of Fig. 3.17 displays the initial optimal zonal wind and temperature

perturbation at 500 hPa for three experiments. Three sets of perturbations share a sim-

ilar temperature perturbation pattern. “Exp imb” generates the strongest temperature

perturbation at 500 hPa and “exp bal” produces the largest zonal wind perturbation.

On the other hand, “exp WRF-adj” focus most perturbation energy near the surface and

deploys less perturbation at 500 hPa. The second column of Fig. 3.17 shows the storm

center pressure after 24 hours of integration for these three optimal perturbation exper-

iments. Both “exp bal” (960.5 hPa) and “exp imb” (960.7 hPa) create a deeper cyclone

than “exp WRF-adj”’s perturbation (961.0 hPa), but none achieves the targeted 5 hPa

average change in SLP. Differences in mean sea level pressure between the perturbed and

the control experiments are also shown in the second column in color shading. The bal-

anced perturbation creates a concentric deepening, lowering central pressure while raising

surrounding pressure. In all three cases, the dry column air perturbation (µ′) difference

exhibits a dipole-like shape north of the storm pressure center. This shape is created

by the rise (lowering) in SLP caused by the contraction (expansion) of the SLP contour

(Fig.3.17 b,e,h zooms in c,f,i near the storm center). The shape of the perturbed SLP

contour is similar to the unperturbed control experiment. Both balanced and unbalanced
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perturbations raise the pressure along the cold front from Michigan to Tennessee and

deepen the pressure on the warm frontal section in Ontario. Additionally, the unbal-

anced perturbation continues to wrap the deepening effect to the southwest of the storm

in Minnesota and Iowa.

Fig. 3.18 shows the SLP difference between the three perturbation experiments and the

control simulation at F00 in the first column and at F02 in the second column. At

the initiating time (F00), inserting the optimal perturbations results in distinct changes

in three scenarios. The unbalanced perturbation has the most widespread impact on

SLP over the Rockies and Southern US (Fig. 3.18e). The SLP difference caused by the

balanced perturbation is most evident in New Mexico and coastal Texas (Fig. 3.18c),

likely due to the deep convection on the Gulf and the topographical effect, respectively.

The impact of WRF-adjoint perturbation is minimal southwest of the minimum SLP

(Fig. 3.18a). Most of the SLP differences created by perturbations diminished within

an hour of integration (not shown, but similar to SLP perturbation evolution at F02)

as indicated by a drastic decrease in SLP perturbation magnitude. At F02, all three

SLP differences exhibit a gravity wave pattern, especially in the case of the unbalanced

perturbation (Fig. 3.18f). A notable commonality is the presence of a dipole pattern

in SLP differences, with a decrease in SLP to the east and a rising in SLP to the west.

However, the SLP difference in “exp WRF-adj” is 10 times smaller than in “exp bal” and

“exp imb”.

Figure 3.19 displays the vertical energy distribution of these three perturbations. “Exp
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WRF-adj” has most of its energy concentrated at the surface level, with a small portion

at 800 hPa and almost no energy above 700 hPa. In contrast, the initial energy pertur-

bations from “exp bal” and “exp imb” are designated to enhance energy in the lower free

atmosphere levels below 700 hPa with a gradual transition up to the tropopause. The

balanced energy norm perturbation surpasses the unbalanced energy norm at all levels,

particularly near the surface level and at 750 hPa, similar to the “exp WRF-adj”.

After an hour of integration, the perturbation energy experiences significant growth above

900 hPa in “exp bal” and “exp imb” (dashed line in Fig. 3.19), including levels above

200 hPa where less energy was initially added into the system. In contrast, the energy

norm in “exp WRF-adj” near 750 hPa only increases slightly. “exp imb” exhibits larger

energy norm growth compared to the balanced perturbation at nearly all levels, except

near 700 hPa. In both “exp WRF-adj” and “exp bal”, the perturbation energy norm

decreases significantly below 900 hPa, where a substantial amount of energy was initially

introduced to the system. Conversely, the surface perturbation energy in “exp imb”

increases significantly, making it difficult to conclude whether the energy dissipation in

“exp bal” and “exp WRF-adj” is due to the boundary layer mixing.

Figure 3.20 shows the evolution of the vertical perturbation energy norm in each optimal

perturbation experiment. “Exp imb” generates the largest final-time perturbation energy

norm, which is 5 times larger than the perturbation energy norm generated in “exp

WRF-adj”. The largest growth in the perturbation energy norm occurs near the jet level,
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followed by another peak near 750 hPa. The growth pattern of the perturbation energy

norm is similar between the balanced and unbalanced cases.

In “exp WRF-adj”, the energy norm is capped at 150 hPa and 50 hPa. All perturbations

exhibit minimal changes in the first 12 hours, except below 800 hPa. Starting from F13,

perturbation starts to grow between 500 hPa and 200 hPa as its influence on the jet or

the upper front takes effect. By F18, perturbation in the stratosphere (near 100 hPa)

begins to increase, and by F20 perturbation energy shows growth between 800 and 500

hPa.

The perturbation energy norm grows faster in “exp imb” than “exp bal”, especially in

the free troposphere between 800 hPa and 300 hPa during the first 16 hours, indicated by

the more rapid expansion of magenta and lime lines. But overall, the perturbation energy

norm growth patterns are similar between these two cases. The jet level energy (between

500 hPa and 300 hPa) increases rapidly before F06 but is capped from F07 to F12 before

increasing again towards the final forecast hour. Although the factors suspending the

jet-level perturbation energy growth are intriguing, they are beyond the scope of this

research. About half of the energy norm growth in the lower troposphere (below 800

hPa) occurs in the first 9-hour integration, with the remaining half of the norm increase

occurring in the next 15 hours. Notably, at F23 and F24, a retreat of perturbation

energy norm is observed at lower levels. An interesting distinction between balanced and

unbalanced perturbation experiments emerges in the last 4 hours of simulation between
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600 hPa and 400 hPa. Energy gain continues to change in this layer in “exp bal”, while

perturbation energy norm growth halts near the end of the simulation in “exp imb”.

Hoover (2015) employed an ad hoc method to assess linearity, which relies on the assump-

tion that a purely linear system should exhibit a constant change in response function

∆R ≈ δR = ⟨∂R/∂xτ ,x′
τ ⟩ for any time step τ = 0 ... 24. Figure 3.21 depicts the sum

of the product of sensitivity and perturbation over variables (u, v, θ). In a linear model,

such as the tangent linear model, δR/∆R0 should equal 1 at all time steps. However,

in all three cases, δR/∆R0 decreases as the model integrates, indicating the presence

of nonlinear processes. Compared to the perturbations informed by WRF-adjoint which

only preserves 30% of the initial response function change, both balanced and unbalanced

perturbation cases show gentler declines from F00 to F01, retaining nearly 80% of the

initial prescribed change in the response function. The ongoing decrease in δR implies

the introduction of nonlinearity to the system at each time step. Notice that the change

in δR becomes smoother after F12, implying either the system becomes less chaotic, or

F12 marks the end of the spin-up of the geostrophic adjustment process caused by the

injected perturbations.

3.7 Discussion and Conclusion

In this chapter, we discuss the notion of geostrophic imbalance and explore the interpre-

tation of sensitivity to geostrophic imbalance. As illustrated in Figure 3.3, a positive â is

associated with an anticyclonic sensitivity to wind pattern and a negative â is associated
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with a cyclonic sensitivity to wind pattern. Furthermore, sensitivity to cold temperature

is accompanied by â > 0 above and â < 0 below, potentially leading to sensitivity to

downward vertical motion to fulfill the geostrophic adjustment process.

We apply these diagnostic sensitivities to investigate the dynamic aspects of the rapid

development of the November 1998 Midwest winter storm from 1800 UTC 9 November

to 1800 UTC 10 November with the WRF model. The examination of the surface front

cross-section shows a preference for having warmer air ahead and colder air behind the

front. This temperature gradient preference is captured by a positive sensitivity to QGPV

at a low level tilted along the surface front. The unbalanced component of the sensitivity

to potential temperature (θ̂i) inverted from â however suggests overall warming along the

front helps the storm to deepen at the final time. The positive sensitivity to QGPV over-

laps the upper-level PV partially explains the reason why a cold temperature is preferred

below the jet – inserting colder air can increase the static stability and subsequently in-

crease the PV. From an imbalance point of view, a cold temperature sensitivity can trigger

a sensitivity to downward vertical motion, which might influence the downward extension

of the background tropopause, thereby creating a stronger PV in the mid-troposphere.

The collocation of the unbalanced temperature sensitivity, θ̂i, and accumulated precipi-

tation from the WRF trajectory output in both surface front and jet cross-section (e.g.,

Fig. 3.12 and Fig. 3.13) suggests that the θ̂i is likely the manifestation of the latent

heating. The linkage between latent heat release in the forward trajectory and the pres-

ence of unbalanced temperature sensitivity points to the importance of including moist
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processes in the adjoint sensitivity study like with WRF version 4 (Skamarock et al. 2019)

or COAMPS (Doyle et al., 2012) model. Langland et al. (1995) demonstrated that sensi-

tivity overlapping with certain features of the basic state does not necessarily imply that

those basic-state features are important to the response function. Instead, sensitivity is

often associated with some basic-state features that are driving the time-tendency of the

sensitivity variable. In this study, the time-tendency forcing for potential temperature

could arise from either latent heat release or the existing vertical motion in the basic

state. Future work could include running the forward trajectory without the option of

latent heating. Comparing unbalanced sensitivity to temperature between the control

case and the no latent heating case should shed light on whether the connection between

the precipitation and the unbalanced temperature sensitivity is physically grounded.

Interestingly, comparing balanced and unbalanced components with the full wind and

temperature sensitivity, we find the geostrophically balanced component dominates the

wind sensitivity, while the unbalanced component dominates the temperature sensitivity

field (e.g. Fig. 3.14). This suggests that although both sensitivities to QGPV and imbal-

ance combine the wind and temperature sensitivity fields, we should treat the sensitivity

to QGPV (q̂) as an entity that recovers the dynamical aspect and treat the sensitivity to

imbalance (â) as the one that recovers the thermal aspect.

The calculation of sensitivity to QGPV involves the inversion of the QGPV operator,

℘. This inversion computes q̂g with a spatial scale larger than or similar to the Rossby

radius of deformation, LR = NH/f , where N is the Brunt–Väisälä frequency, H is the
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vertical scale. In the mid-latitudes, the ratio N/f is typically around 100, so LR is

roughly 100 times the vertical scale height, H. If we approximate the vertical scale of

both upper-level and lower-level troughs to be 5 km, or half the tropopause height, then

LR is approximately 500 km. This makes the q̂g pattern to be on the scale of LR (e.g.,

Fig. 3.10). We know when the scale of the initial PV perturbation is larger than LR, the

wind field adjusts to the mass field. This might also be true for the adjoint variables.

In this case, when the scale of q̂g is larger than LR, the sensitivity to wind adjusts to

q̂g in the final balanced state, making the balanced component, ûg, dominates over the

unbalanced component, ûi. Similarly, when the perturbation scale is smaller than LR,

the mass/temperature field adjusts to the wind field. In Fig. 3.10, as the remnant of the

balanced sensitivity field, the sensitivity to imbalance, â, has a scale much smaller than

the LR. This possibly explains why θ̂ is dominated by θ̂i, while â merely recovers any

sensitivity to wind.

Three sets of optimal perturbation informed by the WRF-adjoint, balanced, and un-

balanced components of the WRF-adjoint output respectively are added to the initial

condition. Both balanced and unbalanced initial perturbations enhance storm intensity

at the final forecast time. We anticipate the balanced initial perturbation to create a

deeper storm since it filters out the perturbations projected onto the gravity wave in

the WRF-adjoint informed perturbation. Surprisingly, the unbalanced initial perturba-

tion also significantly impacts the final storm intensity. From our understanding, an

unbalanced wind perturbation contributes very little to the storm development because

it will rotate and travel away from the frontal zone as a gravity wave, while a balanced
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perturbation is capable of having a sustained impact on the basic state where the cy-

clone is developing. Defined as the residual of the wind-temperature field inverted from

QGPV, the unbalanced component should not contain QGPV perturbation if the inver-

sion converges. One possible explanation is that the wind field with adjust to the strong

unbalanced temperature perturbation, creating new QGPV perturbation post-geostrophic

adjustment. It should be noted that the balanced initial perturbation does not guarantee

the geostrophic adjustment can be avoided (e.g., Fig. 3.18) since it is the full initial state

that should be in balance (Arbogast et al., 2008) if one wishes to minimize the spin-up

time.
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Figure 3.1: Anticyclonic wind around ψ′ surplus and a > 0 indicated in red and
cyclonic wind around ψ′ deficit and a < 0 indicated in blue.

Figure 3.2: Blue membrane suggests a ϕ′ deficit and a > 0 on an isobaric surface,
red membrane suggests a ϕ′ surplus and a < 0 on an isobaric surface. Shaded ovals
indicate the perturbation potential temperature anomaly, with cold in blue and warm

in red.
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Figure 3.3: Schematics depiction of the sensitivity to geostrophic imbalance â. Panel
(a) depicts the streamfunction/wind sensitivity component associated with the sensi-
tivity to geostrophic imbalance. Solid arrows show the instantaneous horizontal wind
sensitivity vectors and dash arrows depict the horizontal wind sensitivity vectors af-
ter geostrophic adjustment. Panel (b) depicts the geopotential/temperature sensitivity
component associated with the sensitivity to geostrophic imbalance. The red and blue
membranes are isobaric surfaces. The red convex shows a preference for higher geopo-
tential, while the blue concave shows a preference for lower geopotential. The thick
red arrows in both panels show a tendency of sensitivity to downward vertical motion
when a positive sensitivity to imbalance (â > 0) is above and a negative sensitivity to

imbalance (â < 0) is below.
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Figure 3.4: ERA5 reanalysis of 500 hPa geopotential height (interval 6 dam; black
contours), temperature (interval 4 ◦C; dashed contours), Ertel PV (shaded, negative
value in green), and mean sea level pressure (interval 5 hPa; gray contours) at a) 1200
UTC 9 November, b) 0000 UTC 10 November, c) 1200 UTC 10 November, d) 0000

UTC 11 November.
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Figure 3.5: ERA5 reanalysis of 200 hPa geopotential height (interval 12 dam; gray
contours), wind speed in m · s−1 (shaded), and mean sea level pressure (interval 5 hPa;
black contours) at a) 1200 UTC 9 November, b) 0000 UTC 10 November, c) 1200 UTC

10 November, d) 0000 UTC 11 November.
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Figure 3.6: WRF mean sea level pressure (interval 5 hPa; black contour) at 1800
UTC 10 November. Red meshes cover the region of adjoint forcing i.e. the gradient of

response function at F24, ∂R/∂µ′ = −1 inside 980 hPa contour.
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Figure 3.7: 500 hPa sensitivity to the potential temperature at 1600 UTC 10 Novem-
ber (F22) from a) adjoint model initialized with just dR/dµ = −1 at F24 (Figure 2.8
row 2) and b) adjoint model initialized with balanced adjoint forcing at F23 (Figure

2.8 row 3)
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Figure 3.8: a) JRA reanalysis of 900 hPa imbalance (shaded), geopotential height (red
contour), unbalanced winds (blue vectors), and ageostrophic winds (green vectors); b)
300 hPa imbalance (shaded), wind speed (red contour; interval 10 m/s), unbalanced
winds (blue vectors), and ageostrophic winds (green vectors). Both panels are valid at

1200 UTC 10 November 1998.
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Figure 3.9: WRF simulated 500 hPa geopotential height (interval 6 dam; black con-
tour) at 0800 UTC 10 November (F14), with 500 hPa sensitivity to horizontal wind
vector v̂g from WRFPLUS depicted in blue arrows and sensitivity to potential temper-

ature θ̂ shaded (warm sensitivity in red and cold sensitivity in blue).
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Figure 3.10: WRF 500 hPa Ertel PV (interval 1 PVU; thin red contour) at 0800
UTC 10 November (F14), 500 hPa sensitivity to QGPV (interval 105 Pa · s; thick
black contour, solid positive, dashed negative), sensitivity to imbalance â (interval 6×
10−6 Pa ·s ·m−2; shaded, positive in orange and negative in purple) and geostrophically

balanced sensitivity to horizontal wind vectors v̂g are depicted in teal arrows.
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Figure 3.11: Accumulated precipitation (interval 5 mm; shaded) in WRF simulation
from forecast hour F00 till F14. WRF simulated mean sea level pressure (interval 5
hPa; brown contour) at 0800 UTC 10 November (F14). Two cross sections orientation

in Figure 3.12 and Figure 3.13 are plotted in red and black lines respectively.
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Figure 3.12: Cross section across the surface cold front at forecast time F14 valid
0800 UTC 10 November 1998. a) background potential temperature (interval 4K;
green dashed contour), sensitivity to QGPV (interval 6 × 104 Pa · s; black contour),
geostrophically balanced sensitivity to horizontal winds v̂g (gray barbs) and hydrostat-

ically balanced sensitivity to temperature θ̂g (interval 0.6 Pa ·K−1; shaded). The inset
plot shows the 850 hPa potential temperature in green contours and cross-section orien-
tation (red line). b) Cross section of sensitivity to QGPV q̂ (contour, same as in a)) and
the sensitivity to imbalance â (interval 6× 10−6 Pa · s ·m−2; shaded, â > 0 in orange
and negative in purple â > 0). c) sensitivity to imbalance (shaded, same as in b)),
the unbalanced component of sensitivity to horizontal winds v̂i (gray barbs), and an
unbalanced component of sensitivity to potential temperature θ̂i (interval 0.6 Pa ·K−1;
color contours, warm sensitivity in red and cold sensitivity in blue). d) Accumulated
convective precipitation (orange) and non-convective precipitation (blue) along the cold

frontal cross-section.
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Figure 3.13: Cross section across the 400 hPa jet at forecast time F14 valid 0800
UTC 10 November 1998. a) background Ertel PV (interval 1 PVU; green contour),
sensitivity to QGPV (interval 6 × 104 Pa · s; black contour), geostrophically balanced
sensitivity to horizontal winds v̂g (gray barbs) and hydrostatically balanced sensitivity

to temperature θ̂g (interval 0.6 Pa ·K−1; shaded). The inset plot shows the 400 hPa
jet (interval 10 m · s−1; pink contour) and cross-section orientation (blue line). b)
background Ertel PV in green contour and jet core location indicated by the pink
shading, sensitivity to imbalance (interval 6 × 10−6 Pa · s · m−2; shaded, â > 0 in
orange and negative in purple â > 0), the unbalanced component of sensitivity to
horizontal winds v̂i (gray barbs) and unbalanced component of sensitivity to potential
temperature θ̂i (interval 0.6 Pa · K−1; color contours, warm sensitivity in red and
cold sensitivity in blue). c) Accumulated convective precipitation (orange) and non-

convective precipitation (blue) along the cross-jet cross-section.
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Figure 3.14: 500 hPa sensitivity to zonal wind from WRF-adjoint (interval 0.4
Pa · s · m−1, shaded) at 0800 UTC 10 November (F14) in all panels, black contours
show a) the geostrophically balanced sensitivity to zonal wind ûg, b) the unbalanced
component of sensitivity to zonal wind ûi, and c) the addition of balanced and un-
balanced components, all with an interval of 0.4 Pa · s ·m−1. 500 hPa sensitivity to
potential temperature from WRF-adjoint (interval 2 Pa ·K−1, shaded) at 0800 UTC
10 November (F14) in all panels, black contours show a) the geostrophically balanced
sensitivity to potential temperature θ̂g, b) the unbalanced component of sensitivity to

potential temperature θ̂i, and c) the addition of balanced and unbalanced components,
all with an interval of 2 Pa ·K−1.
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Figure 3.15: Cross section of jet core (black contour; 10 m/s interval), normalized ŵ
(shaded) from WRF-adjoint output and normalized ω̂ (contour) recovered from time
tendency of â across the 400 hPa jet at forecast time F14 valid 0800 UTC 10 November

1998. Inset plot depicts the cross-section location.

Figure 3.16: Qualitative sensitivity to ageostrophic wind (red barbs) and sensitivity
to unbalanced wind (green barbs) valid at F14 valid 0800 UTC 10 November 1998
at a) 900 hPa with sea level pressure (contour; 5 hPa interval) and b) 500 hPa with

geopotential height (contour; 4 dam interval).
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Figure 3.17: First column shows the adjoint informed initial optimal perturbation
structure of zonal wind (black contour) and temperature (color shading, warm in red
and cold in blue, magnitude relative to each color bar) at 500 hPa for the experiment
a) “exp WRF-adj”, d) “exp bal”, g) “exp imb” at forecast hour F00 1800 UTC 09
November. The second column shows the difference in mean sea level pressure between
the perturbed experiments and the unperturbed control experiment in color shading
for b) “exp WRF-adj”, e) “exp bal”, h) “exp imb”. The minimum sea level pressure
for each case is labeled on the plot. The third column zooms in on the second column
near the storm center and adds sea level pressure contours from the control experiment

in black and from each perturbed case in red.



102

Figure 3.18: mean sea level pressure difference (shaded, red if pert>ctrl, blue if
pert<ctrl) between the unperturbed control experiment and the optimal perturbed
experiment informed by “exp WRF-adj” (a,b), “exp bal” (c,d), and “exp imb” (e,f) at
the initial time F00 (left column) and forecast hour F02 (right column). mean sea level
pressure contour (interval 5hPa; gray contour) to indicate the low-pressure location at

both time steps.
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Figure 3.19: Perturbation energy norm 1
2

(
u′2 + v′2 +

cp
Tref

T ′2
)

summed over each

model level for optimal perturbation informed by WRF-adjoint sensitivity (blue),
geostrophically balanced adjoint sensitivity (orange) and unbalanced adjoint sensitivity
(green) at initial time F00 (solid line, 1800 UTC 09 November) and forecast hour F01

(dashed line, 1900 UTC 09 November).



104

Figure 3.20: Same as 3.19 but for all output time steps from forecast hour F00 to
F24 for each optimal perturbation experiment a) “WRF-adj”, b) “bal”, c) “imb”. color

legends for each time step are shown in panel a.
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Figure 3.21: Time evolution of the ratio of the change in response function (δR =
⟨∂R/∂x,x′⟩) to the prescribed change in response function for optimal perturbation
informed byWRF-adjoint sensitivity (blue), geostrophically balanced adjoint sensitivity

(orange) and unbalanced adjoint sensitivity (green).
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Chapter 4

Sensitivity to Ertel PV

4.1 Overview

In the previous chapters, we derived the sensitivity to QGPV and its application with two

midlatitude cases and illustrated the values of integrating “PV thinking” in the adjoint

sensitivity analysis. However, the Quasi-geostrophic assumption is only valid when the

Rossby and Froude numbers are comparable and small. If we wish to apply the “adjoint

PV thinking” to the study of tropical cyclones (TCs), where 1) the QG assumption is

violated due to larger Rossby numbers at lower latitudes and 2) horizontal wind is no

longer balanced by Coriolis force and pressure gradient force, sensitivity to Ertel PV

needs to be developed.
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Ertel PV, introduced by Hans Ertel in 1942, plays a crucial role in weather forecasting

and understanding the dynamics of atmospheric circulation. For a three-dimensional

baroclinic compressible flow, Ertel’s potential vorticity is defined as q = 1
ρ
η · ∇θ, where

ρ is the flow density, η is the three-dimensional absolute vorticity and θ is the potential

temperature and is naturally conserved on the isentropic surfaces if no diabatic heating or

friction is introduced. With a specification of independent relation between the wind and

temperature field, one could define a boundary value problem from which a “balanced”

flow can be recovered given the distribution of Ertel PV (e.g. Hoskins et al. 1985; Davis

and Emanuel 1991; Wu 1993).

Based on the definition of PV and the balance constraint, Arbogast (1998) derived a

general formulation of adjoint sensitivity to PV. He further demonstrated the method by

deriving the sensitivity to Ertel PV under thermal wind balance (geostrophic balance)

for two-dimensional steady flow. To extend the utility of this method, so far, we have

applied it to obtain adjoint sensitivity to QGPV under the geostrophic balance for three-

dimensional flow in Chapter 2. In this chapter, we will choose the combination of Ertel

PV and the nonlinear balance constraint and try to calculate adjoint sensitivity to Ertel

PV using WRF-adjoint model output.
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4.2 Derivation of Sensitivity to Ertel Potential Vor-

ticity

4.2.1 Arbogast 1998 Review

The core concept underlying the general adjoint sensitivity to Ertel PV derivation in

Arbogast (1998) has already been presented in Chapter 2 section 2.2.5. It is stated again

for clarity.

We start with the general expression for potential vorticity perturbation and any balance

equation as functions of perturbation streamfunction Ψ′ and perturbation geopotential

Φ′.


q′ = L(Ψ′,Φ′)

a′ = B(Ψ′,Φ′)

where we denote L as the linear operator that calculates PV and B as the balance

operator. This relationship can be expressed in matrix form:

LΨ LΦ

BΨ BΦ


Ψ′

Φ′

 =

q′
a′

 (4.1)
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where q′ stands for the PV perturbation, and a′ stands for the imbalance. If we denote(
∂R
∂q
, ∂R
∂a

)
= (q̂, â) and take the adjoint of (4.1), we will get:

L∗
Ψ B∗

Ψ

L∗
Φ B∗

Φ


q̂
â

 =

Ψ̂

Φ̂

 (4.2)

As stated in Chapter 2, the superscript ∗ denotes the adjoint of an operator. When a

homogeneous boundary condition is applied, the adjoint of an operator is the same as the

transpose of this operator, L∗ = LT .

We can left multiply both sides of the above matrix equation by

B∗
Φ −B∗

Ψ

L∗
Φ −L∗

Ψ

 to eliminate

one operator in each equation:

B∗
ΦL

∗
Ψ −B∗

ΨL
∗
Φ B∗

ΦB
∗
Ψ −B∗

ΨB
∗
Φ

L∗
ΦL

∗
Ψ − L∗

ΨL
∗
Φ L∗

ΦB
∗
Ψ − L∗

ΨB
∗
Φ


q̂
â

 =

B∗
ΦΨ̂−B∗

ΨΦ̂

L∗
ΦΨ̂− L∗

ΨΦ̂

 (4.3)

If B∗
ΦB

∗
Ψ and B∗

ΨB
∗
Φ are commutable and L∗

ΦL
∗
Ψ and L∗

ΨL
∗
Φ are commutable, then (4.3)

reduces to

B∗
ΦL

∗
Ψ −B∗

ΨL
∗
Φ 0

0 L∗
ΦB

∗
Ψ − L∗

ΨB
∗
Φ


q̂
â

 =

B∗
ΦΨ̂−B∗

ΨΦ̂

L∗
ΦΨ̂− L∗

ΨΦ̂

 (4.4)
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Alternatively, presented as a set of equations:


(B∗

ΦL
∗
Ψ −B∗

ΨL
∗
Φ)q̂ = B∗

ΦΨ̂−B∗
ΨΦ̂ (4.5a)

(L∗
ΦB

∗
Ψ − L∗

ΨB
∗
Φ)â = L∗

ΦΨ̂− L∗
ΨΦ̂ (4.5b)

These are the general form of the expressions that need to be solved to either obtain the

sensitivity to PV or the sensitivity to imbalance. If we use subscripts P for PV and B

for balance, and denote the operators in (4.4) as:



φP = B∗
ΦL

∗
Ψ −B∗

ΨL
∗
Φ (4.6a)

φB = L∗
ΦB

∗
Ψ − L∗

ΨB
∗
Φ (4.6b)

UP = B∗
ΦΨ̂−B∗

ΨΦ̂ (4.6c)

UB = L∗
ΦΨ̂− L∗

ΨΦ̂ (4.6d)

(4.5) can be shorthanded into:


φP q̂ = UP (4.7a)

φBâ = UB (4.7b)

To solve (4.7a) and get the sensitivity to PV, we could use the successive over-relaxation

method. One could also find the sensitivity to PV by minimizing the L2 norm of the

formulated cost function, J = 1
2
⟨φP q̂ − UP , φP q̂ − UP ⟩.

4.2.2 Derivation of Sensitivity to Ertel PV Operators

In this section, we will specify the definition of Ertel PV and nonlinear balance as functions

of streamfunction and geopotential to find the expression for operators LΦ, LΨ, BΦ, BΨ.
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In Davis and Emanuel (1991), their nonlinear balance equation in spherical coordinates

is formulated as follows:

∇2Φ = ∇ · (f∇Ψ) +
2

a4 cos2 ϕ

∂
(
∂Ψ
∂λ
, ∂Ψ
∂ϕ

)
∂(λ, ϕ)

(4.8)

where λ is longitude, ϕ is latitude, and a is the earth radius. We can convert (4.8) into

Cartesian coordinate by noting the relations: ∂
∂λ

= 1
a cosϕ

∂
∂x

and ∂
∂ϕ

= 1
a
∂
∂y

1

∇ · (f∇Ψ) + 2
∂ (Ψx,Ψy)

∂(x, y)
−∇2Φ = 0 (4.9)

∇ · (f∇Ψ) + 2
[
ΨxxΨyy −Ψ2

xy

]
−∇2Φ = 0 (4.10)

Before linearizing the whole nonlinear balance equation, we first linearize the Jacobian:

J(Ψx,Ψy)
′ = Ψ̄xxΨ

′
yy +Ψ′

xxΨ̄yy − 2Ψ̄xyΨ
′
xy

Thus the linearized nonlinear balance equation and the operators BΦ and BΨ are found:

∇ · (f∇)Ψ′ + 2
(
Ψ̄xx∂yy + Ψ̄yy∂xx − 2Ψ̄xy∂xy

)
Ψ′ −∇2Φ′ = 0 (4.11)

1Subscripts x, y, π denote taking the partial derivative of the variable to x, y, or π and are used
interchangeably with ∂/∂x, ∂/∂y, ∂/∂π
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BΦ = −∇2

BΨ = ∇ · (f∇) + 2Ψ̄xx∂yy + 2Ψ̄yy∂xx − 4Ψ̄xy∂xy

We should note that the basic states Ψ̄ and Φ̄ in (4.11) should be a set of solutions that

satisfy the nonlinear balance equation (4.10) for the purpose of derivation. Practically,

it is unclear whether using the time-averaged streamfunction and geopotential directly

from the model output leads to failure in Ertel PV inversion or calculating sensitivity to

Ertel PV.

Davis and Emanuel (1991) expressed Ertel PV, q, as a function of Ψ and Φ in spherical

coordinates:

q =
gκπ

p

[
(f +∇2Ψ)

∂2Φ

∂π2
− 1

a2 cos2 ϕ

∂2Ψ

∂λ∂π

∂2Φ

∂λ∂π
− 1

a2
∂2Ψ

∂ϕ∂π

∂2Φ

∂ϕ∂π

]
(4.12)

where g is the gravity acceleration, κ = Rd/Cp is the ratio of dry air gas constant to the

dry air specific heat at constant pressure, p0 is the surface pressure, and p is the pressure

at each vertical level, π = Cp(
p
p0
)κ is the Exner coordinate in the vertical direction. Let

A = gκπ
p

and convert (4.12) into the Cartesian coordinate:

q

A
=

[
(f +∇2Ψ)

∂2Φ

∂π2
− ∂2Ψ

∂x∂π

∂2Φ

∂x∂π
− ∂2Ψ

∂y∂π

∂2Φ

∂y∂π

]
(4.13)
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By linearizing the equation above, we can identify the operators LΦ and LΨ:

q′

A
= (f +∇2Ψ̄)

∂2

∂π2
Φ′ +

∂2Φ̄

∂π2
∇2Ψ′ − [Ψ̄xπΦ

′
xπ + Φ̄xπΨ

′
xπ]− [Ψ̄yπΦ

′
yπ + Φ̄yπΨ

′
yπ] (4.14)

LΦ = A[(f +∇2Ψ̄)
∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ]

LΨ = A[
∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]

Notice all terms within LΦ, LΨ, BΦ, and BΨ are second-order derivatives. As a result,

these operators are all self-adjoint:



LΦ = L∗
Φ = A[(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ] (4.15a)

LΨ = L∗
Ψ = A[

∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ] (4.15b)

BΦ = B∗
Φ = −∇2 (4.15c)

BΨ = B∗
Ψ = ∇ · (f∇) + 2Ψ̄xx∂yy + 2Ψ̄yy∂xx − 4Ψ̄xy∂xy (4.15d)

Now we can plug (4.15) back into (4.6) to obtain all the operators required for the

derivation of sensitivity to Ertel PV and to nonlinear imbalance:

φP =−∇2

(
A[
∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]

)
(4.16)

−
(
∇ · (f∇) + 2Ψ̄xx∂yy + 2Ψ̄yy∂xx − 4Ψ̄xy∂xy

)(
A[(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ]

)
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φB =

(
A[(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ]

)(
∇ · (f∇) + 2Ψ̄xx∂yy + 2Ψ̄yy∂xx − 4Ψ̄xy∂xy

)
(4.17)

−
(
A[
∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]

)(
−∇2

)

UP = −∇2Ψ̂−
(
∇ · (f∇) + 2Ψ̄xx∂yy + 2Ψ̄yy∂xx − 4Ψ̄xy∂xy

)
Φ̂ (4.18)

UB =

(
A[(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ]

)
Ψ̂−

(
A[
∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]

)
Φ̂

(4.19)

The sensitivity to Ertel PV can be obtained by substituting (4.16) and (4.18) into (4.7a).

Since both (4.16) and (4.18) contain the coefficient A, we can divide both sides of (4.7a)

by A:

1

A
φP q̂ =

1

A
UP (4.20)

We expand 1
A
UP and 1

A
φP to show each term used in the code2 explicitly:

UP/A =
1

A

(
−∇2Ψ̂−∇ · (f∇)Φ̂− 2Ψ̄xx∂yyΦ̂− 2Ψ̄yy∂xxΦ̂ + 4Ψ̄xy∂xyΦ̂

)
(4.21)

2Code available at https://github.com/Nuo-Chen/sensitivity-to-ertel-PV
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φP/A =−∇2Φ̄π2∇2 − Φ̄π2∇4 +∇2Φ̄xπ∂xπ + Φ̄xπ∇2∂xπ +∇2Φ̄yπ∂yπ + Φ̄yπ∇2∂yπ

(4.22)

−
{
fxζ̄x∂π2 + fxζ̄∂xπ2 + fy ζ̄y∂π2 + fy ζ̄∂yπ2 + f∇2ζ̄∂π2 + f ζ̄∇2∂π2

− fx∂xΨ̄xπ∂xπ − fxΨ̄xπ∂x2π − fy∂yΨ̄xπ∂xπ − fyΨ̄xπ∂xyπ − f∇2Ψ̄xπ∂xπ − fΨ̄xπ∇2∂xπ

− fx∂xΨ̄yπ∂yπ − fxΨ̄yπ∂xyπ − fy∂yΨ̄yπ∂yπ − fyΨ̄yπ∂y2π − f∇2Ψ̄yπ∂yπ − fΨ̄yπ∇2∂yπ

+ 2Ψ̄xx

[
ζ̄yy∂π2 + ζ̄∂y2π2 − ∂yyΨ̄xπ∂xπ − Ψ̄xπ∂xy2π − ∂yyΨ̄yπ∂yπ − Ψ̄yπ∂y3π

]
+ 2Ψ̄yy

[
ζ̄xx∂π2 + ζ̄∂x2π2 − ∂xxΨ̄xπ∂xπ − Ψ̄xπ∂x3π − ∂xxΨ̄yπ∂yπ − Ψ̄yπ∂x2yπ

]
− 4Ψ̄xy

[
ζ̄xy∂π2 + ζ̄∂xyπ2 − ∂xyΨ̄xπ∂xπ − Ψ̄xπ∂x2yπ − ∂xyΨ̄yπ∂yπ − Ψ̄yπ∂xy2π

]}

where ζ̄ denotes the trajectory absolute vorticity f + ∇2Ψ̄. Since the WRF model is

configured to use the Lambert Conformal Conic projection which introduces a map factor

to each grid point, the gradient of the Coriolis parameter in the x-axis, fx, becomes

nonzero and can not be ignored like under the latitude-longitude coordinate system.

Each term in (4.22) is a product of a constant and an operator that apply on sensitivity

to PV, q̂. Ψ̂ in (4.21) can be obtained from the WRF adjoint model output following

(2.17). Φ̂ in (4.21) is in Exner coordinate and can be calculated by taking the adjoint of
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the definition of perturbation potential temperature θ′ in the Exner coordinate:

θ′ = −∂Φ
′

∂π
(4.23)

Φ̂ =
∂θ̂

∂π
(4.24)

4.2.3 Recover Sensitivity to Nonlinear-BalancedWind and Tem-

perature from Sensitivity to Ertel PV

Once the formulation for sensitivity to Ertel PV is attained, the next step is to recover

the sensitivities to winds and to potential temperature. This inversion process opens up

two possible applications for the nonlinear-balanced adjoint state 1) to remove of high-

frequency wave structure in the adjoint fields and 2) to serve as the “final” adjoint forcing

that drives the adjoint model to integrate backward. These two applications have been

partially achieved with sensitivity to QGPV and the geostrophically balanced adjoint

state shown in Chapter 2 and Chapter 3.

In Chapter 3, we derived a general approach to compute sensitivities to horizontal wind

and to temperature. In section 3.4.1 it is shown that v̂ can be recovered from a known Ψ̂

field (3.6a) and θ̂ can be recovered from a known Φ̂. Therefore, to recover the nonlinear-

balanced sensitivity to wind v̂E and to potential temperature θ̂E from sensitivity to Ertel

PV, q̂E, our first step is to determine the nonlinear-balanced sensitivity to streamfunction
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Ψ̂E and to geopotential Φ̂E
3. Note (4.13) can be expressed as:

q′ = LΨΨ
′ + LΦΦ

′ (4.25)

Taking the adjoint of (4.25) and substituting in (4.15b) and (4.15a), we can get the sensi-

tivity to streamfunction and to geopotential that follows the nonlinear balance constraint:

Ψ̂E = L∗
Ψq̂E = A

(
Φ̄ππ∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ

)
q̂E (4.26)

Φ̂E = L∗
Φq̂E = A

(
ζ̄
∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ

)
q̂E (4.27)

Substitute (4.26) into û = ∂∇−2ψ̂
∂y

and v̂ = −∂∇−2ψ̂
∂x

(e.g. (3.6a)), the sensitivity to

nonlinear-balanced horizontal winds are:

ûE =
∂∇−2(A[Φ̄ππ∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]q̂E)

∂y

v̂E = −∂∇
−2(A[Φ̄ππ∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]q̂E)

∂x

To find the sensitivity to nonlinear-balanced temperature θ̂E, we can substitute Φ′ with

θ′ in the geopotential contribution to Ertel PV perturbation in (4.25) using (4.23):

q′ = A

(
(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ

)
Φ′

= −A
(
(f +∇2Ψ̄)

∂

∂π
− Ψ̄xπ∂x − Ψ̄yπ∂y

)
θ′

3From now on, the subscript E denotes sensitivity variables that are related to Ertel PV or nonlinear
balance.
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Taking the adjoint of the above equation yields the nonlinear-balanced potential temper-

ature θ̂E:

θ̂E = A

(
ζ̄
∂

∂π
− Ψ̄xπ∂x − Ψ̄yπ∂y

)
q̂E

To summarize, nonlinear-balanced sensitivities to wind and to potential temperature can

be recovered from the sensitivity to Ertel PV as follows:



ûE =
∂∇−2(A[Φ̄ππ∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]q̂E)

∂y
(4.28a)

v̂E = −∂∇
−2(A[Φ̄ππ∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ]q̂E)

∂x
(4.28b)

θ̂E = A

(
ζ̄
∂

∂π
− Ψ̄xπ∂x − Ψ̄yπ∂y

)
q̂E (4.28c)

4.2.4 Derivation of Sensitivities to Nonlinear-Imbalance Oper-

ators

Unlike the comprehensive discussion regarding the sensitivity to the geostrophic imbal-

ance in Chapter 3, this dissertation refrains from delving into applications or interpreta-

tions of the sensitivity to the nonlinear imbalance in this dissertation. The implementa-

tion of the derivation below is deferred to future research.
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To solve φBâ = UB (e.g. (4.7b)), we notice both (4.17) and (4.19) contain the coefficient

A. We expand all the terms in (4.17):

φB/A =

(
(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ

)(
∇ · (f∇) + 2Ψ̄xx∂yy + 2Ψ̄yy∂xx − 4Ψ̄xy∂xy

)
−
(
∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ

)(
−∇2

)

= (ζ̄f∂ππ∇2 − ζ̄fx∂ππ∂x − ζ̄fy∂ππ∂y + 2ζ̄Ψ̄xxππ∂yy + 2ζ̄Ψ̄xx∂ππ∂yy

+ 2ζ̄Ψ̄yyππ∂xx + 2ζ̄Ψ̄yy∂ππ∂xx − 4ζ̄Ψ̄xyππ∂xy − 4ζ̄Ψ̄xy∂ππ∂xy)

− (Ψ̄xπfxπ∇2 + Ψ̄xπf∂xπ∇2 − Ψ̄xπfx2π∂x − Ψ̄xπfx∂x2π − Ψ̄xπfxyπ∂y − Ψ̄xπfy∂xyπ

+ 2Ψ̄xπΨ̄x3π∂yy + 2Ψ̄xπΨ̄xx∂xy2π + 2Ψ̄xπΨ̄xy2π∂xx + 2Ψ̄xπΨ̄yy∂x3π

− 4Ψ̄xπΨ̄x2yπ∂xπ − 4Ψ̄xxΨ̄xy∂x2yπ)

− (Ψ̄yπfyπ∇2 + Ψ̄yπf∂yπ∇2 − Ψ̄yπfxyπ∂x − Ψ̄yπfx∂xyπ − Ψ̄yπfy2π∂y − Ψ̄yπfy∂y2π

+ 2Ψ̄yπΨ̄x2yπ∂yy + 2Ψ̄yπΨ̄xx∂y3π + 2Ψ̄yπΨ̄y3π∂xx + 2Ψ̄yπΨ̄yy∂x2yπ

− 4Ψ̄yπΨ̄xy2π∂xy − 4Ψ̄yπΨ̄xy∂xy2π) +
(
Φ̄ππ∇4 − ϕ̄xπ∇2∂xπ − ϕ̄yπ∇2∂yπ

)

UB/A =

(
(f +∇2Ψ̄)

∂2

∂π2
− Ψ̄xπ∂xπ − Ψ̄yπ∂yπ

)
Ψ̂−

(
∂2Φ̄

∂π2
∇2 − Φ̄xπ∂xπ − Φ̄yπ∂yπ

)
Φ̂

Like q̂E, â can be found by solving φBâ = UB using SOR method or minimizing the L2

norm of the formulated cost function, J = 1
2
⟨φBâ− UB, φBâ− UB⟩.
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4.2.5 Successive Over-Relaxation

Because operator φP is linear, it is possible to sort and combine the coefficients in front

of each operator, which is summarized in Table 4.1. For 2nd, 3rd, and 4th-order oper-

ators listed in column 1 of Table 4.1, we calculate coefficients using second-order finite

differencing on neighboring grid points. The vertical finite differencing is carried out

on the Exner coordinate following (Sundqvist and Veronis, 1970). At the current stage,

operators are not adjusted at the boundaries (e.g. i=1,2,nx-1,nx; j=1,2,ny-1,ny; k=1,nz,

where nx, ny, nz are the sizes of the domain) due to their complexity. For example, cal-

culating the three-dimensional operators like ∂3/∂x∂y∂π requires 8 points in the interior,

while it requires 18 points in total to get an accurate value on the edges. In addition,

accounting for the lower boundary condition in the operators can introduce erroneous

lower-level basic state geopotential values (masked by topography) upwards, potentially

causing convergence failure even in the domain interior.

The successive over-relaxation (SOR) algorithm is an iterative method commonly used

for solving the Poisson equation like vorticity and QGPV inversion. It is also effective

for solving the general linear system Ax = b when A is sparse. The SOR algorithm

starts with an initial guess for the solution and a relaxation parameter ω (0 < ω < 2)

which determines the over-relaxation factor. Then the following step will be repeated

until convergence is achieved:



121

1. Start from grid point (2, 2, 2) and iterate over each grid point (i, j, k) within the

computational domain.

2. Update the solution value at the current grid point using the SOR formula:

xnewi,j,k = xoldi,j,k − ω/Ai,j,k

(
bi,j,k −

∑
m ̸=i,n ̸=j,l ̸=k

Am,n,lx
old
m,n,l

)

where xnewi,j,k is the updated solution value for xi,j,k, x
old
i,j,k is the previous solution

value. Ai,j,k represents the coefficient at position (i, j, k) in matrix A, and bi,j,k is

the corresponding element in the right-hand side vector b.

3. After updating the solution value at each grid point, check the convergence criterion.

If the convergence criterion is not met, repeat the iteration process.

The relaxation parameter ω determines the rate of convergence if the algorithm converges.

The SOR algorithm typically converges if the source term b is well-behaved and A is

positive definite. In the case of solving φP q̂E = Up, coefficients in φ depend highly on the

basic state (e.g. Φ̄ and Ψ̄ from the forward trajectory), therefore φP is manually adjusted

to achieve reasonable convergence. φP ;i,j,k is formulated as follows:

φP ;i,j,k =
2C∂2π2;i,j,k

dπk−1dπk
− 4

C∇2
i,j,k

x2
− 2

C∂3x2π;i,j,k
x2

(
1

dπk−1

− 1

dπk
)− 2

C∂3y2π;i,j,k
y2

(
1

dπk−1

− 1

dπk
)

+ 20
C∇4

i,j,k

x4
− 2

C∂4x2π2;i,j,k

x2
2

dπk−1dπk
− 2

C∂4y2π2;;i,j,k

y2
− 4

C∇2∂2xπ;i,j,k
xy

2

dπk−1dπk
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where C∂2π2 , C∇2, C∂3x2π, C∂
3
y2π, C∇4, C∂4x2π2 , C∂4y2π2 , C∇2∂2xπ are the coefficients on

each operator summarized in the second column of Table 4.1 and their typical magnitude

at 500 hPa in a mature tropical cyclone are listed in the third column.

4.2.6 The Magnitude of Sensitivity to Ertel PV

A sanity check for the above derivation would be to use the sensitivity to QGPV (q̂g) as an

approximation for the sensitivity to Ertel PV (q̂E) then evaluate both the left-hand side

(LHS) and the right-hand side (RHS) of (4.20). QGPV serves as a good estimate of Ertel

PV in the midlatitudes where the Rossby number Ro ≪ 1. Even for tropical cyclones,

QGPV’s location and structure closely resemble that of Ertel PV (e.g., Henderson et al.

1999).

The sensitivity to QGPV for Hurricane Ian (2022) is calculated using the method de-

scribed in Chapter 2 (2.15), where the response function is minus perturbation surface

dry column air, R = −µ. Further details about the WRF model simulation will be de-

scribed in section 4.3.2.1. Throughout all levels, LHS and RHS share a similar pattern,

differing by a factor of 10 to 20. As an example, Fig. 4.1 shows 1
A
φq̂g and 1

A
Up at 250

hPa. This suggests two key points: first, the structure of q̂E and q̂g should be similar and

that q̂g would be a suitable approximation for q̂E in the case of Hurricane Ian. Secondly,

the absolute value of q̂E is expected to be 1 to 2 orders of magnitude larger than q̂g.

The second point can be validated by performing the scale analysis of (4.20). Suppose

the sensitivity to wind and to temperature inverted from q̂E are of the same magnitude
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as that inverted from q̂g. Let’s evaluate (4.28a) and (4.28b) and assume the sensitivity

to winds is on the order of magnitude of 1, ûE ∼ 100, a typical value from the WRF

adjoint output when −µ is selected as the response function. At 500 hPa, when dp =50

hPa, dπ ∼ 101 and A ∼ 10−2. Choosing dx = dy ∼ 104, as set in the WRF simulation

for Hurricane Ian, we find Φ̄ππ ∼ 10−1, Φ̄xπ ∼ 10−5, and Φ̄yπ ∼ 10−5. Further, ∇2 and

∂xπ can be approxiated as scales of 10−8 and 10−5 respectively. Thus making Φ̄ππ∇2

(∼ 10−7) is the dominant term compared to Φ̄xπ∂xπ (∼ 10−10) and Φ̄yπ∂yπ (∼ 10−10) in

ûE = ∂∇−2(A[Φ̄ππ∇2−Φ̄xπ∂xπ−Φ̄yπ∂yπ ]q̂E)

∂y
. This implies that at 500 hPa, the magnitude of q̂E

should be on the order of 107.

In a similar fashion, examining (4.28c), ζ̄ scales approximately from 10−5 to 10−4, and

Ψ̄xπ and Ψ̄yπ scale around 10−2, which makes the three terms on the right-hand side of

θ̂ = A
(
ζ̄ ∂
∂π

− Ψ̄xπ∂x − Ψ̄yπ∂y
)
q̂E to be on the same magnitude (10−6). Taking the typical

θ̂E value from the WRF adjoint output, which scales between 10−1 and 100 at 500 hPa

and plugging it into the relation (4.28c), we find again q̂E shall have a magnitude of

107 ∼ 108, consistent with the above scale analysis.

Finally, remember the typical value for QGPV has a scale of 10−4 s−1, while for Ertel

PV, the PV unit (PVU) is defined as 10−6 K · m2 · kg−1 · s−1. Having q̂g ∼ 105 and

q̂E ∼ 106 at 500 hPa (e.g. Fig. 4.9) makes δR = ⟨q′g, ∂R∂qg ⟩ and δR = ⟨q′E, ∂R∂qE ⟩ to be on

the approximately same magnitude of 100 ∼ 101.
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4.3 Case Study of Hurricane Ian 2022

4.3.1 Synoptic Overview

Hurricane Ian (2022) hit the west coasts of Cuba and Florida in late September of 2022,

causing huge damages including violent winds, flooding, and power outages. Ian orig-

inated from a strong tropical wave that emerged from the west coast of Africa around

14-15 September. Over the following six days, the wave slowly traveled across the At-

lantic, embedded within the Inter-tropical Convergence Zone (ITCZ) until it reached the

Windward Islands in the southeastern Caribbean on 21 September. Ian became a trop-

ical storm 18 hours after its genesis at 0000 UTC 24 September. The intensification of

Ian was hindered by moderate-to-strong vertical wind shear which prevented alignment

of the low- and mid-level center when Ian was south of Jamaica. While being steered

by the subtropical ridge, Ian rapidly intensified at 1800 UTC 25 September and reached

hurricane force by 0600 UTC 26 September. The storm continued to intensify over warm

sea surface temperature in a lower vertical shear before it made landfall on the west coast

of Cuba as a category 3 hurricane.

Steered by the subtropical ridge and a broad trough over the eastern US, Hurricane Ian

entered the Gulf, where an eyewall replacement cycle began. Ian became a category 5

hurricane with a peak intensity of 72 m ·s−1 (140 kt) sustained winds and 937 hPa central

pressure at 1200 UTC 28 September after completing the eyewall replacement cycle and
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eventually made landfall in mainland southwestern Florida at 1905 UTC 28 September.

It caused 161 fatalities and the total losses are estimated to be around $113 billion.

Despite a mature TC being characterized by a deep PV tower in the troposphere, recent

studies on TC intensification have predominantly examined the relative vorticity rather

than PV. Wang and Zhang (2003) and Smith et al. (2018) investigated the PV structure

in tropical cyclones with the MM5 model and an idealized simulation. Wu and Emanuel

(1995) explored the contribution of environmental PV to steer the track of Hurricane

Bob (1995) on the East Coast of the US. Molinari et al. (1998) studied the intensification

and weakening of Tropical Storm Danny (1985) using the superposition principle of PV.

Kieu and Zhang (2010) inverted PV anomalies in the TC eyewall and found that lower-

level PV contributes more to the TC intensification than the upper-level PV. Doyle et al.

(2012) examined the difference in the structure of adjoint sensitivity to relative vorticity

between a developing and a non-developing TC genesis event. PV can also be used as a

measurement of inertial stability, not just in the boundary layer to examine the primary

circulation or in the mid-troposphere to exclude the impact of dry air intrusion, but

also in the outflow layer near the tropopause, where small or negative PV indicates low

inertial stability (e.g., Mecikalski and Tripoli 1998; Rowe and Hitchman 2016). Komaromi

and Doyle (2017) examined the inertial instability structure in intensifying and non-

intensifying TC using dropsonde composite. Brooke-Zibton (2022) used adjoint sensitivity

analysis to show that the intensification of Irma (2017) is sensitive to the inertial stability

at the outflow layer, and upper-tropospheric optimal perturbation is most effective in

deepening Irma’s minimum pressure.
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The rapid intensification (RI) of a tropical cyclone is defined as an increase in the max-

imum sustained winds of a TC of at least 30 knots in a 24-hour period (Kaplan and

DeMaria, 2003) or a deepening in pressure of 42 hPa or greater in a 24-hour period (Hol-

liday and Thompson, 1979). In this case study we will focus on the RI period (green

shading in Fig. 4.3a) of Hurricane Ian, with the primary goal to explore the utility of

sensitivity to Ertel PV and other diagnostic tools we developed in the previous chapters.

Figure 4.2 shows the synoptic set-up for Ian’s rapid intensification period at 1800 UTC

25 September 2022 using ERA5 reanalysis. At that time, Hurricane Ian located south

of Jamaica, amid warm sea surface temperature (SST) exceeding 30◦C. Conducive at-

mospheric condition for Ian’s RI includes consistent relative humidity above 80% near

the storm between 850-700 hPa and no immediate intrusion of dry air at lower levels.

Additionally, the vertical wind shear between 200-850 hPa is relatively low, contributing

to the intensification. The hurricane track is guided by the subtropical high pressure to

its northeast at 500 hPa. Other notable synoptic features that might contribute to the

intensification are the broad Rossby wave PV over the northern CONUS and the strong

jet near the PV gradient at 200 hPa.

4.3.2 Data and Model

4.3.2.1 WRF Simulation

Model initial condition and boundary conditions are configured using the WRF Pre-

processing System (WPS). The WRF-ARW simulation is initialized using the National
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Center for Environmental Prediction (NCEP) Final (FNL) operational global analysis on

0.25◦×0.25◦ latitude-longitude grid available from the National Center for Atmospheric

Research (NCAR) Research Data Archive (RDA) every 6 hours (0000, 0600, 1200, 1800

UTC daily). The 24-hour simulation focuses on Hurricane Ian’s RI period from 1800

UTC 25 September 2022 to 1800 UTC 26 September 2022. WRF model V4.4 (Ska-

marock et al., 2019) is employed to get a precise forward trajectory which is saved every

two minutes. WSM 5-class scheme is chosen for the microphysics scheme, Kain-Fritsch

scheme for cumulus parameterization, RRTMG scheme for longwave and shortwave ra-

diation, and YSU scheme for boundary layer parameterization. A 24-hour integration

is generally considered valid for the adjoint model to maintain its linearity properties in

highly nonlinear simulation (e.g. involves more moist dynamics) in the tropical region

(e.g. Park and Droegemeier 1997; Errico and Raeder 1999; Xu et al. 1998). The simula-

tion was conducted on a 24 km grid with 41 equally spaced layers from the surface to 50

hPa, with the lateral boundary condition updated every 6 hours.

The WRF-simulated hurricane achieves a central pressure of 980 hPa and a maximum

10-m wind of 62 kt at the final timestep. The simulated result is weaker than the reality

indicated by the Best Track (e.g. Fig. 4.3) measured either by maximum wind speed or

by pressure. The initial intensification lags behind the reality by 7 hours, but the inten-

sification rate measured by the central pressure is similar to the Best Track for the rest

of the simulation. Therefore the simulation is qualified to serve as a good approximation

of Hurricane Ian and can be used to demonstrate the utility of sensitivity to Ertel PV.
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WRF adjoint model V3.8.1 (Zhang et al., 2013) is used for the adjoint sensitivity com-

putation. The chosen response function is the minus perturbation surface dry air mass

in the column (R = −µ) within simulated 1004 hPa sea level pressure isobar (Fig. 4.3b)

at forecast hour 24 (F24). A balanced adjoint forcing is obtained by inverting the ad-

joint sensitivity to QGPV informed by the adjoint sensitivity output at F23 as illustrated

in Fig. 2.8. This process eliminates the high-frequency waves generated by the adjoint

model due to the geostrophic adjustment.

4.3.2.2 Basic State in Sensitivity to Ertel PV Calculation

When applying the adjoint technique, we treat the perturbation as a small deviation

from the trajectory (basic state). Thus unlike in the Ertel PV inversion in Davis and

Emanuel (1991), where they used the average geopotential from the midlatitude cyclone

development period as the basic state, we can employ the instantaneous geopotential

and streamfunction fields from the model trajectory. However, interpolating geopotential

onto the isobaric/Exner levels lead to masking issue over the topographical features like

the Rockies. In addition, the WRF model does not directly provide a streamfunction

(typically resolved globally in spectral models). To address this issue, streamfunction

fields from the 1.25◦×1.25◦ Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015)

at F00, F06, F12, F18 are interpolated on the WRF domain for simplicity and used as Ψ̄

in related computations. With Ψ̄ known, we can use the nonlinear balance equation (4.10)

to calcualte the perturbation geopotential on each isobaric/Exner level because inverting



129

∇2Φ with homogeneous boundary condition results in Φ′. By adding the perturbation

geopotential to the domain-averaged JRA geopotential on each Exner level, we obtain

the basic state geopotential Φ̄. A Gaussian filter has been applied to smooth the third-

and fourth-order derivatives of Φ̄ and Ψ̄.

4.3.3 Results

4.3.3.1 Sensitivity by Each Variable

An investigation into the original adjoint output from the WRFPLUS model will set up

the stage for us better understand the physical meaning of the sensitivity to PV. The

adjoint model follows the procedure described in Chapter 2 section 2.8.

Figure 4.4 shows the adjoint sensitivities to temperature and to winds at 800 hPa as a

representation of the lower-level sensitivity. Circular areas of warm temperature sensi-

tivity and cyclonic sensitivity to winds that overlap the storm center at each time steps

are both indicators of conducive conditions for storm intensification. This aligns with the

fact that hurricanes develop under warm temperature anomaly in the their eyes. During

the earlier time step (e.g. F00, F06), positive temperature sensitivity maxima are located

northeast of the storm center, while some negative sensitivity to temperature is preferred

to the southwest of the center. These features might be associated with the scattered con-

vection either in the rainband or in the convective bursts. Note sensitivity to the wind

is also not uniformly cyclonic about the storm center in these convective areas, which

might reflect a wind-temperature balance of adjoint variables on a small scale. Other
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notable features across all time steps are the preference for southeasterly wind around

the subtropical high pressure on the Atlantic and the preference for southwesterly west

of coastal Central America.

Although the moist sensitivity variable is not included in the study of sensitivity to PV,

it is important to examine the distribution of moisture in tropical cyclone development.

Shown in Fig. 4.5, the sensitivity to water vapor mixing ratio (moisture) exhibits a

consistent preference for more moisture near the storm center at all time steps. At F00

and F06, the sensitivity to moisture maximum aligns to the south of the maximum relative

humidity (magenta contour), indicating the requirement for axisymmetric moistening

about the storm center. Introducing slight dry air in the surrounding environment at

an outer radius seems to help the storm develop. It is unclear whether this ring of

dry sensitivity is created by unbalance between temperature and moisture sensitivity at

F18 and F12 during the adjoint spin-up time. At F00, small-scale positive and negative

sensitivities to moisture north of the storm address the contribution of small-scall scale

convection, similar to what is indicated by the temperature sensitivity (Figs. 4.4a,b).

As a reminder, these moisture sensitivity patterns are primarily controlled by the WRF

nonlinear trajectory, which invokes a Heaviside function during the phase change of water

that commonly occurs in a convective system.

The 500 hPa WRF trajectory shows that the subtropical high-pressure northeast of Hur-

ricane Ian and a broad trough dominating the CONUS, indicated by high PV values (Fig.

4.6), are two primary midlatitude systems influencing Ian’s intensification. A small PV
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anomaly is observed at the US-Mexico border at F00, which becomes less organized at

F18. Sensitivities to winds and temperature suggest the broad trough over CONUS has

no impact on the TC intensity (not shown). The distribution of the sensitivity to the tem-

perature at 500 hPa resembles that at 800 hPa (Fig. 4.4), concentrating near the storm

center near the final time step and spreading out close to the initial time. Away from the

TC center, the zebra-striped positive and negative sensitivities to the temperature, along

with shifts in the direction of sensitivity to wind at F00 and F06, again highlight the

significance of regional convection in supporting TC intensification. Broadly speaking,

the sensitivity to winds is more cyclonic and inwardly organized at F18. There is also a

secondary cyclonic feature present in the Gulf, with its southern branch contrasting the

easterly wind in southern Mexico. This feature over Mexico persists at F12 but becomes

less organized by F06 and F00 (Figs. 4.6c,d). When comparing with the 500 hPa back-

ground wind at F00 (Figs. 4.6a), we notice the cyclonic sensitivity to winds reverses the

anticyclonic wind direction present in the background state. The wind sensitivity east

of the TC is more outwardly organized from F12 to F00, differing from the cyclonically

inward sensitivity at 800 hPa (Figs. 4.5a,b,c).

The tropical cyclone enters the outflow level at about 250 hPa, where a broad anticyclonic

outward flow is observed in the WRF simulation (Figs. 4.7a,b). The shortwave trough

northwest of Hurricane Ian slowly develops from F00 to F18 and helps the outflow’s

connection to the subtropical jet. This passage from the outflow to the subtropical

jet accelerates the air evacuation in the hurricane’s eyewall, creating stronger upward
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vertical motion. The PV streamer northeast of Ian becomes more meridionally organized

as negative PV builds up between the PV streamer and the hurricane.

Comparing the 500 hPa and 800 hPa sensitivity that highlights cyclonic sensitivity to wind

near the TC center, the dominant feature at 250 hPa is cyclonic sensitivity to wind over

Mexico (Figs. 4.7c,d,e,f). This feature is stretched along a west-northwesterly oriented

axis from F18 to F00, smoothly connecting with the anticyclonic sensitivity to winds

at the outflow level. The southeasterly branch of this feature seems to counteract the

background cyclonic wind associated with the shortwave trough (Figs. 4.7a,b). However,

this also suggests that deepening the shortwave trough at 250 hPa could potentially

intensify the storm. Batches of sensitivities to wind and to temperature northeast of the

storm are again speculated to be associated with the convection. The presence of deep

convection in this region helps pump more negative PV to the lower stratosphere and

upper troposphere.

4.3.3.2 Sensitivity to Ertel PV

Figure 4.8 depicts the distribution of 850 hPa sensitivity to QGPV (first column), to

geostrophic imbalance (second column), and to Ertel PV (third column) at F00, F06,

F12, F18 of the simulation. q̂g and â are inverted over the whole domain, while q̂E is

inverted only in the domain shown in the figure. q̂g is circular around the storm center

indicated by 850 hPa Ertel PV contour at F18 and F12 (Figs. 4.8j,g), suggesting that

an increase in QGPV at 850 surrounding the storm center will intensify the hurricane
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12 or 6 hours later. Characterized by a deep positive PV tower in the troposphere, the

tropical cyclone’s intensity certainly benefits from having more positive PV perturbation

near the storm center. At F06 and F00, the largest sensitivity to QGPV started to spiral

outwards, forming a “flipped comma” shape around the storm center.

At F18, the sensitivity to geostrophic imbalance, â, is predominantly negative near the

storm center, with a strip of positive value to its east (Fig. 4.8k). As the adjoint model

continues to integrate backward, the area of â < 0 expands outward, accompanied by

â > 0 radially outward. From what we discussed in Chapter 3, the vertical gradient of â

recovers most of the temperature sensitivity (e.g. Fig. 3.2). One possible cause for the

horizontal â dipole pattern could be its collocation with temperature sensitivity (e.g. Fig.

4.5d and Fig. 4.11c). More importantly, notice the positive q̂g area overlaps where â < 0

at all time steps (Fig. 4.8 column 1 and column 2). Both q̂g and â have spatial scales

possibly larger than the Rossby radius of deformation, which is comparably smaller than

the synoptic scale in TCs due to high relative vorticity. In Chapter 3, we discussed that

â < 0 is surrounded by a cyclonic sensitivity to winds (e.g. Fig. 3.3). Since the horizontal

scale of the negative â is large enough, we speculate that instead of θ̂, it should be v̂ that

adjusts to the existence of â. The additional sensitivity to cyclonic wind, marked by

the broad negative â pattern, suggests that the sensitivity to winds in the TC boundary

layer is super-geostrophic. Although supergradient winds are often observed in the TC

boundary layer (e.g. Kepert and Wang 2001; Montgomery and Smith 2017; Fei et al.

2021), they usually occur near the radius of maximum wind (40 ∼ 60 km from the TC

center), much smaller than the radius of q̂g > 0 pattern.
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Next, we will examine the sensitivity to Ertel PV4. Unlike the broad positivity of q̂g,

positive q̂E is concentrated to the storm center at F18 (Fig. 4.8l), surrounded by a ring of

negative sensitivity to Ertel PV. q̂E spreads outward like â as the adjoint integrate back-

ward. Contrary to q̂g, at F12 and F06, q̂E locates northeast of the storm center. At F00,

positive q̂E and q̂g maximum strips locate at the same location, spiral anticyclonic from

east of the storm into the storm center like a “flipped comma”. The random distribution

of q̂E at F00 near Cuba and Jamaica is similar to that of â. This could be an indication

of having more convection if we compare the pattern with the sensitivity to mixing ratio,

q̂vapor (Fig. 4.5c). Based on what we discussed in Chapter 3, â is associated with sen-

sitivity to temperature that is related to diabatic heating release. q̂vapor also co-locates

with sensitivities to Ertel PV and to QGPV south of the storm center, aligning with the

previous studies that recorded the relevance between moisture and PV (e.g., Vich et al.

2012; Doyle et al. 2012; Doyle et al. 2014).

The distribution of 500 hPa sensitivity to QGPV (Fig. 4.8 column 1) is similar to that

at 850 hPa, displaying a circular pattern that aligns with the TC center indicated by

the 500 hPa Ertel PV contour. The negative q̂g southwest of the storm center crossing

Honduras and Nicaragua is more prominent in the mid-troposphere than in the boundary

layer. Sensitivity to anticyclonic wind associated with q̂g < 0 adds more northwesterly

wind sensitivity along the east coast of Honduras, effectively addressing the 500 hPa

sensitivity to wind pattern in Fig. 4.6.

4The distribution of sensitivity to Ertel PV should be viewed with caution. The author manually
tuned many procedures during the SOR inversion and the sensitivity to Ertel PV might not converge
before the SOR is subjectively terminated.
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In contrast to the broad negativity surrounding the storm center at 850 hPa, the sensitiv-

ity to geostrophic imbalance at the 500 hPa level appears more scattered across all four

timesteps (Fig. 4.8 column 2). A possible explanation is that, at 500 hPa, the adjoint

sensitivities to wind and temperature are generally in “geostrophic balance” since â has

a relatively small scale and is more scattered. While the broad 850 hPa â negativity

suggests that geostrophic balance is not applicable to the relationship between θ̂ and v̂

in the boundary layer of a mature TC.

The radial q̂E dipole expands outward as the model integrates backward. At F00, the

negative q̂E shares the same location with q̂g (Fig. 4.8a) over Honduras and Nicaragua.

Contrary to the 850 hPa q̂E that wraps around the storm (Fig. 4.8c), the 500 hPa q̂E

exhibits a more linear pattern with a maximum located southwest of the storm at an

outer radius. At 850 hPa, it is easy to imagine that positive q̂E is cyclonically advected

by the winds from the nonlinear trajectory and gradually wraps around the TC center

from F00 to F18 (Fig. 4.8 column 3). At 500 hPa, positive q̂E contracts towards the center

radially rather than cyclonically. This behavior is intriguing because the background 500

hPa flow is largely rotational instead of radially inward like in the boundary layer. This

might serve as a reminder that the adjoint sensitivity is merely an inflection of the state

variable adjoint gradient at each timestep and no calculation has been shown that the q̂E

is a conserved variable, either on isentropic or isobaric surfaces.

At 250 hPa, where the TC outflow is located, the background Ertel PV is either close

to zero or negative (e.g. Fig. 4.7a,b). This layer is typically associated with negative
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PV and low inertial stability. Research by Wang et al. (2020) points out the balance

constraint is not applicable at the storm outflow level. Through an idealized simulation,

Rappin et al. (2011) illustrated that having a TC-jet couplet helps the tropical cyclone

outflow expand into the region of weak inertial stability on the anticyclonic shear side of

the jet stream, therefore, minimizing the energy required to evacuate the air mass and to

complete the Carnot cycle.

The minus 0.3 PVU contour at 250 hPa in Fig. 4.10 could suggest the region of deep

convection in the trajectory. The 250 hPa sensitivity to QGPV is generally negative south

of the TC center at the final time (Fig. 4.10j). The q̂g minimum rotates cyclonically

around the TC center from F18 to F06 and ultimately propagates to the east of Cuba

at F00. Since the outflow of a TC is characterized by an anticyclonic flow and so is the

sensitivity to winds (e.g. Figs. 4.7c,d,e,f), one can expect q̂g < 0 as it is also associated

with anticyclonic wind sensitivity (e.g. Fig. 2.1). Following the schematic of sensitivity to

PV, where q̂g > 0 (q̂g < 0) corresponds to θ̂ > 0 above (below), and θ̂ < 0 below (above),

it becomes evident that having q̂g < 0 at upper levels and q̂g > 0 at mid-troposphere

points to have warm temperature sensitivity in between, consistent with the typical TC

warm core structure.

Areas with negative PV values often coincide with low inertial stability (e.g., Mecikalski

and Tripoli 1998; Rowe and Hitchman 2016). This implies that interpreting q̂g < 0

goes beyond just anticyclonic wind sensitivity; it also indicates a preference for lower

instability, facilitating storm intensification. The preference for having positive q̂g to the
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southwest of the storm is not necessarily associated with the TC itself within this limited

domain and shall be explained later in section 4.3.3.4 with Fig. 4.15.

Consistent with 850 hPa and 500 hPa, sensitivity to geostrophic imbalance is again scat-

tered northeast of the TC, especially at F06 and F12 (Figs. 4.10b,e). At F18, the sensi-

tivity to Ertel PV is broadly negative to the south of the TC at F18 (Fig. 4.10l). Just

like q̂g, q̂E resolve some positive sensitivity over Honduras at F00. At the same time, the

spatial distribution of q̂E closely resembles â, indicating that most features not captured

by geostrophic balance can be resolved by applying nonlinear balance. Unfortunately,

the dissertation does not include the schematic for sensitivity to Ertel PV, particularly

regarding its implications on temperature sensitivity, such as whether it has the potential

to represent diabatic heating patterns similar to â.

At all the shown levels, the sensitivity to Ertel Potential Vorticity displays a more intricate

structure compared to the sensitivity to QGPV in the context of tropical cyclones, while

capturing major features in the sensitivity to geostrophic imbalance. Moreover, when

integrated backward from F24 to F00, the maximum magnitude of q̂g at 850 hPa and 500

hPa diminishes over time, while the maximum of q̂E increases.

Overall, the fact that the structure of q̂E combines essential features of both q̂g and

â suggests that q̂E is able to resolve some features covered in nonlinear balance but not

included under the geostrophic balance. This addresses the limitations of using sensitivity

to QGPV and the QG balance constraint in tropical cyclones.
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The q̂g patterns at different levels suggest that having more positive PV near the storm

center at lower- and mid-levels, along with more negative PV at the outflow level con-

tributes to TC’s rapid intensification within 24 hours. As for â and q̂E close to F00, they

exhibit scattered distributions to the northeast of Hurricane Ian throughout the tropo-

sphere from 850 hPa to 250 hPa. These distributions resemble the low-level sensitivity to

moisture field (e.g. Fig.4.5) and indicate the importance of mesoscale deep convections

in the periphery of the tropical cyclone to the rapid intensification.

4.3.3.3 Sensitivity to Nonlinear-Balanced State

Following Equation (4.28), we recovered the sensitivity to the nonlinear-balanced wind

(v̂E) and temperature (θ̂E) from the sensitivity to Ertel PV, q̂E. It should be noted that

v̂E and θ̂E are only qualitative stems from the inaccuracies in the basic state variables

like Φ̄ππ required in Equation (4.28). On the other hand, sensitivity to geostrophically

balanced and unbalanced wind and temperature (e.g. ûg and ûi) are quantitative and

can be directly compared with the result from WRF-adjoint output.

Figures 4.11, 4.12, 4.13 compare the sensitivity to wind and temperature from WRF-

adjoint (panel a) and those recovered from q̂E (panel b; follows (4.28)), from â (panel c;

follows (3.7a)), and from q̂g (panel d; follows (2.19)) valid at 1200 UTC 26 September

2022 (F18). Presenting results at F18 is enough to illustrate the feasibility of recovering

wind and temperature sensitivity fields from q̂E. Additionally, patterns close to the final

timestep offer simpler interpretations before complexities emerge.
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At 850 hPa, warm temperature sensitivity and cyclonic wind sensitivity favor the devel-

opment of the storm. Both geostrophically balanced (θ̂g; Fig. 4.11d) and unbalanced

temperatures (θ̂i; Fig. 4.11c) are consistent with the WRF-adjoint output but on a

smaller magnitude. Geostrophically balanced wind sensitivity (v̂g; Fig. 4.11d) closely

resembles the wind sensitivity field from WRF-adjoint output. Although the sensitivity

to nonlinear balanced temperature (θ̂E; Fig. 4.11b) is negative at the lower level, it is

able to recover the cyclonic sensitivity to wind patterns. When computing q̂g, the sensi-

tivity to temperature near the surface is employed as the Neumann boundary condition.

However, when applying the same boundary condition to q̂E, it leads to a drastic change

in q̂E and quick failure in SOR convergence.

At 500 hPa, v̂g and θ̂g (Fig. 4.12d) accurately replicate the primary features of v̂ and

θ̂ (Fig. 4.12a) from the WRF-adjoint output. v̂i is negligible at all three levels, while

θ̂i identifies the θ̂ maximum northwest of the storm center (Fig. 4.12c). The presence

of a gravity wave pattern in θ̂i 6 hours into the backward integration suggests that the

geostrophically balanced adjoint forcing is not able to fully achieve the “adjoint thermal

wind balance”. v̂E (Fig. 4.12b) is cyclonic to the west of the TC center at a closer

radius, transitioning to anticyclonic behavior at an outer radius. As for θ̂E, it captures

the anticyclonically inward spiraling characteristic of positive θ̂ near the storm center like

the other two temperature sensitivities. At the same time, the positive θ̂E is accompanied

by a strip of θ̂E < 0 immediately outwards.

At 250 hPa, sensitivities are of smaller magnitudes than at lower levels. Specifically, θ̂g
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(Fig. 4.13b) associated with q̂g and v̂i (Fig. 4.13c) associated with â are almost negli-

gible. v̂g recovers the anticyclonic v̂ (Fig. 4.13a) and successfully removes its divergent

component. θ̂i (Fig. 4.13d) recovers θ̂ but at a smaller magnitude and retains the gravity

wave pattern in temperature sensitivity. Although v̂E does not match v̂, θ̂E shows a

warm temperature at the TC’s outflow level and a temperature sensitivity dipole over

Guatemala, recovering some features in θ̂. Additionally, unlike θ̂i, θ̂E does not retain the

gravity wave pattern in θ̂, again proving q̂E’s ability to encompass the structure of both

sensitivity to winds like q̂g and sensitivity to temperature like â.

Analyzing the cross-section of Hurricane Ian at F18, the sensitivity to temperature from

the WRF-adjoint output (Fig. 4.14a) is overall positive from the surface to 500 hPa, cap-

tured by a triangle shape. Both â and q̂g (Figs. 4.14c and d) resolve warm temperature

sensitivity at the surface or lower-to-mid troposphere. Although q̂E (Fig. 4.14b) itself

is positive around the PV core (Fig. 4.14a) similar to q̂g, θ̂E turns negative beneath the

maximum of q̂E. Applying surface level θ̂ as the Neumann bottom boundary condition

might solve this temperature sensitivity mismatch, but it could also lead to SOR conver-

gence failure at the current stage of research. Note that it is difficult to show cross-section

comparisons at other time steps due to their distinct horizontal structures.

4.3.3.4 Optimal Perturbation

Next, perturbation experiments are conducted to scrutinize the validity of the sensitivi-

ties discussed above, following the optimal perturbation method described in Chapter 3
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section 3.5. Unfortunately, perturbation experiments that are intended to increase the

storm by adding optimal perturbation all result in weakening the storm. Therefore, for

the optimal perturbation experiments, we seek to increase the perturbation column dry

air mass, µ, within 1004 hPa sea level pressure (SLP) contour by an average of 1 hPa at

the final time. The optimal perturbation experiments should be analyzed with caution

for another reason: the boundary layer perturbation added is extremely large, risking the

potential of violating the small perturbation assumption necessary for the validity of the

tangent and adjoint models (e.g., Brown and Hakim 2015).

To create optimal perturbation informed by nonlinear balanced sensitivities to wind and

to temperature, q̂E needs to be computed over the full domain to recover v̂E and θ̂E.

Figure 4.15 depicts the distribution of q̂g, â, q̂E at lower-, mid-, and upper-troposphere at

1800 UTC 25 September 2022 (F00). In the lower- and mid-troposphere, sensitivities are

concentrated near the storm center as described in section 4.3.3.2. At 250 hPa, the most

pronounced sensitivity to PV locates over Central America (e.g. 4.15g,l), possibly sug-

gesting that modifying the upper-level shortwave (Fig. 4.7a) could impact on Hurricane

Ian’s development. The q̂E dipole strips make it unclear whether a positive or negative Er-

tel PV is preferred in the region. Remember that cyclonic (anticyclonic) wind sensitivity

surrounds positive (negative), therefore, a meridionally oriented q̂E dipole with a config-

uration of negative values to its west and positive values to its east shall be associated

with a northerly wind sensitivity. This interpretation is consistent with the northerly

wind sensitivity from the WRF-adjoint output (Fig. 4.7c). Similarly, the horizontally

oriented dipole over coastal Mexico would suggest sensitivity to easterly wind, which is
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consistent with the WRF-adjoint v̂ at the same location. Figures 4.16g and 4.16l show

the connection between cyclonic wind sensitivity, recovered from either q̂g or q̂E, and the

upper-level shortwave over Mexico (e.g. Fig. 4.7a).

The baseline unperturbed experiment is referred to as “ctrl.” The optimal perturbation

experiment informed by the adjoint sensitivity from the WRF adjoint output (initial

perturbation proportional to Fig. 4.4a, Fig. 4.6c, and Fig. 4.7c) is labeled as “WRF-

adj”. “qgbal” labels the experiment informed by QG balanced sensitivity fields at F00

(initial perturbation proportional to Fig. 4.16 column 1), “imbal” labels the experiment

informed by the unbalanced sensitivity fields at F00 (initial perturbation proportional

to Fig. 4.16 column 2), and “nlbal” labels the experiment informed by the nonlinear

balanced sensitivity fields at F00 (initial perturbation proportional to Fig. 4.16 column

3). All perturbed experiments are carried out from 1800 UTC 25 September 2022 to 1800

UTC 26 September 2022, the same as the unperturbed control experiment.

The evolution of Hurricane Ian’s minimum SLP for each experiment is shown in Fig.

4.18. With a prescribed 1 hPa column dry air increase averaged inside the 1004 hPa

contour at the final time (e.g. green area in Fig. 4.3), both “qgbal” and “nlbal” are

able to achieve a weaker storm at the final time with a 3 hPa rise in the minimum

SLP, while “WRF-adj” and “imbal” deepen the storm center pressure by 1 hPa. Figure

4.18 illustrates the SLP difference between the perturbed experiments and the control

experiment, SLPpert − SLPctrl, where the subscript “pert” can be “WRF-adj”, “qgbal”,

“imbal”, or “nlbal”. The SLP difference dipoles (e.g. zoom-in plots) are generally caused
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by the location shift of Hurricane Ian’s eye. “WRF-adj” (Fig. 4.18a), “qgbal” (Fig.

4.18b), and “nlbal” (Fig. 4.18d) experiments all retard the northwest moving progression

of TC, while the “imbal” (Fig. 4.18c) experiment shifts the TC center location slightly

to the west.

Apply the same linearity measurement method used in Chapter 3 where the change in

response function ∆R ≈ δR = ⟨∂R/∂xτ ,x′
τ ⟩ at each timestep τ = 0 ... 24 is calculated.

Here, the perturbation x′
τ is the deviation in variables x = (u, v, θ) of the perturbed

experiment from the control experiment, x′ = xpert − xctrl. The normalized δR with

respect to the prescribed energy ∆R0 is shown in Fig. 4.19. In a linear model, such as

the tangent linear model, δR/∆R0 should equal 1 at all time steps. We notice that only

“WRF-adj” starts from unity. This is because sensitivities used to create perturbations in

other experiments differ, but only “WRF-adj” sensitivity is used to calculate δR. In both

“WRF-adj” and “imbal” perturbations, δR quickly loses more than 60% of its initial

value at the first timestep. This suggests a loss in linearity and rapid dissipation of

perturbation energy due to the spin-up/adjustment process. Conversely, both “qgbal”

and “nlbal” experiments retain most of their perturbation energy input. The observation

that QG balanced perturbation undergoes less adjustment than the nonlinear balanced

one could suggest that either the model adjusts to the QG balance, or the recovery of the

nonlinear balanced perturbation from sensitivity to Ertel PV is not accurate enough. All

four experiments share a similar trend of slow decrease in linearity (δR/∆R0) until F19,

where both balanced perturbations start to increase.
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Comparing the perturbation energy evolution of four perturbed experiments in Fig. 4.20,

we find “WRF-adj” inserts the least amount of energy at the initial time. “Imbal” inserts

the largest amount of energy near the boundary layer top at 900 hPa, probably due to the

supergradient wind sensitivity that is not resolved by the geostrophic balance. “WRF-

adj”, “qgbal”, and “nlbal” distribute most of their energy near the surface, gradually

decreasing to a minor amount near 600 hPa. In the first few hours, most perturbation

energy is concentrated near the surface; around F09, upper-level energy near 150 hPa

starts growing for “qgbal”, “imbal”, and “nlbal”, with “WRF-adj” picking up upper-level

development three hours later. At the final time, all experiments show three energy peaks

at the surface, in the boundary layer, and near the upper-troposphere-lower-stratosphere

(UTLS) around 150 hPa (e.g. tropopause indicated by θe contour in Fig. 4.14).

Despite distinct distributions of sensitivity to Ertel PV and QGPV shown in Fig. 4.8,

Fig. 4.9, and Fig. 4.10, the fact that the balanced perturbation informed by QG- and

nonlinear-balanced sensitivities to wind and to temperature are able to have a similar

impact on the storm development suggests two points. Firstly, q̂E is relatively accurately

inverted and the method to recover v̂E and θ̂E are qualitatively correct. Secondly, q̂E

leverages the advantages of both q̂g and â.

4.3.3.5 Approximation of Sensitivity to PV with PV Perturbation

Like in Chapter 2 section 2.5.4, we wish to assess the validity of approximating the

sensitivity to PV with the PV perturbation by comparing two different PV perturbations.
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The first one is the PV difference between the optimally perturbed experiment and the

control experiment, both experiments run for 24 hours. The calculation of the second

kind of PV perturbation requires no additional model integration. Optimal perturbations

informed by the balanced adjoint field are introduced to the control experiment at each

time step and PV measured in the unperturbed state is subtracted from the PV measured

in the perturbed state.

Figures 4.21a,d,g,j show 500 hPa QGPV difference between the perturbed “WRF-adj”

experiment from section 4.3.3.4 and the control experiment. The initial QGPV pertur-

bation introduced to the model state is at the outer radius of the storm. Over the next 6

hours, the perturbation quickly grows from 0.1 s−1 to 8 s−1, forming a dipole near the TC

center – indicating the shift in storm center location. Sensitivity to QGPV is reversed to

better align with the optimal perturbation that seeks to reduce storm pressure. Figures

4.21b,e,h,k suggest that less positive QGPV supports storm weakening. Since q̂g is solved

through a Poisson-like equation, the spatial pattern for −q̂g is much broader than the

perturbation.

To make a fair comparison between the spatial structures of QGPV perturbation and

sensitivity to QGPV, geostrophically balanced optimal perturbations, u′g,t, v
′
g,t, θ

′
g,t, in-

formed by the geostrophically balanced adjoint sensitivities, ûg,t, v̂g,t, θ̂g,t at each time

step t = 0, 6, 12, 18 are introduced to the control simulation at their corresponding time

step (Figs. 4.21c,f,i,l). Column 3 suggests the QGPV perturbation introduced at the in-

stantaneous time step has a finer structure than the sensitivity field in column 2, differing
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from the QGPV perturbation in column 1 except at F00. Although the initial optimal

perturbations (Fig. 4.21a) are not in QG balance, its unbalanced component does not

seem to contribute to the perturbation QGPV. This might be why Fig. 4.21a and Fig.

4.21c share the same pattern and provide numerical support for the energy norm sensi-

tivity to QGPV derivation method shown in Chapter 2 section 2.2.4, which utilizes the

common Lagrange multiplier across variables.

Figure 4.22 replicates Figure 4.21 but with the Ertel PV. The reversed sensitivity to Ertel

PV, −q̂E has a finer spatial structure than −q̂g but does not show the northwest-southeast

“WRF-adj - ctrl” Ertel PV perturbation dipole (e.g., Figs. 4.22b,e,h,k). Nonlinear-

balanced optimal perturbations, u′E,t, v
′
E,t, θ

′
E,t, informed by the nonlinear-balanced ad-

joint sensitivities, ûE,t, v̂E,t, θ̂E,t are added to the control simulation at each time step.

Compare the QGPV perturbation added by the QG-balanced state variable perturbation

(e.g. Figs. 4.21c,f,i,l) and the Ertel PV perturbation added by the nonlinear-balanced

state variable perturbation (e.g. Figs. 4.22c,f,i,l), their spatial distribution are strikingly

similar, inferring that QGPV could represent Ertel PV in TCs to some extent. More

interestingly, contouring −q̂E on these instantaneous Ertel PV perturbations shows re-

markable overlap between the two features. Maybe we can approximate the sensitivity to

PV with the PV perturbation, with the condition that the perturbation must be added at

the individual time (e.g., Fig. 4.22 column 3) rather than taking the difference between

two complete model runs (e.g., Fig. 4.22 column 1).
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4.4 Conclusion

The formulation for three-dimensional adjoint sensitivity to Ertel’s potential vorticity

under the nonlinear balance constraint is derived in this chapter, along with the nonlinear-

balanced sensitivity to winds and to potential temperature. Using the case of WRF-

simulated Hurricane Ian (2022), we calculate the sensitivity of Ian’s minimum sea level

pressure to Ertel PV with the successive over-relaxation technique. In short, sensitivity

to Ertel PV is able to capture the structure of both sensitivities to winds like sensitivity

to QGPV, and sensitivity to temperature like sensitivity to geostrophic imbalance.

Comparing the sensitivity to Ertel PV and QGPV qualitatively, it is evident that sen-

sitivity to Ertel PV, q̂E, exhibits a more detailed spatial distribution than sensitivity to

Ertel PV, q̂g (e.g. Figs. 4.8, 4.9, 4.10). The patterns in q̂E near the initial time exhibit

small and sparse features resembling â (e.g. F00, F06 in Figs. 4.8, 4.9, 4.10), indicating

q̂E’s ability to resolve certain nonlinear balance-covered features that are not included un-

der geostrophic balance. These features are speculated to be associated with small-scale

convection in TC’s ambient region due to their collocation with the moisture sensitivity

field (e.g., Doyle et al. 2014; Doyle et al. 2011; Demirdjian et al. 2020). They can also

be linked to convective vertical “hot towers” that contribute to TC development found

in recent studies (e.g., Hendricks et al. 2004; Montgomery et al. 2006).

Despite the distinct structure difference between q̂E and q̂g close to the initial time (F00),

optimal perturbations informed by QG balanced sensitivities recovered from q̂g and by
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nonlinear-balanced sensitivities recovered from q̂E have similar impacts on Hurricane Ian

in terms of how much the storm has weakened (Fig. 4.18), vertical perturbation energy

distribution (Fig. 4.20), and the linearity retention (Fig. 4.19).

The similarity between QG-balanced and nonlinear-balanced sensitivity states is reflected

in the QGPV and EPV perturbations added to the system at individual timestep (Figs.

4.21, 4.22). The overlapping of instantaneous QGPV/EPV perturbation and q̂E provides

a piece of strong evidence that q̂E is a better representation of the actual PV sensitivity

than q̂g, although the boundary condition is not considered in q̂E inversion and the choice

of the basic state is not precise enough.

Differentiating the contributions of TC outflow and boundary layer processes through

sensitivity to winds or PV magnitudes isn’t straightforward due to the model’s inherent

characteristics.

Finding the contribution of nonlinear imbalance in TC development can shed light on un-

derstanding processes like supergradient wind in the boundary layer process (e.g., Kepert

and Wang 2001; Montgomery and Smith 2017; Fei et al. 2021) and the outflow layer,

where nonlinear balance is violated (e.g., Cohen et al. 2017; Wang et al. 2020). At the

same time, we should note that the sensitivity to PV calculated from the model output

does not necessarily follow the “adjoint PV dynamics” in models that use PV as a diag-

nostic variable, such as the QG channel model (e.g., Kim and Beare 2011). The sensitivity

to PV merely rearranges the sensitivity to diagnostic variables from the model output into

a more interpretable form to the dynamical processes behind the system development.
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Neither q̂g nor q̂E shows PV sensitivity robust enough at the outflow layer when com-

pared with the boundary layer sensitivity. If the preference for having inertial instability

or low PV at TC’s outflow layer is not recognized by the model’s adjoint, assessing the

sensitivity to PV only provides qualitative knowledge of PV preference at UTLS. From

previous cases with either µ or mid-level circulation as a response function, the WRF ad-

joint model always produces larger wind and temperature sensitivities near the surface,

with sensitivity magnitude decreasing with height. Thus it is impossible to determine

the relative importance and contribution of TC outflow and TC boundary layer process

by looking at the magnitude of sensitivity to winds or to PV at these levels. One way to

compare their relative contribution is by comparing how much the storm will intensify

when optimal perturbation carries the same amount of kinetic and thermal energy to

each level is added to the initial condition (Barrett et al. 2016; Brooke-Zibton 2022). One

can also choose the circulation at the outflow level as the response function, anticipating

the sensitivity will decrease from the upper to the lower level. Another method would

be having a model that can produce an idealized hurricane and uses Ertel PV or QGPV

as the diagnostic variable (e.g., Kim and Beare 2011; Xu 1994). Those being said, the

sensitivity to PV remains valuable for TC track predictability since TC’s track is of-

ten steered by mid-latitude features in the mid-troposphere, where the model-generated

adjoint sensitivities have a broader horizontal presence.
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Operator Coefficient Coef Scale

∇2 ∇2 ∂2Φ̄
∂2π

10−11

∇4 ∂2Φ̄
∂2π

10−2

∂2xπ
∇2 ∂2Ψ̄

∂xπ
+ f

x
∂Ψ̄xπ

∂x
+ f

y
∂Ψ̄xπ

∂y
+ f∇2 ∂2Ψ̄

∂xπ
10−15

+2∂
2Ψ̄
∂x2

∂2Ψ̄xπ

∂y2
+ 2∂

2Ψ̄
∂y2

∂2Ψ̄xπ

∂y2
− 4∂

2Ψ̄
∂xy

∂2Ψ̄xπ

∂xy

∂2yπ
∇2 ∂2Ψ̄

∂yπ
+ f

x

∂Ψ̄yπ

∂y
+ f

y

∂Ψ̄yπ

∂y
+ f∇2 ∂2Ψ̄

∂yπ
10−15

+2∂
2Ψ̄
∂x2

∂2Ψ̄yπ

∂y2
+ 2∂

2Ψ̄
∂y2

∂2Ψ̄yπ

∂y2
− 4∂

2Ψ̄
∂xy

∂2Ψ̄yπ

∂xy

∇2∂2xπ
∂2Φ̄
∂xπ

+ f ∂
2Ψ̄
∂xπ

10−5

∇2∂2yπ
∂2Φ̄
∂yπ

+ f ∂
2Ψ̄
∂yπ

10−5

∂2π
−fxζ̄x − fy ζ̄y − f∇2ζ̄ − 2∂

2Ψ̄
∂x2

∂2ζ̄
∂x2

10−17

−2∂
2Ψ̄
∂y2

∂2ζ̄
∂x2

+ 4∂
2Ψ̄
∂xy

∂2ζ̄
∂xy

∂3xπ2 −fxζ̄ 0
∂3yπ2 −fy ζ̄ 10−15

∇2∂2π2 −f ζ̄ 10−8

∂3x2π fx
∂2Ψ̄
∂xπ

0

∂3y2π fy
∂2Ψ̄
∂yπ

10−12

∂3xyπ fx
∂2Ψ̄
∂xπ

+ fy
∂2Ψ̄
∂yπ

10−12

∂4x2π2 −2∂
2Ψ̄
∂y2

ζ̄ 10−8

∂4y2π2 −2∂
2Ψ̄
∂x2

ζ̄ 10−8

∂4x3π 2∂
2Ψ̄
∂y2

∂2Φ̄
∂xπ

10−5

∂4y3π 2∂
2Ψ̄
∂x2

∂2Φ̄
∂yπ

10−5

∂4xy2π 2∂
2Ψ̄
∂x2

∂2Φ̄
∂xπ

− 4∂
2Ψ̄
∂xy

∂2Φ̄
∂yπ

10−5

∂4x2yπ 2∂
2Ψ̄
∂y2

∂2Φ̄
∂yπ

− 4∂
2Ψ̄
∂xy

∂2Φ̄
∂xπ

10−5

∂4xyπ2 4∂
2Ψ̄
∂xy

ζ̄ 10−8

Table 4.1: List of different operators, coefficients, and the magnitude of the coefficients
involved in the sensitivity to Ertel PV calculation.
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Figure 4.1: a) LHS of (4.20) if φP operates on 250 hPa sensitivity to QGPV (φP q̂g)
for the case of Hurricane Ian valid at 1800 UTC 26 September 2022. b) RHS of (4.20)

at 250 hPa and the same valid time, equivalent to φP q̂E .
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Figure 4.2: Synoptic set-up of Hurricane Ian in ERA5 reanalysis valid at 1800 UTC
25 September 2022. a) Sea surface temperature (shaded with unit K), mean sea level
pressure (contour; interval 5 hPa), 10-m wind barbs, and thick blue curve depicts
the best track from IBTrARCs; b) 850 - 700 hPa average relative humidity (shaded
in percentage value), 700 geopotential height (contour; interval 3 dam), and 700 hPa
wind barbs; c) 850 - 200 hPa vertical wind shear (shaded with unit m/s), 500 hPa
geopotential height (black contour; interval 6 dam) and wind barbs d) 200 hPa Ertel
PV (shaded with PV unit) from the WRF model at the initial time, and 200 hPa wind
barbs from ERA 5 reanalysis. The hurricane symbol indicates Hurricane Ian’s location

valid at 1800 UTC 25 September 2022
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b

a

Figure 4.3: a) Hurricane Ian’s Best Track maximum wind speed (red) and minimal
pressure (blue). Maximum wind speed and minimal pressure from WRF simulation are
in black lines. b) Sea level pressure from the WRF model at 1800 UTC 26 September
2022 (F24) and the response function area for (R = −µ′) indicated by the green patch
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Figure 4.4: Qualitative 800 hPa sensitivity to horizontal wind in barbs, sensitivity
to temperature (shaded with unit Pa/K), and sea level pressure (contour; interval 5
hPa) valid at a) 1800 UTC 25 September 2022 (F00); b) 0000 UTC 26 September 2022
(F06); c) 0600 UTC 26 September 2022 (F12); d) 1200 UTC 26 September 2022 (F18)



155

Figure 4.5: 800 hPa relative humidity (shaded with value in percentage) and wind
(barbs) from WRF trajectory valid at a) 1800 UTC 25 September 2022 (F00); b) 1200
UTC 26 September 2022 (F18). 800 hPa relative humidity contour (80% in green, 95%
in magenta) and sensitivity to water vapor mixing ratio (shaded with unit Pa/(kg/kg))
valid at c) 1800 UTC 25 September 2022 (F00); d) 0000 UTC 26 September 2022 (F06);

e) 0600 UTC 26 September 2022 (F12); f) 1200 UTC 26 September 2022 (F18)
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Figure 4.6: 500 hPa wind field (barbs) and Ertel PV (shaded with PVU) from WRF
trajectory valid at a) 1800 UTC 25 September 2022 (F00); b) 1200 UTC 26 September
2022 (F18). 500 hPa sensitivity to the wind (barbs), sensitivity to temperature (shaded
with unit Pa/K), and 500 hPa geopotential height (contour, interval 3 dam) valid at c)
1800 UTC 25 September 2022 (F00); d) 0000 UTC 26 September 2022 (F06); e) 0600

UTC 26 September 2022 (F12); f) 1200 UTC 26 September 2022 (F18)
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Figure 4.7: 250 wind field (barbs), jet (contour, interval 10 m ·s−1), Ertel PV (shaded
with PVU) and 1004 hPa sea level pressure contour from WRF trajectory valid at a)
1800 UTC 25 September 2022 (F00); b) 1200 UTC 26 September 2022 (F18). 250
hPa sensitivity to the wind (quiver, darker color for larger sensitivity), sensitivity to
temperature (shaded with unit Pa/K), and 1005 hPa sea level pressure contour valid
at c) 1800 UTC 25 September 2022 (F00); d) 0000 UTC 26 September 2022 (F06); e)

0600 UTC 26 September 2022 (F12); f) 1200 UTC 26 September 2022 (F18)
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Figure 4.8: 850 hPa Sensitivity to QGPV (shaded; a,d,g,j), sensitivity to geostrophic
imbalance (shaded; b,e,h,k), and sensitivity to Ertel PV (shaded; c,f,i,l) inverted in
a small domain near the storm center. Trajectory 850 hPa Ertel PV (blue contours
with 1 PVU interval) valid at 1800 UTC 25 September 2022 (F00; a,b,c), 0000 UTC
26 September 2022 (F06; d,e,f), 0600 UTC 26 September 2022 (F12; g,h,i), and 1200

UTC 26 September 2022 (F18; j,k,l) show Hurricane Ian’s location.
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Figure 4.9: Same as Fig. 4.8 but for sensitivity to QGPV, sensitivity to geostrophic
imbalance, sensitivity to Ertel PV, and trajectory Ertel PV near storm center at 500

hPa
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Figure 4.10: Same as Fig. 4.8 but for sensitivity to QGPV, to Imbalance, and to
Ertel PV near storm center at 250 hPa. -0.3 PVU contour of 250 hPa Ertel PV depicted

by the blue dashed line
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Figure 4.11: 850 hPa sensitivity to winds (vector) and sensitivity to temperature
(shaded, scaled differently in each panel) valid at 1200 UTC 26 September 2022 (F18)
a) from WRF-adjoint output; b) recovered from sensitivity to Ertel PV; c) recovered
from sensitivity to geostrophic imbalance; and d) recovered from sensitivity to QGPV.

Figure 4.12: Same as Fig. 4.11 but at 500 hPa.
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Figure 4.13: Same as Fig. 4.11 but at 250 hPa.
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Figure 4.14: F18 cross-section of sensitivity to the temperature and trajectory equiv-
alent potential temperature (gray contour with 3 K interval). a) θ̂ from WRF-adjoint
with trajectory PV (-0.3, 0.5, and 2 PVU contour), b) θ̂E (shaded) with q̂E contour
(solid positive, dashed negative; 107 Pa/PV U interval), c) θ̂i (shaded) with â contour
(solid positive, dashed negative; 4× 10−6 Pa · s ·m−2 interval), and d) θ̂g (shaded) and
q̂g contour (solid positive, dashed negative; 44 Pa · s interval). The cross-section taken
is shown at the upper right of panel b, with 500 hPa positive PV contours and a 250

hPa negative PV contour.
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Figure 4.15: Same as Fig. 4.8 but only valid at 1800 UTC 25 September 2022 (F00).
In addition to q̂g, â, and q̂E , panels a,b,c show 850 hPa with sea level pressure (contour;
5 hPa interval). Panels d,e,f show 500 hPa with geopotential height (contour; 4 dam

interval). Panels g,h,i show 850 hPa with Ertel PV contour (1 PVU interval).
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Figure 4.16: Column 1 shows v̂g (barbs) and θ̂g (shaded with unit Pa/K) recovered

from q̂g, column 2 shows v̂i (barbs) and θ̂i (shaded with unit Pa/K) recovered from

â, column 3 shows v̂E (barbs) and θ̂E (shaded with unit Pa/K) recovered from q̂E , all
valid at 1800 UTC 25 September 2022 (F00). Row 1 shows the above variables at 850

hPa, row 2 is 500 hPa and row 3 is 250 hPa with 2 PVU contour.

Figure 4.17: Minimum SLP of Hurricane Ian from exp “ctrl” (black), exp “WRF-adj”
(blue), exp “qgbal” (red), exp “imbal” (purple), and exp “nlbal” (green)
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Figure 4.18: Column 1 shows the difference in SLP (shaded with the unit in Pa)
between the perturbed experiments a) “WRF-adj”, b) “qgbal”, c) “imbal”, d) “nlbal”
and the unperturbed experiment “ctrl” in color shading, red if “pert” > “ctrl”, blue
if “pert” < “ctrl”. Column 2 zooms in the TC center with SLP contour from “ctrl”

(green; 5 hPa interval) and each perturbed experiment (black; 5 hPa interval).
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Figure 4.19: Time evolution of the change in response function (δR = ⟨∂R/∂x,x′⟩)
normalized by the prescribed perturbation energy, ∆R0, for optimal perturbations
informed by WRF-adjoint sensitivity (blue; “WRF-adj”-“ctrl”), geostrophically bal-
anced adjoint sensitivity (red; “qgbal”-“ctrl”), unbalanced adjoint sensitivity (purple;

“imbal”-“ctrl”), and nonlinear balanced adjoint sensitivity (green; “nlbal”-“ctrl”)
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Figure 4.20: Perturbation energy norm 1
2

(
u′2 + v′2 +

cp
Tref

T ′2
)

summed over each

model level for optimal perturbation informed by a) WRF-adjoint sensitivity, b)
geostrophically balanced adjoint sensitivity, c) unbalanced adjoint sensitivity and d)
nonlinear balanced adjoint sensitivity at each time steps from forecast hour F00 to F24

(color legends for each time step listed in panel a).
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Figure 4.21: 500 hPa QGPV difference from “WRF-adj”-“ctrl” (shaded with unit s−1,
column 1). 500 hPa minus sensitivity to QGPV, −q̂g, (shaded with unit Pa · s, column
2). 500 hPa Perturbation QGPV (shaded with unit s−1) when geostrophically balanced
perturbations, u′g,t, v

′
g,t, θ

′
g,t are introduced at each time step t = 0, 6, 12, 18, (column 3)

with perturbation QGPV from column 1 contoured (1 s−1 in solid contour; −1 s−1 in
dashed contour). Time step F00, F06, F12, F18 are shown in rows in ascending order.
“WRF-adj”-“ctrl” QGPV perturbation is not contoured in panel c for figure clarity
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Figure 4.22: 500 hPa Ertel PV difference from “WRF-adj”-“ctrl” (shaded with unit
PVU, column 1). Minus sensitivity to Ertel PV, −q̂E , at 500 hPa (shaded with unit
Pa/PV U , column 2). 500 hPa Perturbation Erel PV (shaded) when nonlinear-balanced
perturbations, u′E,t, v

′
E,t, θ

′
E,t are introduced at each time step t = 0, 6, 12, 18, (column

3) with −q̂E (1 × 106 Pa/PV U in magenta contour; −1 × 106 Pa/PV U in green
contour). Time step F00, F06, F12, F18 are shown in rows in ascending order. −q̂E is

not contoured in panel c for figure clarity
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

Known for its conservation property and invertibility, potential vorticity is an indispens-

able variable extensively used for diagnosing and understanding synoptic meteorology’s

dynamic processes (e.g., Hoskins et al. 1985; Morgan and Nielsen-Gammon 1998). Utiliz-

ing the adjoint of NWP models, the adjoint sensitivity study is a method to identify the

dynamical aspect of synoptic weather systems and mostly focuses on the interpretation

of individual adjoint sensitivity gradients. So far, few studies have transplanted the “PV

thinking” and adjusted it to better suit the adjoint framework.

Although Philippe Arbogast laid down a comprehensive framework for adjoint sensitivity

to PV as early as 1998, studies on PV adjoint sensitivity have mainly been studied with
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the perturbation sensitivity method in the following decades (e.g., Fehlmann and Davies

1997; Ancell and Mass 2006; Vukićević and Raeder 1995; Doyle et al. 2014; Kim and

Beare 2011), except for Romero et al. (2005). Kleist and Morgan (2005) established a

technique to compute sensitivities to divergence and to vorticity using the adjoint of the

MM5 model. Additionally, Morgan (2018) derived sensitivity to shallow water PV and

stated that in the absence of extra forcing, only the balanced composition of adjoint

sensitivities to wind and to height is retained after sufficient integration time.

Motivated by the attempt to enhance the interpretability of adjoint sensitivity fields in

WRF’s adjoint model by eliminating high-frequency wave patterns in adjoint integrations,

we derived the adjoint sensitivity to QGPV, q̂g, by reckoning that the optimal perturba-

tion of a variable is proportional to the adjoint sensitivity of this variable scaled by the

Lagrange multiplier. During this process, we found the weighting for the pseudo-energy

norm corresponds to the QGPV inversion operator. Further, we recovered sensitivities to

winds and to the potential temperature that are under geostrophic balance. Analyzing

the recovered wind and temperature sensitivities, we illustrated that a positive sensitivity

to PV is surrounded by cyclonic sensitivity to winds, with warm temperature sensitivity

above and cold temperature sensitivity below. The general formulation of sensitivity to

PV derivation (Arbogast, 1998) yields the same expression for q̂g and reinforces the close

relationship between balance constraint and PV under the adjoint framework.

With the case of the March 2020 Atlantic Storm, we first demonstrated that the high-

frequency wave in the WRF adjoint integration can be largely alleviated when a balanced
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adjoint forcing is used. In addition, evidences such as the alignment of 500 hPa q̂g

maximum with the background trough (Fig. 2.4b), and the upshear tilting of q̂g against

the background thermal wind that leads to PV superposition, suggested q̂g serves as a

valuable diagnostic tool of being a combination of v̂ and θ̂ in adjoint sensitivity studies.

In the context of Arbogast (1998)’s derivation of sensitivity to PV, although the adjoint

sensitivity to imbalance is provided as a by-product, the concept of geostrophic imbalance

is barely addressed. We attempted to illustrate the notion of geostrophic imbalance (e.g.

Fig. 3.1 and Fig. 3.2) and compared the difference between its associated unbalanced

wind and the ageostrophic wind. Then the sensitivity to geostrophic imbalance, â, is

derived and illustrated with the schematic (Fig. 3.3). In the conceptual model of â, we

treated sensitivities to certain variables as small perturbations and introduced the idea of

geostrophic adjustment and adiabatic response under the adjoint framework. In order to

recover the sensitivity to unbalanced winds and unbalanced temperature, we discovered

a general connection between v̂ and Ψ̂, as well as the one between θ̂ and Φ̂. In addition,

the geostrophic imbalance is speculated to be linked to the local time tendency of the

velocity potential, from which diagnostic sensitivity to vertical velocity (ω) was derived.

The practical usage of sensitivity to imbalance is demonstrated through a case study of a

November 1998 Winter Storm. Like q̂g, â combines v̂ and θ̂. However, in contrast to q̂g, â

itself does not provide too much dynamical insight into the system development; rather, its

time tendency partially reveals the secondary vertical circulation in the adjoint analysis.

In a comparison between balanced and unbalanced wind and temperature sensitivities
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(e.g. Fig. 3.14), we found the total wind sensitivity is dominated by the balanced wind,

while the total temperature sensitivity is dominated by the unbalanced temperature.

This behavior can be possibly attributed to the adjustment within the Rossby radius

of deformation under their respective horizontal scale. A cross-examination between

the accumulated precipitation and the unbalanced sensitivity to temperature suggests a

potential link between the unbalanced sensitivity to temperature, θ̂i, and â to diabatic

heating, which is not captured by the geostrophic balance.

To extend the application of sensitivity to PV to the tropical region where QG assumption

is less valid, the adjoint sensitivity to Ertel PV, q̂E, is derived following Arbogast (1998)

and is solved with the successive over-relaxation method. A scale analysis is conducted

to ensure the correctness of q̂E’s magnitude.

Using the case of Hurricane Ian, we compared sensitivity to Ertel PV, QGPV, and to

geostrophic imbalance. Although q̂E and q̂g share a similar spatial distribution, positive

q̂E is not centered near the eyewall like q̂g at lower- and mid-troposphere (e.g. Fig. 4.8).

Compared with q̂g, q̂E adeptly captures finer-scale details present in â, especially at later

stages of the adjoint integration. The nonlinear balanced wind and temperature sensi-

tivities, v̂E and θ̂E qualitatively recovered from q̂E, resembles v̂g and θ̂i, which dominate

the wind and temperature sensitivity fields.

Optimal perturbations experiments informed by q̂g and by q̂E are similar in terms of how

much they lead Hurricane Ian to weaken, their vertical perturbation energy distributions,

and the amount of linearity retained in both experiments. This suggests that q̂E is
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successfully computed, despite numerous shortfalls in its calculation, such as issues in

SOR convergence, the choice of basic states, and boundary conditions omitted in the

sensitivity to Ertel PV operators, which should all be included in the future work.

Finally, we addressed the validity of approximating the sensitivity to PV by the PV

perturbation that has been used in most of the previous studies to explore the sensitivity

of PV to storm development (e.g., Fehlmann and Davies 1997; Ancell and Mass 2006;

Vukićević and Raeder 1995; Doyle et al. 2014). Both sensitivities to QGPV and to

Ertel PV are examined against the perturbation PV. It is observed that the optimal PV

perturbation is similar to the sensitivity to PV at the initial time and diverges apart

as the integration continues (e.g. Fig. 4.21). However, when the optimal perturbations

are added to the model at individual timestep, the perturbation Ertel PV overlaps the

sensitivity to Ertel PV (e.g. Fig. 4.22). Although the approximation shall still be made

with caution, this examination presents a more reliable and easier way to assess the

adjoint sensitivity to PV.

5.2 Future Directions

5.2.1 Sensitivity to Ertel PV Improvements

.

A few improvements shall be made in the future in sensitivity to Ertel PV calculation.

First of all, boundary points should be added to the Ertel PV operators. Currently,
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only interior points are included in the calculation and updated in the SOR iterations.

Secondly, similar to the sensitivity to QGPV calculation, the surface sensitivity to tem-

perature should be employed as the bottom boundary condition. This modification can

likely turn the cold temperature sensitivity beneath the q̂E maximum into a warm tem-

perature sensitivity, aligning with TC’s warm core nature. Finally, the choice of the basic

state should be improved. It would be ideal to obtain the streamfunction and geopoten-

tial fields from the WRF model forward trajectory instead of using the JRA reanalysis.

A simulation domain with no evident topographical feature can alleviate the SOR con-

vergence failure due to the erroneous lower-level basic state. The possibility of solving

sensitivity to Ertel PV using the minimization technique still needs to be explored. At the

same time, sensitivity to nonlinear imbalance can be calculated with easy modification

to the sensitivity to Ertel PV code.

5.2.2 Sensitivity to Balanced Moisture

Doyle et al. (2014), Doyle et al. (2011), and Demirdjian et al. 2020 have demonstrated

the importance of moist processes in both tropical and mid-latitude systems using adjoint

sensitivity analysis. They found that sensitivities to water vapor and to vorticity are co-

located. In Chapter 3, we established a potential linkage between the diabatic process

from latent heat release and the sensitivity to geostrophic imbalance. This is particularly

relevant in tropical regions where the environment is largely under homogeneous temper-

ature distribution and the moisture gradient control the region of convective events and



177

vertical motion (e.g., Sobel et al. 2001; Wolding et al. 2016). These convections are some-

times precursors to tropical cyclogenesis. Therefore constructing a balanced sensitivity

to the moisture field is essential to extend the application of adjoint sensitivity analysis

for studying tropical cyclone genesis and phenomena like the Madden-Julian Oscillation.

This balance constraint can be the weak temperature gradient (WTG) balance which

suggests the balanced state between column-integrated moisture and vertical motion.

Many previous studies have substituted the potential temperature with the moist po-

tential temperature to calculate the moist potential vorticity and separate out the mois-

ture/diabatic contribution to PV (e.g., Cao and Cho 1995; Schubert et al. 2001; McTaggart-

Cowan et al. 2003). Smith and Stechmann (2017) argued that this moist PV is not con-

served and introduced a moisture variable,M , with units of mixing ratio. They combined

PV and moisture under the geostrophic balance and formulated a PV-and-M inversion

that describes the balance among wind, temperature, and moisture. This approach opens

a pathway to formulate a balanced adjoint forcing that includes the sensitivity to water

vapor, even to liquid precipitation. An alternative, quicker approach is to scrutinize the

relationship between sensitivity to temperature and to moisture variables in the WRF

adjoint model. In WRFPLUS’s limited options of microphysics scheme, such as the

Kessler scheme (Kessler, 1995) and the large-scale condensation scheme, sensitivity to

temperature and moisture variables are interconnected through the continuity equations

for precipitation.
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5.2.3 Background Error Covariance

Four-dimensional variational data assimilation (4D-Var) integrates the sensitivity of the

forecast error to perturbation of the model state along the nonlinear model trajectory

backward in time using the adjoint model. The 4D-Var procedure finds the analysis x0

by minimizing the cost function:

J(x0) =
1

2
(x0 − xb0)

TB−1(x0 − xb0) +
1

2

N∑
i=0

(H(xi)− yoi )
TR−1

i (H(xi)− yoi )

where xbi represents the previous forecast (background), y
o
i denotes observations taken at

time i. The first term measures the background cost at the analysis time and the second

term evaluates the observation cost throughout the assimilation window. The background

covariance matrix B spreads out the innovation in space and updates other variables to

impose balance (e.g., Bannister 2008; Chen et al. 2013). The balance embedded in B is

usually statistically generated and is often geostrophic and hydrostatic.

In both Gridpoint Statistical Interpolation (GSI) system and WRFDA, user-generated

background error covariances are allowed and users can tune between the climatological

B (geostrophic) and the ensemble B (flow dependent). The limited number of ensem-

ble members restricts the accuracy of the matrix B, which is why climatological B is

often blended in. However, this geostrophic balance in climatological B can be problem-

atic, as it might throw out useful unbalanced observations in the minimization process.
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Shown in Chapter 3, the geostrophically unbalanced part is extremely impor-

tant in explaining the temperature sensitivity when secondary circulation is

involved. Derber and Bouttier (1999) showed that calibrating the background error

covariance matrix away from the geostrophic balance in tropical and upper-troposphere

results in a better analysis in early European Centre for Medium-Range Weather Fore-

casts’ 3D- and 4D-Var assimilation. Thus research on the importance of the deviation

from the geostrophic balance in the background error covariance B could improve the

data assimilation quality in extreme events with high unpredictability.

5.2.4 Sensitivity Diagnoses from Neural Network

Toms et al. (2020) and Barnes et al. (2020) first employed an explainable artificial neural

network to investigate the sensitivity of sea surface temperature 60, 120, and 180 days

before the onset of El Niño or La Niña event. They used techniques like backward propa-

gation and layerwise relevance propagation, akin to chain rule and adjoint model backward

propagation. In addition, neural networks overcame the linearity constraint in the adjoint

model. Wang et al. (2022) used a non-local neural net to improve midlatitude frontal

system predictions in their machine-learning climate model. The algorithm also unveiled

learned physical laws like divergence using layerwise relevance propagation. Leveraging

pre-trained machine learning weather models, evaluating input predictor weighting, and

comparing results with adjoint sensitivity might uncover mechanisms underlying cyclone

development.
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