
 

 

 

DEVELOPMENT OF A CLEAR-SKY ATMOSPHERIC RETRIEVAL ALGORITHM USING 

FAR INFRARED SPECTRAL MEASUREMENTS FOR PREFIRE 

by 

Meredith Grames 

 

 

A thesis submitted in partial fulfillment of 

The requirement for the degree of 

 

Master of Science 

(Atmospheric Science) 

 

 

at the  

UNIVERSITY OF WISCONSIN – MADISON 

2022 

 



i 
 

Abstract 

The far infrared (FIR) radiation is important in Earth’s climate system. It comprises nearly half 

of the radiation emitted by Earth’s surface. It is also sensitive to changes in atmospheric water 

vapor. Measurements in the FIR are therefore, desirable in the study of Earth’s changing climate. 

However, space-borne spectral measurements of the FIR have not been taken since the late 

1970s. In recent years, thanks to renewed interest in the FIR and advances in remote sensing 

technology, several missions have been announced that will launch satellites that will take 

spectral measurements of the FIR once more. This paper discusses the development of a clear-

sky atmospheric retrieval algorithm for the Polar Radiation in the Far InfraRed Experiment 

(PREFIRE).  The algorithm regression coefficients taken from principal component regression to 

retrieve temperature and water vapor profiles. The algorithm is tested using simulated 

measurements from the Thermal Infrared Spectrometer (TIRS) developed for PREFIRE. In 

addition, we test the viability of Brightness Temperature Classification as a means of retrieval 

improvement. We also test the retrieval with and without FIR measurements to analyze the 

additional information that may be gained from FIR spectral measurements. Overall, we find that 

the TIRS retrieval is comparable to that of IASI, an instrument with a much higher spectral 

resolution that only measures in the midinfrared. Brightness Temperature Classification resulted 

in a reduction of retrieval error for temperature retrievals, and improved water vapor retrievals at 

lower altitudes. These changes were particularly strong in the Arctic. We also find that the 

inclusion of FIR spectral measurements in atmospheric retrievals can decrease temperature 

retrieval error by 20%, and water vapor retrieval error by 6%.  
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Chapter 1:  Background 

1.1 The Far Infrared 

The infrared portion of the spectrum is subdivided differently throughout literature and 

depending on the purpose of research. Some simply divide the infrared into shortwave infrared 

(having wavelengths shorter than about 4m) and longwave or thermal infrared (wavelengths 

longer than 4m). The thermal infrared may be further divided into the mid and far infrared. The 

definitions of the mid and far infrared vary. For this paper, we define the far infrared (FIR) as 

having a wavelength between 15 and 50 m (or wavenumber from 667 to 200 cm–1). Infrared 

wavelengths between about 4 and 15 m are classified as mid infrared (MIR). This follows the 

definition found in Harries et al. (2008) and aligns well with current observing system 

capabilities since today’s satellites only measure up to 15 μm. 

 

1.1.1 Spectral Characteristics of the FIR 

The far infrared is dominated by water vapor absorption. The water vapor rotational 

absorption band is located within the FIR part of the spectrum, and water vapor absorption is 

strong here due to the large number of strong absorption lines. These closely spaced strong 

absorption lines also produce a broad continuum absorption, which influences the atmospheric 

transmissions well away from the absorption line centers. This phenomenon was first noticed in 

the late 18 and early 1900s, where absorption of atmospheric radiation seemed to be occurring 

within atmospheric windows (Rubens & Aschkinass, 1898; Hettner, 1918, as cited in Shine, 

Ptashnik & Rädel, 2012). In the 1930s, the cause of this anomalous absorption was determined to 

be the far wings of other absorption bands (Elsasser, 1938, as cited in Shine, Ptashnik & Rädel, 

2012). These bands are made of a large number of strong absorption lines, strong enough that the 
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wings cause noticeable absorption across the infrared, resulting in continuous absorption by 

water vapor, hence water vapor continuum (Shine, Ptashnik & Rädel, 2012).  

In addition to water vapor, there is a CO2 absorption band centered at 15μm (667 cm–1) 

that extends to approximately 17 μm. Other atmospheric trace gases, such as O3 and N2O do 

absorb in the far infrared, but their impact is small compared to absorption from water vapor and 

carbon dioxide (Harries et al., 2008). 

 

1.1.2 The Importance of Water Vapor Measurements 

The strong sensitivity of FIR radiation to water vapor makes these wavelengths 

particularly attractive for retrieving water vapor profiles in the atmosphere, as it is more sensitive 

to water vapor than the MIR. Water vapor plays a key role in both weather and climate. For 

example, our knowledge of the mechanics of climate change are related to a water vapor 

feedback effect: increases in other greenhouse gases, such as carbon dioxide, result in some 

heating that leads to more water evaporation from the surface, and thus more water vapor ending 

up in the atmosphere. Water vapor is the strongest of the greenhouse gases, but is more variable 

and has a shorter atmospheric lifetime than other gases, including CO2. However, when more 

water vapor is in the atmosphere, warming increases, resulting in further evaporation from the 

surface, creating a positive feedback in the climate system.  

The above explanation of the role of water vapor is very broad and simplified. There are 

many additional processes that relate to water vapor and the changing climate. However, these 

processes are still not fully understood. Therefore, water vapor measurements and retrievals are 

important for further understanding of the Earth’s changing climate.  
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1.1.3 A Brief History of FIR Measurements and Atmospheric Retrievals 

There exist several suggested methods for deducing atmospheric state variables such as 

water vapor content. Measurements of the infrared have been used for water vapor and 

temperature retrievals for years. The Nimbus satellite missions were key in demonstrating the 

concept of indirect measurements of temperature and water vapor from space, particularly the 

Satellite Infrared Spectrometer (SIRS), which was used for the first space-borne water vapor 

retrievals. The underlying principles behind such indirect measurements, or retrievals, is that the 

varying strength of water vapor absorption at different IR wavelengths changes the altitude from 

which the satellite receives emitted energy from the atmosphere. Thus by measuring emission in 

weak, moderate, and strong absorption lines, the satellite gathers information about the vertical 

temperature and water vapor profile.  

While the far infrared may offer potential for improving water vapor retrievals, spectral 

measurements of the FIR have not been routine in the past. The last spectral measurements of the 

FIR taken from space were by the Russian Meteor-28 and Meteor-29 satellites launched in the 

1970s (Spankuch and Dohler,1985; Timofeev et al., 2019). Since then, several instruments have 

measured FIR energy from space, but the measurements have been broadband rather than 

spectral. Unlike narrow band channels, broadband channels integrate information over a wide 

range of wavelengths, which are not conducive to retrieving the atmospheric state, as they mask 

the important variations in emission height needed for temperature and humidity retrievals. 

These measurements are commonly used in studying the Earth’s radiation budget. 

To date, the only routine spectral measurements of the thermal infrared have been from 

instruments such as the High resolution Infrared Radiation Sounder (HIRS), the Atmospheric 

Infrared Sounder (AIRS), the Cross-track Infrared Sounder (CrIS), the Infrared Atmospheric 

Sounding Interferometer (IASI), the Moderate Resolution Imaging Spectroradiometer (MODIS), 
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and others, all of which measure only in the mid infrared. These instruments have been regularly 

used for atmospheric retrievals. Spectral measurements of the FIR were limited to airborne and 

ground campaigns. Instruments of note include the Tropospheric Airborne Fourier Transform 

Spectrometer (TAFTS) which measured radiation between 80-800 cm–1 (12-120 μm) with a 

spectral resolution of 0.1 cm–1. TAFTS was designed for the purpose of taking direct 

observations of upper tropospheric humidity to understand the radiative properties of the UTH 

and cirrus clouds (Canas, Murray, & Harries, 1997; Warwick et al., 2022). Another airborne 

instrument was the Far Infrared Spectroscopy of the Troposphere (FIRST). This instrument 

measured between 50 and 2000 cm–1, and the wider spectral range allowed for overlap with 

atmospheric sounders like AIRS, CrIS, and IASI, that measure the MIR (Mlynczak et al., 2002). 

Yet another instrument worth mentioning is REFIR or Radiation Explorer in the Far InfraRed. 

The REFIR instrument is a Fourier transform spectrometer measuring between 100 and 1100 cm-

1 with a resolution of 0.5 cm–1. It was first deployed in a field campaign in 2004 (Palchetti et al., 

2004). The REFIR instrument is the basis for the FORUM instrument currently in development 

(Palchetti et al., 2020). 

There have been some ground-based measurements of the FIR, notably the Atmospheric 

Emitted Radiance Interferometer (AERI) located on several Atmospheric Radiation 

Measurement (ARM) sites (Ackerman & Stokes, 2003).  

All of these instruments were used during several campaigns which demonstrated the 

importance of FIR radiation. For example, the Radiative Heating in Underexplored Bands 

Campaign (RHUBC) consisted of two campaigns measuring FIR radiation in regions of low 

atmospheric moisture to improve understanding of radiative processes in the upper troposphere 

and lower stratosphere and to refine water vapor spectroscopic models. The first campaign took 

place in the ARM site in Barrow, Alaska, and the second was in the Atacama Desert (Turner & 
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Mlawer, 2010; Mlawer et al., 2019). These campaigns, as well as other research conducted in the 

last several decades has highlighted the need for regular spectral measurements of FIR radiation 

from space.   

 

1.2 The Need for FIR Measurements 

One of the reasons for regular measurements is that the FIR plays an important role in 

climate. Radiation budgets and theoretical studies have shown that the FIR makes up a large 

portion of the radiation emitted to space from the Earth. In fact, globally, 45% of emitted 

radiation from Earth is found in the FIR. In polar regions, this proportion is even larger, reaching 

⅔ over the coldest regions in Antarctica (Harries et al., 2008).  

With regards to atmospheric retrievals, the FIR, or more specifically, the water vapor 

rotational absorption band found within the FIR portion of the spectrum, has stronger continuum 

and line absorption than the vibrational absorption band found in the MIR. As such, 

measurements of FIR are ideal for retrieval of atmospheric water vapor in areas of low water 

vapor amount, such as the mid to upper troposphere, stratosphere, and high latitudes near the 

surface. A comparison of information content between the FIR and MIR shows that when both 

spectral regions are measured with instruments having equivalent noise levels, the FIR 

measurement has an advantage in information content and vertical resolution for water vapor 

retrievals, and for temperature retrievals outside of the tropics (Merrelli and Turner, 2012). The 

reduced temperature information in the tropics in the FIR measurement is due to the lower 

troposphere becoming opaque at FIR wavelengths in atmospheres with large total water vapor 

amounts. Rizzi, Serio, and Morati (2002) had similar findings, in that the FIR enhanced the 

ability to retrieve water vapor throughout the mid to upper atmosphere and into the boundary 

layer in polar regions, but that the retrieval of lower troposphere water vapor was better in the 
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MIR in the tropics because of the large amounts of water vapor in the atmosphere. Shahabadi 

and Huang (2014) likewise found that the inclusion of FIR wavelengths was important for 

accurate measurements of stratospheric water vapor, and that in their study, uncertainties in other 

species of atmospheric gases such as CH4, N2O, O3, and CO2 did not significantly impact the 

water vapor retrieval, suggesting that FIR water vapor retrievals are less affected by interference 

from other trace gases. 

 

1.3 Upcoming Missions 

With the renewed interest in the FIR and technological advances in remote sensing 

technology, several satellites will be launched over the next several years that will take spectral 

measurements of the FIR. The Far Infrared Outgoing Radiation Understanding and Monitoring 

(FORUM) is a mission by the European Space Agency. The mission goal is to measure the FIR 

with high accuracy and spectral resolution. The satellite is currently slated for launch in 2026 

(Palchetti et al., 2020). Another mission, from the Canadian Space Agency, is the Thin Ice 

Clouds in the Far InfraRed Experiment (TICFIRE). As its name suggests, TICFIRE will observe 

optically thin ice clouds in the Arctic using FIR measurements (Libois et al., 2015). 

 

1.4 PREFIRE 

Before either FORUM or TICFIRE, the Polar Radiant Energy in the Far InfraRed 

Experiment (PREFIRE) is scheduled to launch in 2023. PREFIRE will involve two 6U CubeSats 

in separate polar orbits. This will allow for overlap in spectral measurements at orbital 

intersections. The goal of PREFIRE is to study the FIR and Arctic processes at subdaily to 

seasonal timescales, something difficult to do with airborne and ground-based measurements. 
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Aboard the CubeSats, the Thermal infrared spectrometer (TIRS) will measure radiation 

between 5 and 54 μm with a spectral resolution sampling of 0.86μm (L’Ecuyer et al, 2021). A 

sample TIRS spectrum corresponding to a clear-sky scene from Greenland is shown in Figure 

1.1. 

This paper discusses an atmospheric retrieval algorithm developed for the TIRS 

instrument and the PREFIRE mission. The algorithm is a clear sky retrieval algorithm that uses 

Principal Component Regression (PCR) to retrieve temperature and humidity information. We 

will describe the theoretical basis for the algorithm, present some synthetic retrieval results, 

explore ways to improve performance using simple pre-screening of the algorithm database, and 

discuss the relative roles of MIR and FIR channels in constraining atmospheric temperature and 

humidity profiles. 

 

 

Figure 1.1 – A simulated clear-sky radiance in high spectral resolution (A) and simulated from the TIRS instrument (B). The 
sample profile was taken over Greenland in March.  
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Chapter 2:  Methodology 
 

2.1 Retrieval Method 

2.1.1 Principal Component Regression 

The algorithm described here is based on a similar algorithm developed for the 

Atmospheric InfraRed Sounder (AIRS) as part of the International MODIS (Moderate 

Resolution Imaging Spectroradiometer) and AIRS Processing Package (IMAPP) (Weisz et al., 

2007). Both algorithms retrieve atmospheric state variables by means of Principal Component 

Regression (PCR). The primary benefit of this retrieval method is speed and computational 

efficiency. Unlike other atmospheric retrieval methods, such as optimal estimation, PCR requires 

no first guess of the atmospheric state. In its most basic form, a retrieval algorithm using PCR 

only requires observations, with no additional information to produce a prediction of the 

atmospheric state with reasonable accuracy and precision, provided a large and representative 

sample of data is used to train the algorithm. 

Radiative transfer equations used to relate atmospheric state variables to radiances are 

non-linear, so solving these equations for state variables is complex. PCR simplifies the problem 

by assuming a linear relationship between the predictors and predictands. The retrieval process is 

expressed by the following equations: 

𝑥𝑟𝑒𝑡 = 𝐶𝐴𝑇 + �̅�𝑡𝑟𝑎𝑖𝑛 

𝐴 = (𝑦𝑜𝑏𝑠 − �̅�𝑡𝑟𝑎𝑖𝑛)𝑈 

Vector xret is the retrieved state vector, also known as the predictand. C is the matrix of 

regression coefficients, A is the matrix of principal components (PCs), and xtrain is the average 

state vector of the training data. The principal components, A, are calculated by subtracting the 

average y vector from the observations and applying matrix U, which is the truncated 
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eigenvector matrix. The means by which these quantities are obtained are described in section 

2.2. 

 

2.1.2 Principal Components 

The shape of matrix A in the retrieval equations is [1 x npc], where npc is the number of 

principal components retained for the retrieval. As shown in the retrieval equations, the principal 

components are determined by applying a truncated eigenvector matrix U to the residuals of the 

observations from the average state. The maximum number of principal components one may 

use is equal to the number of predictors. For a basic PCR retrieval algorithm, this means the 

number of channels measured by the instrument. Often, using the maximum number of principal 

components is unnecessary, and in some cases may be ill-advised. As is demonstrated by Weisz 

et al. (2007), use of too many principal components can result in over-fitting of the retrieved 

variables, increasing retrieval error. 

There are several methods for determining the number of principal components to retain. 

One method is to examine the eigenvalues for the calculated eigenvectors. The eigenvalues give 

the relative weight of importance for each eigenvector, as they are proportional to the variance in 

the data explained by their respective eigenvector.  One may determine the number of principal 

components to retain based on the eigenvalues and selecting those which explain a certain 

amount of variance. 

The number of PCs is more important in retrievals applied to noise-free radiance 

measurements than in retrievals applied to noisy measurements. As mentioned previously, 

retaining too many PCs can result in increased retrieval error due to overfitting. In a retrieval 

applied to noisy measurements, the additional error created by adding additional PCs beyond the 
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optimal number is less than it is for noise-free measurements, because the additional information 

is partially masked by the added noise. 

 

Figure 2.1 – Column-averaged RMSE for simulated temperature (A) and mixing ratio (B) retrievals from the TIRS instrument, as 
a function of number of principal components retained. 

 

An alternative method, and the method used for this case, is to select the number of PCs 

based on the vertically averaged root mean square error (RMSE) between calculated atmospheric 

state and the true values. RMSE is the standard deviation of the retrieval error, if the retrieval 

bias is equal to zero. In other words, it is a measure of retrieval precision. By choosing the 

number of principal components that minimizes the RMSE, we are maximizing the precision of 
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the retrieval. Figure 2.1 shows the vertically averaged temperature and water vapor RMSE from 

a TIRS retrieval as a function of number of PCs. The average RMSE drops quickly as number of 

principal components increases, and then becomes approximately constant. Indeed, the average 

RMSE becomes constant out to two decimal places beyond 15 PCs for temperature and beyond 

19 PCs for water vapor. Therefore, to minimize RMSE while maximizing computational 

efficiency, 20 PCs were selected for this retrieval. 

It should be noted that in using this method, we are assuming that the retrieval is accurate, 

or that the retrieval bias is equal to zero. If this were not the case, reducing the RMSE could 

increase the retrieval error by reducing the spread of errors around an inaccurate average error. 

However, it will be shown later in this paper that the assumption of a bias of zero is reasonable. 

 

2.1.3 Predictors and Predictands 

Along with radiance, the retrieval also uses surface pressure as a predictor. Surface 

pressure is included as a predictor to aid in retrieval performance across regions with different 

surface altitudes, especially in the large Greenland and Antarctic ice sheets. For the simulated 

retrievals presented in this paper, surface pressure is given in the training dataset, while radiance 

is calculated using a radiative transfer model. In operation, the measured radiances will be used, 

and surface pressure will be provided by auxiliary data from interpolated numerical weather 

model analysis fields. 

The variables retrieved by the algorithm are skin temperature, total precipitable water, 

water vapor mixing ratio profile, and temperature profile. Profile data is retrieved at 101 pressure 

levels between 1100 and 0.005 hPa. 
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2.2 Algorithm Training 

As previously mentioned, PCR simplifies the atmospheric retrieval problem by assuming 

a linear relationship between the predictors and predictands: 

𝑋 = 𝐶𝑌𝑇 

 The best-fit solution based on the least squares method is one that minimizes the sum of 

the squared residuals: 

∑(𝑋 − 𝐶𝑌𝑇)2 

Through minimization, we determine an expression for the regression coefficients: 

𝐶 = 𝑋𝑌(𝑌𝑇𝑌)−1 

 In PCR, rather than directly using the observations (Y), regression coefficients are 

calculated from principal components. 

 The training and calculations are performed on the residuals of the training data: 

𝑋′ = 𝑋𝑡𝑟𝑎𝑖𝑛 − �̅�𝑡𝑟𝑎𝑖𝑛 

𝑌′ = 𝑌𝑡𝑟𝑎𝑖𝑛 − �̅�𝑡𝑟𝑎𝑖𝑛 

 Xtrain is a matrix of the state vectors for the training data, and Ytrain is a matrix of the 

corresponding predictors (radiance and surface pressure). X’ and Y’ represent the residuals, 

calculated by subtracting the average of the training data from the training data itself. 

 The eigenvectors are calculated from the covariance of the predictors. The eigenvectors 

are then ordered by decreasing eigenvalue and truncated to the number of PCs retained. At this 

point, the eigenvector matrix has dimensions of [ny x npc], where ny is the number of 

predictands, and npc is the number of principal components. 

 It is after this step that noise is added to the residuals of the radiance data to account for 

noise in observations. Figure 2.2 shows the noise equivalent delta radiance (NEDR) for the TIRS 
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instrument. Noise is added to the radiances randomly, assuming a normal distribution with an 

average of zero and a standard deviation equal to the NEDR at a given TIRS spectral channel. 

 

Figure 2.2 – Estimated noise equivalent delta radiance (NEDR) in W m–2 sr–1 m–1 for each TIRS channel 

 

Finally, the regression coefficients are calculated: 

𝐶 = 𝑋′𝑇𝐴(𝐴𝑇𝐴)−1 

A is the matrix of principal components, calculated as: 

𝐴 = 𝑌′𝑈 

where U is the truncated eigenvector matrix. 

 

 

2.3 Data Sources 

2.3.1 Training Dataset 

The atmospheric data used for training and testing the algorithm comes from the SeeBor 

database. This database contains global atmospheric profile data from 1968-2005. Data sources 
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include NOAA-88b, Thermodynamic Initial Guess Retrieval - 3 (TIGR-3), radiosondes, 

ozonesondes, and the European Center for Medium-Range Weather Forecasts (ECMWF). Each 

profile includes measurements of temperature, water vapor mixing ratio, surface pressure, skin 

temperature, total precipitable water, wind, and concentrations of ozone (O3), carbon monoxide 

(CO), methane (CH4), sulfur dioxide (SO2), and nitrous oxide (N2O). The database also 

contains latitude and longitude for each profile, a land/water flag, International Geosphere-

Biosphere Programme (IGBP) land cover classification, and surface emissivity values at 10 key 

hinge points (Borbas et al., 2005). These hinge points come from the University of Wisconsin 

(UW) Baseline Fit Emissivity Database and can be used to infer high spectral resolution surface 

emissivity. Section 2.4.2 discusses emissivity data in further detail. All profile data from the 

database contains values at 101 pressure levels between 1100 and 0.005 hPa, the same pressure 

levels used in the retrieval, so no interpolation was required. At pressure levels greater than the 

surface pressure, the profile data is given the same value as the surface data. For sounding data 

that does not contain measurements up to the top of the atmosphere, standard atmosphere data 

was used (Borbas et al., 2005). For the PCR retrieval, the forward model calculations are run 

using a constant carbon dioxide (CO2) concentration of 400ppm for all data.  This number was 

chosen to be more representative of a modern value. 

A total of 15,704 clear-sky profiles were used for training and testing the retrieval. One 

tenth, or 1,571, of the profiles are set aside for testing, while the remaining 14,133 were used for 

training. For brightness temperature classification (BTC, see section 2.5), the same test and 

training set were used as in the base retrieval, but the datasets were categorized into different 

classes according to their 11 μm brightness temperature. The number of profiles for training and 

testing each class in BTC are outlined in Table 2.2. The numbers displayed in the table point out 

a bias in the training data. Though SeeBor is a global dataset, the warmest classes contain more 
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profiles than the colder classes. This is due in part to the type of data used. By using ground-

based sounding data, the database is constrained by data availability to the regions where 

soundings are typically taken. This means, there are more soundings in more heavily populated 

regions, such as the midlatitudes and tropics, as shown in Figure 2.3. It will be shown in section 

3.1 that the retrieval still performs within expected limits, even in cold regions. 

 

 

Figure 2.3 – Locations of profiles from the SeeBor database. 

 

 

 

2.3.2 Emissivity Data 

To simulate radiances corresponding to the training data, a forward model was run using 

the data from the SeeBor database. The forward model also required surface emissivity data. To 

fulfill this requirement, we designed an emissivity library based on land cover type. The sources 

of emissivity data for the library, and the method of creation are described in this section. 
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2.3.2.1 Land Emissivity 

As mentioned previously, the SeeBor database contains surface emissivity at 10 

wavelengths (3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 microns) for each profile. These 

hinge points come from the University of Wisconsin (UW)/Cooperative Institute for 

Meteorological Satellite Studies (CIMSS) Baseline Fit Emissivity database (Seeman et al., 2007). 

The corresponding UW InfraRed Emissivity (UWIREMIS) algorithm for deriving high spectral 

resolution emissivity from these hinge points was used for surface emissivity data over land. A 

separate method was used to determine emissivity over water. 

 The UWIREMIS algorithm calculates high spectral emissivity from the hinge points 

using principal component regression. Regression coefficients are calculated from laboratory 

emissivity measurements and applied to the hinge point emissivities to get emissivities at 416 

wavelengths between 3.6 and 14.3 microns. From there, the emissivity is interpolated to the 

wavelengths required by the forward model using linear interpolation (Borbas et al., 2007). 

 

2.3.2.2 Ocean Emissivity 

Though UWIREMIS was used for land data, the SeeBor database included the emissivity 

data for all profiles flagged as being over water. As such, a separate model was used to 

determine emissivity over ocean. The emissivity model is a pre-calculated table based on wind 

speed and sensor zenith angle, with emissivity values between 850 and 2700 cm–1, or 3.7 and 

11.8 μm. Wind speed is required to account for surface roughness, and sensor zenith angle and 

the complex index of refraction are used to approximate effective incidence angle of radiation 

(Nalli, Minnet, and Van Delst, 2008).  The wind speeds used for the model are those provided in 

the SeeBor database, and the sensor zenith is held at 0 for all profiles. As with the UWIREMIS 
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algorithm, the returned emissivities are interpolated to the wavelengths needed for the forward 

model with linear interpolation.  

 

2.3.2.3 Far Infrared Emissivity 

Both the land and ocean emissivity algorithms provide emissivity data only in the mid 

infrared. UWIREMIS provides emissivities between 3.6 and 14.6 μm, and the Nalli, Mannet and 

Van Delst algorithm contains emissivity values between 3.7 and 11.8 μm.  Therefore, a separate 

model was required to include emissivity in the far infrared (Huang et al, 2016). This model, 

which will be referred to as H16, provides emissivity values between 10 and 2000 cm–1 (5 – 

1000 μm). H16 uses first-principle calculations to determine emissivity for water, ice, snow (fine, 

medium, and coarse), and desert. The desert class contains 16 subclasses with variations in the 

effective radii of silt between 30 and 45 m, accounting for differences in sand particles. For the 

sake of simplicity, the subclass with 30 m effective radius is used. 

 Due to the complexities of vegetation surfaces, first-principle calculations were not used 

for vegetation surfaces. Instead, measured emissivities from the ASTER (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer) database were used to define four different 

vegetation classes: grass, dry grass, deciduous, and conifer. Since ASTER does not measure the 

far infrared, far infrared wavelengths are assigned a constant emissivity value. An additional 

class is defined as a combination of grass and desert, for those land surfaces in which desert 

regions are covered by vegetation. This emissivity is calculated as 45% grassland (meaning grass 

and dry grass), and 55% desert, using the average emissivity of all desert subclasses (Huang et 

al., 2016). 
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2.3.2.4 Creation of the Emissivity Library 

In the initial stages of algorithm development, FIR emissivity was held constant for all 

profiles. Once the algorithm was fully functional, FIR emissivities were included in the 

algorithm training process. This was done by merging the H16 emissivities with the 

UWIREMES and Nalli, Minnet and van Delst data sets. Rather than simply appending the FIR 

emissivity values from H16 to the other MIR emissivities, the datasets were spliced together at 

1750 cm–1 or 5.7 μm, which is near the center of the MIR water vapor absorption band, and 

would therefore not be sensitive to any sharp discontinuities created by the splice.   Figures 2.4 

and 2.5 show examples of the spliced emissivities for grasslands and snow respectively. 

As all the SeeBor profiles were assigned an IGBP class, which contains 19 different 

surface classifications, the emissivity library used for the forward model contains classes based 

on the IGBP classifications. However, additional classes needed to be defined to match up the 

mid infrared emissivities based on the 19 different IGBP classes with the 11 classes defined for 

the FIR emissivity data. The classes used in the emissivity library as well as the SeeBor IGBP 

classes and H16 land types used are listed in table 2.1. 

 

 

New Class IGBP Classes H16 Classes 

evergreen needleleaf evergreen needleleaf Conifer 

evergreen broadleaf evergreen broadleaf Deciduous 

deciduous needleleaf deciduous needleleaf Conifer 

deciduous broadleaf deciduous broadleaf Deciduous 

mixed forest mixed forest Deciduous 

closed shrublands closed shrublands Grass 

open shrublands open shrublands grass  
dry grass  
desert-silt re= 30 micron 

woody savannas woody savannas grass  
dry grass 
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Savannas savannas grass 
dry grass 

grasslands grasslands grass 
dry grass 

permanent wetlands permanent wetlands Grass 

croplands croplands grass  
dry grass 

urban and built-up urban and built-up grass  
dry grass 

cropland mosaics cropland mosaics grass  
dry grass 

fine snow snow and ice fine snow 

medium snow snow and ice medium snow 

coarse snow snow and ice coarse snow 

bare soil and rocks bare soil and rocks grass  
dry grass  
desert-silt re= 30 micron 

water bodies water bodies  
(land flag = 0) 

pure water 

Coastline water bodies  
(land flag = 1) 

grass  
dry grass 

Tundra tundra grass  
dry grass 

 

Table 2.1 – Table of classes defined for the emissivity library created for the retrieval 

 

 

 

An additional class was added into the library for profiles along shorelines. In the SeeBor 

dataset, 739 data points showed conflicts between the land flag and IGBP class. A profile over 

water should be given an IGBP class of 17, and additionally should have a land flag of 0, 

indicating no land surface. However, 646 profiles flagged as land had an IGBP classification of 

17, for water bodies. Furthermore, the hinge point emissivities for these profiles were 

inconsistent with typical emissivity values for water surfaces, many of them showing 

characteristics of grass or other land types. As such, these profiles were assumed to be mis-

classified land profiles. For these profiles, and additional “coastline” class was created. An 
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additional 93 data points were flagged as water, but were given an IGBP class for other land 

cover types. In this case, these profiles were determined to be mis-classified water profiles. The 

emissivities of these points were consistent with water and were therefore assumed to be profiles 

over water bodies. 

 

 

Figure 2.4 – Grassland emissivity from the SeeBor dataset (A), grass and dry grass emissivity from the H16 emissivity dataset 
(B), and the combined emissivity used in the new emissivity library. The dashed line indicates the wavenumber at which the 

datasets were spliced together. The average of the grass and dry grass emissivities from the H16 dataset are used to create the 
new emissivity. 
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Figure 2.5 – Snow and ice emissivity from the SeeBor dataset (A), medium snow emissivity from the H16 dataset (B), and the 
medium snow emissivity used in the retrieval, obtained by combining the other two emissivities (C). The dashed line indicates the 

wavenumber where the datasets are spliced together. 

 

 

2.4 Radiance Data and Forward Model 

To train and test the algorithm, radiance data corresponding to the SeeBor training data 

was required. The forward model used was the Principal Component Radiative Transfer Model 

(PCRTM), which as the name suggests, is a Principal Component based method to model 

instrument radiance measurements from environmental data (Liu et al, 2006). 
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As TIRS is a new instrument, there is no radiative transfer model to directly simulate 

TIRS measurements. To create TIRS simulated measurements, PCRTM was run to output 

radiances at the wavenumbers for the Climate Absolute Radiance and Refractivity Observatory 

(CLARREO) mission. The CLARREO radiances range between 50 and 2760 cm–1 with a 

sampling of 0.5 cm–1 spectral resolution of 1 cm–1 (Wielicki et al., 2013). Spectral response 

functions (SRF) for the TIRS spectral channels were applied to the CLARREO radiances to 

simulate TIRS measurements. Figure 2.6 shows an example of this procedure from a random 

profile chosen from the SeeBor dataset. 
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Figure 2.6 – An example of CLARREO radiances for a randomly selected SeeBor profile calculated from the PCRTM forward 
model (A). (B) shows the TIRS spectral response function, and (C) shows the corresponding TIRS radiance when the SRF is 

applied to the CLARREO radiance 

 

2.5 Brightness Temperature Classification 

To improve algorithm performance, we further classify profiles according to their MIR 

window channel brightness temperatures in the retrieval process. Brightness Temperature 

Classification (BTC) is designed to improve retrieval performance for different regions by 

selecting a set of regression coefficients and eigenvectors based on measured brightness 

temperature in a window channel or channels. Window channels are channels that measure 

radiance in a region of the electromagnetic spectrum where there is little to no atmospheric 
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absorption of outgoing radiation from the Earth’s surface. As such, the measured brightness 

temperature from these channels is generally directly related to the surface temperature. BTC 

works by classifying measured radiances into different categories based on measured brightness 

temperature in the window channel. 

High spectral resolution instruments such as AIRS, upon which this method is based, 

typically have many channels within an atmospheric window. For the AIRS algorithm, the 

brightness temperature classification is determined by taking the average of 11 channels, all 

located in a window region of the spectrum centered at approximately 11 m. The advantage of 

using more than one channel is the reduction of the instrument noise and the effects of weak 

water vapor lines through averaging. TIRS, having a lower spectral resolution, does not have this 

advantage, and only has one channel located in the window region. This one channel, however, 

is located at 10.97m, near the center of the window region. Figure 2.7 shows a plot of simulated 

brightness temperature measurements at the 10.97 m channel from TIRS compared to skin 

temperatures from the training data. Strong agreement exists between the channel measured 

brightness temperature and skin temperature from the training dataset. Only at the warmest skin 

temperatures does the data spread out away from the 1-1 line. Here, the brightness temperature 

measurements underestimate the surface temperature due to weak absorption by water vapor 

continuum in the window channel. In colder regions, the atmosphere has less moisture content, 

so the amount of absorption is negligible. It is only in the warmest regions where the atmosphere 

has a higher amount of moisture that water vapor absorption has a large enough signal that 

measured brightness temperatures deviate from skin temperature. Variations in surface 

emissivity can also cause deviations from the 1-1 line. However, the range in emissivity in this 

spectral region is small, between 0.95 and 0.99, and therefore unlikely to create the strong 

deviations seen at the warmest skin temperatures. 
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Figure 2.7 – Simulated measured brightness temperature at the 10.97 TIRS channel compared to skin temperature reported in 
the SeeBor database. The dashed line represents a 1-1 correspondence. 

 

As for the process of classification, six classes are defined following the criteria defined 

by Weisz et al. (2007) in their IMAPP PCR retrieval. The brightness temperature thresholds for 

each class can be found in Table 2.2. There are six classes, the middle four of which span a range 

of 10K, and the first and last class acting as “catch-alls” for brightness temperatures lower or 

higher than the minimum and maximum temperatures used in the class definitions. In training 

the algorithm, a different range of brightness temperatures are used to classify a profile than is 

used in the retrieval. For training, the classes overlap with each other, as shown in Table 2.2a. 

This is done to minimize the error resulting from misclassification. The algorithm is trained the 

same way as in the base retrieval case, but a different set of regression coefficients, eigenvectors, 

and average states is calculated for each class. Then the retrieval is run by first classifying the 
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measurements into the classes defined in Table 2.2b and using the regression coefficients for that 

particular class. 

 

Table 2.2 – Brightness temperature class definitions for the training dataset (A) and test dataset (B) 

 

2.6 Analysis Methods 

2.6.1 Comparison with Other Retrievals 

As a means to qualitatively analyze the retrieval performance, the algorithm was also 

trained to run retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) 

instrument. IASI is a Michelson interferometer first launched on the Meteorological Operation 

(MetOp)-A satellite by the European Organization for Exploitation of Meteorological Satellites 

(EUMETSAT). IASI is a high spectral resolution instrument, with measurements covering a 

spectral range of 645 – 2760 cm–1 (3.62 – 15.5m) with a spectral sampling of 0.25 cm–1. IASI 

was designed for the purpose of high-resolution atmospheric soundings, and so provides a good 

means of comparison for TIRS retrieval performance (Hilton et al., 2012). 

A B 
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2.6.2 Error Measurement 

The primary methods for analyzing retrieval performance are bias and standard deviation 

of error (SDE) The two quantities are calculated as follows: 

𝐵𝑖𝑎𝑠 =
∑(𝑥𝑡𝑟𝑢𝑡ℎ − 𝑥𝑟𝑒𝑡)

𝑁
 

𝑆𝐷𝐸 = √
∑((𝑥𝑡𝑟𝑢𝑡ℎ − 𝑥𝑟𝑒𝑡) − (𝑥𝑡𝑟𝑢𝑡ℎ − 𝑥𝑟𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))2

𝑁 − 1
 

Here, xtruth is the state vector from the SeeBor dataset, xret is the retrieved state vector, and 

N is the number of data points, or test retrievals. Bias and SDE are calculated for each of the 101 

retrieved pressure levels. In instances where we compare bias from different retrievals, the 

magnitude, or absolute value of bias is used. It is apparent from these formulas that bias 

represents the average retrieval error and SDE demonstrates the spread of retrieval error. As such, 

bias is a measure of retrieval accuracy, while SDE measures precision. 
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Chapter 3:  Results 

3.1 Base Retrieval 

In the initial base retrieval, we assess the performance of TIRS through measurements of 

retrieval bias and SDE, and by comparing the TIRS retrieval performance with that of IASI. By 

base retrieval, we refer to the most basic retrieval without brightness temperature classification, 

where the same set of retrieval coefficients are used for all retrievals. The retrieval results are 

compared to climatology, represented by the mean and standard deviation of all profiles in the 

SeeBor database. We shall discuss the retrieval performance of all four retrieved variables: 

temperature, water vapor mixing ratio, skin temperature, and total precipitable water. 

 Figure 3.1 shows the bias and error for the base retrieval when all testing profiles are 

used. Temperature retrieval is shown in figure 3.1a. The TIRS retrieval, indicated by the orange 

line, has a retrieval bias between –0.1 and 0.1 K throughout the troposphere. The largest bias 

occurs around 10 hPa, where the bias is around –0.3 K. Given that the retrievals will primarily 

focus on the troposphere and lower stratosphere, this peak in bias is not a cause for concern. 

Moreover, given that the bias is less than 1 K, the retrieval performance is reasonable, so we may 

consider that the temperature retrieval is accurate. To fully understand retrieval performance, we 

also compare the TIRS retrieval to the bias for IASI and the average SeeBor profile from the 

training dataset, also shown in figure 3.1. This average profile (green) is the average profile from 

the training data set representing the scenario where no measurement is made to constrain the 

estimate. If the PREFIRE retrieval has no skill in retrieving the temperature and humidity profile, 

it would return the average of the training profiles.  In the pressure levels of interest, we can see 

that the retrieval bias is small for all three retrievals, on an order of magnitude of 10–1 K. As such, 

focus on SDE as a measure of retrieval performance and precision.  

 



29 
 

 

Figure 3.1 – Base retrieval error for temperature retrieval (A) and mixing ratio retrieval (B) for all profiles in the validation 
dataset. Solid lines show retrieval bias, while dashed lines indicate standard deviation of error (SDE). 

 

The dashed lines in figure 3.1a show the SDE for temperature retrievals. Within the 

troposphere and lower stratosphere (up to about 40 hPa), the SDE for the TIRS retrieval is within 

5 K. The SDE for IASI is within about 3 K, while the benchmark or Average Profile SDE is 

greater than 5 K, between about 6 and 18 K, with the highest SDE near the surface. This is to be 

expected, as global temperature variations are highest at the surface. Given that the TIRS SDE is 

more similar to that of IASI than it is to the benchmark, despite the lower spectral resolution, we 

can say qualitatively that the TIRS temperature retrieval is both reasonably precise and accurate, 

or that it is performing within expected variability. 

 For water vapor mixing ratio, we will see similar results to that of temperature. The 

mixing ratio retrieval biases are shown in Figure 3.1b. The TIRS retrieval bias peaks at high 

pressures near the surface, with a maximum magnitude of around 0.1 g/kg. Retrieval bias 

decreases going up in the atmosphere, due to the lack of moisture at higher levels. As to be 

expected, given its high spectral resolution, IASI has lower magnitude biases than TIRS. At 

pressures above 600 hPa (closer to the surface), the benchmark average profile retrieval has a 
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lower magnitude bias compared to both TIRS and IASI. However, the magnitude of the biases in 

both the TIRS and IASI retrievals is sufficiently small to give confidence that the retrievals are 

largely unbiased. Thus, it is not the accuracy of the retrieval, but the precision that needs to be 

analyzed. To do this, we consider the retrieval SDE, shown by the dashed lines in figure 3.1b. 

The SDE curve for TIRS has a similar shape to that of the bias curve: the peak SDE is near the 

surface, and SDE decreases with decreasing pressure. Moreover, the SDE is an order of 

magnitude higher than the bias, meaning that even though the retrieval tends to overestimate 

water vapor mixing ratio near the surface, the true value is still within the expected range of 

errors for the retrieval. The same may be said for IASI. As such, we may again conclude that the 

retrieval is reasonably accurate. As far as the precision of the TIRS retrieval, like with the 

temperature retrieval, the mixing ratio SDE for TIRS is between that of IASI and the average 

profile. So as with the temperature retrieval, the TIRS mixing ratio retrieval is performing within 

expectations. 

 The final two retrieved variables are skin temperature and total precipitable water. The 

bias and SDE values for these retrieved variables are shown in Figure 3.2. Once again, the biases 

in both retrievals are small, and consistent with zero bias. Small variations in the retrieval biases 

may be attributed to sampling noise. As with other retrieved variables, the TIRS SDE was 

between that of IASI and the average profile. For total precipitable water (TPW), the retrieval 

performance was similar to that for water vapor mixing ratio, perhaps to be expected as they are 

both measurements of atmospheric moisture.  
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Figure 3.2 – The error for skin temperature (A) and TPW (B) from the global base retrieval. The box plots show the spread of the 
data, while the red error bars indicate the error bias (represented by the black dot) +/– the standard deviation of error. 

 

Since the PREFIRE mission is primarily focused on the Arctic, it is also useful to 

characterize the retrieval performance on Arctic profiles separately. This was accomplished by 

analyzing the subset of the testing profiles located at latitudes north of 60N.  This subset 

contains 201 profiles. Figure 3.3 shows the retrieval bias and SDE in the Arctic for temperature 

and mixing ratio. Figure 3.4 shows the retrieval errors for skin temperature and total precipitable 

water in the Arctic. The magnitude of bias increased for all retrieved variables in the Arctic, 

meaning Arctic retrievals are less accurate. SDE also increased for Arctic retrievals of 

temperature and water vapor in all instruments. SDE showed a small decrease for the TIRS 

retrievals of skin temperature and total precipitable water, likely due to the smaller amount of 

atmospheric moisture typical of Arctic profiles.  The increase in error is primarily seen at the 

surface and through the troposphere, where the most variability in atmospheric state occurs. 

However, this is true for all retrievals, not just for TIRS. The increase in bias and SDE is likely 

due to the distribution of profiles in the training data set. As previously mentioned in section 
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2.4.1, the SeeBor data set has more profiles in the midlatitudes and tropics than in the polar 

regions. As such, the base retrieval will be biased towards lower latitudes in terms of retrieval 

performance. In other words, since the algorithm had more training data in lower latitudes than at 

high latitudes, it is better equipped to perform retrievals at lower latitudes. That is not to say that 

the Arctic retrievals are inaccurate. As in the global case, the error for TIRS is between the two 

points of comparison, and is more similar to that of IASI than the average profile, meaning that 

TIRS is performing not only within the expected range of error, but with enough skill that it 

nearly comparable to a high spectral resolution instrument.  

 

Figure 3.3 – Arctic base retrieval performance for temperature (A) and mixing ratio (B). As with figure 3.1, solid color lines 
show retrieval bias, and dashed colored lines show SDE. 
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Figure 3.4 – Arctic base retrieval performance for skin temperature (A) and total precipitable water (B). Box plots show median, 
interquartile range and spread of the retrieval error. To the right of the box plots, the error bars show the retrieval bias, 

represented the black dots, and the error bars show the bias +/– the SDE. 

 

3.2 Brightness Temperature Classification 

One potential method for improving performance in the Arctic is to use a retrieval trained 

using profiles characteristic of colder environments. To accomplish this, brightness temperature 

classification (BTC) was implemented in the algorithm so it would be better tuned for specific 

environments and improve retrieval performance. To assess the change in retrieval performance, 

we look at the change in magnitude of the retrieval bias between the base and BTC retrievals. 

The change in retrieval bias for temperature and mixing ratio are shown in figure 3.5. In these 

graphs, and in the numbers reported, a negative difference in bias indicates a decrease in bias 

magnitude when BTC is implemented in the retrieval, bias magnitude being the absolute value of 

the retrieval bias. Averaged over the column, the bias magnitude difference was 1.43* 10–2 K for 

temperature, and –4.19*10–3g/kg for mixing ratio. From these numbers, we see that when 

brightness temperature classification is implemented, bias increased for the temperature 
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measurements, and decreased for the measurements of moisture. However, these differences are 

small for all retrieved variables. As such we may conclude that the BTC retrieval displays similar 

accuracy to that of the unclassified retrieval. 

 

Figure 3.5 – Change in error for the global retrieval between the base and BTC temperature retrieval (A) and mixing ratio 
retrieval (B). Solid blue line shows change in bias magnitude, dashed blue line shows change in SDE. Negative values indicate 

smaller errors in the BTC retrieval compared to the base retrieval.  

 

As the bias does not significantly change with implementation of BTC, change in 

retrieval performance will be realized through the change in SDE for the retrieved variables. The 

change in SDE between the base and BTC retrievals is evaluated as a percent difference in SDE: 

percent difference =
SDEbtc − SDEbase

SDEbase
∗ 100 

 This quantity is useful for assessing changes in retrieval error because it is independent of 

the magnitude of the original variable. The reason for not assessing percent difference when 

analyzing change in bias is because bias is ideally centered around zero, so even a small change 

in bias may result in a large percent difference that does not accurately represent the results. This 

is not the case for SDE, which is not equal to zero, so the percent difference is a reasonable 

means of demonstrating the change in error.  
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Figure 3.6 – Percent change in SDE for the global temperature (A) and mixing ratio (B) retrievals when BTC is applied. 
Negative values indicate a lower error in the BTC retrieval compared to the base retrieval. 

 

The percent difference of SDE in the global case is shown in Figure 3.6. As with the 

change in bias, a negative difference indicates a decrease in error when BTC is applied. 

Therefore, a negative percent difference in SDE represents an increase in retrieval precision. The 

temperature SDE decreased overall, with the largest improvement in retrieval accuracy in the 

middle of the troposphere, between 500 and 600 hPa, with a peak difference of –19%. Mixing 

ratio likewise showed decreases in SDE throughout the column when BTC is applied. Figure 

3.6b shows distinct peaks at 500 hPa and at the surface, around 1000 hPa. The largest decrease in 

mixing ratio SDE was located near 1000 hPa, where SDE decreased by 20%. The average 

change in SDE for temperature is –10% over the column. For mixing ratio, the average percent 

difference is –7.8% over the column. As for the non-profile variables, skin temperature SDE 

decreased by 40%, and TPW SDE had a percent difference of –21%. Thus, even though bias did 

not change, we see that the effect of applying brightness temperature classification to the 

retrieval is reduction in the SDE, and improvement in retrieval precision. 
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The Arctic saw more improvement with the addition of BTC than the total global test set. 

The magnitude of temperature bias (Figure 3.7a) generally decreased over our atmospheric 

region of interest, with an average change in magnitude of –1.75*10–2 K. The large changes 

above 10 hPa are not significant, again due to the lack of signal at very high altitudes. As for 

mixing ratio (Figure 3.7b), there was also an overall decrease in bias magnitude, with the largest 

changes occurring near the surface, and an average change in bias of –3.27*10–2 g/kg.  The SDE 

for these variables likewise saw more improvement. The percent difference of temperature and 

mixing ratio SDE in the Arctic is shown in figure 3.8. The temperature SDE had the largest 

percent difference around 800 hPa and 200 hPa. The maximum difference in SDE was –25% at 

just below the 800 hPa pressure level. The average percent difference in SDE over the column 

was –8.6%. The mixing ratio SDE behaved similarly in the arctic as it did in the global case: the 

SDE decreased over the entire column, with the largest difference near 1000 hPa, with a 

maximum reduction in SDE of 37 %. The average change in mixing ratio SDE over the column 

was –15%. As for skin temperature and TPW, skin temperature bias in the Arctic increased by 

9.83*10–2K, though the SDE decreased by 25%. TPW bias decreased by –0.11cm, and the SDE 

decreased by 43%.  
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Figure 3.7 – Change in error for the Arctic retrieval between the base and BTC temperature retrieval (A) and mixing ratio 
retrieval (B). Solid blue line shows change in bias magnitude, dashed blue line shows change in SDE. Negative values indicate 

smaller errors in the BTC retrieval compared to the base retrieval.  

 

 

 

Figure 3.8 – Percent change in SDE for the Arctic temperature (A) and mixing ratio (B) retrievals when BTC is applied. 
Negative values indicate a lower error in the BTC retrieval compared to the base retrieval. 

 

The reasoning behind the improvements in Arctic retrievals with the addition of BTC 

harkens back to the spatial distribution of the test data. Since there are more profiles in warmer 



38 
 

regions, Arctic retrievals had larger errors than the overall global case. By implementing BTC, a 

retrieval in the Arctic is performed with a different set of regression coefficients than a retrieval 

in the tropics. Therefore, a cold dry profile will be retrieved using regression coefficients that 

more closely represent it, hence the large reduction of errors in the Arctic retrievals.  

 

3.3 Retrieval with and without FIR 

As the PREFIRE mission will be illustrating the benefit of regular measurements of the 

FIR from space, it would be remiss to not highlight how the FIR measurements of TIRS benefit 

the atmospheric retrievals. In order to do this, it is necessary to compare a retrieval with the FIR 

included to a retrieval without FIR measurements. This is done in a similar respect in section 3.1, 

where the TIRS retrieval is compared to that of IASI, however, it is not a direct comparison due 

to differences in channels and spectral resolution between the two instruments. Here, a more 

direct comparison is performed by conducting the TIRS retrieval with only the mid infrared 

channels and comparing it to the full TIRS retrieval. 

Only 11 of the 54 TIRS channels are found in the MIR. Therefore, the regression 

coefficients for the MIR subset were calculated using 12 principal components, the additional PC 

coming from surface pressure. Regression coefficients for the full spectra were also recalculated 

with 12 PCs so that the comparison only shows the difference between the amount of 

information, rather than the differing number of channels. Brightness temperature classification 

was used in these retrievals to mimic the anticipated implementation of the algorithm with real 

data. 

As done in the analysis of brightness temperature classification, the comparison of the 

two retrievals is performed by assessment of the difference in retrieval bias magnitude as well as 

the percent difference in SDE. 
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In the global case, the change in bias between the full retrieval and the MIR retrieval is 

negligible. The difference in bias magnitude for temperature and mixing ratio are shown in 

figure 3.9. The changes in temperature bias are small, with an average difference of –8. 7*10–4 K 

over the column. Such small differences are likely due to random noise rather than an actual 

change in retrieval bias. The mixing ratio similarly had changes in bias that were likely due to 

differences in noise. Below 853 hPa, the change in bias is negative, indicating a reduction in bias 

magnitude when FIR measurements are included. Above 853 hPa, the bias is primarily positive. 

However, the average change in bias over the column is small: 9.5*10–4 g/kg. For the non-profile 

variables, the change in bias was likewise small. Skin temperature bias changed by –9.2*10–3K, 

and total precipitable water bias by –1.4*10–3cm when FIR measurements are included. 

 

 

Figure 3.9 – Difference in error between the MIR only retrieval and all-channel retrieval for temperature (A) and mixing ratio 
(B), using all profiles in the validation dataset. The solid blue line shows change in bias magnitude. The dashed blue line shows 

change in SDE. Negative values indicate the all-channel retrieval had lower error than the MIR-only retrieval. 

It is in the SDE where we begin to see the benefit of FIR measurements in retrievals.  The 

percent difference in global temperature SDE is shown in figure 3.10a, where the negative values 

indicate an overall reduction in SDE when FIR measurements are included. The average 
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difference in temperature SDE is –16% with a peak reduction in error of –34% at 47 hPa. Two 

other peaks of note include one at 118 hPa with a reduction of 32% and a smaller peak in the 

troposphere at 516 hPa, where the reduction of SDE was –21%. The mixing ratio retrieval also 

saw a reduction of error in the global case, as demonstrated in Figure 3.10b. The maximum 

reduction of error is found at 516 hPa, with percent difference in SDE of –18%. A secondary 

peak exists at 212 hPa, where the reduction in error reaches –11%. The average change in mixing 

ratio SDE in the global case is –5.8%. Skin temperature and TPW also decreased, with a skin 

temperature SDE changing by –2.3%, and TPW SDE by –9.5%. These results suggests that the 

addition of FIR measurements influence the retrieval precision by reduction of the SDE in the 

global case. 

 

 

Figure 3.10 – Percent difference in SDE between the MIR-only and all-channel retrievals for temperature (A) and mixing ratio 
(B) using all profiles in the testing dataset. Negative values indicate a smaller error in the all-channel retrieval compared to the 

MIR only retrieval. 

The Arctic case is a different story, however. The change in temperature bias, shown in 

figure 3.11a, is primarily negative, meaning the retrieval improved in the Arctic when FIR 

channels were included. This is likely due to the drier atmosphere where the FIR can see down to 
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the surface. The largest reduction in bias magnitude were located at 497 hPa where bias 

decreased by –0.4976 K. The maximum reduction occurs in the stratosphere around 83 hPa, 

where the change in bias was –1.919K. There are a few places where bias increased when the 

FIR measurements are included: 932 hPa and 260 hPa, where bias increased by 8.492*10–2K and 

0.2309K respectively. However, overall, there was an average reduction in bias of –0.8824K 

over the column. Likewise, the mixing ratio bias saw a net reduction in the Arctic with the 

addition of FIR measurements, as shown in figure 3.11b. There is a small region in the 

troposphere in which bias increased, with a peak at 779 hPa, where bias increased by 1.9*10–2 

g/kg. Bias decreased through the rest of the column, primarily near the surface with a maximum 

decrease in bias of –8.7*10–2 g/kg. The average change in bias was –5.7*10–3 g/kg. As for the 

non-profile variables, the skin temperature bias changed by –0.88K and TPW by –9.3*10–3cm. 

 

 

Figure 3.11 – Difference in error between the MIR only retrieval and all-channel retrieval for temperature (A) and mixing ratio 
(B), using only Arctic profiles from the validation dataset. The solid blue line shows change in bias magnitude. The dashed blue 

line shows change in SDE. Negative values indicate the all-channel retrieval had lower error than the MIR-only retrieval. 
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As with the global case, the SDE was reduced more than bias in the Arctic case when FIR 

measurements were included. The change in SDE for temperature is shown in figure 3.12. The 

change in SDE in the Arctic has a similar shape to the change in bias curve. On average, the 

temperature SDE decreased by 20%, with a peak reduction of –46% in the stratosphere at around 

80 hPa. The mixing ratio SDE behaves similarly to bias, in that there is a region in the 

troposphere (here at 639 hPa), where the SDE increased, though by less than 1%, but the change 

in SDE is negative through the rest of the column. The largest decrease in error occurs at the 

lowest levels with a peak error reduction of around 15%. There is a similar peak in the upper 

troposphere at 286 hPa, where the reduction in SDE is –13%. The average change in mixing ratio 

SDE is –6.2%. For both temperature and mixing ratio, the change in error is greater in the Arctic 

case than in the global. This is also true for skin temperature and TPW. Skin temperature SDE 

changed by –12% and TPW SDE by –10% in the Arctic case. 

 

 

Figure 3.12 – Percent difference in SDE between the MIR-only and all-channel retrievals for temperature (A) and mixing ratio 
(B) using only Arctic profiles from the testing dataset. Negative values indicate a smaller error in the all-channel retrieval 

compared to the MIR only retrieval. 
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Chapter 4:  Conclusions 
 

This paper introduces a PCR temperature and humidity retrieval for the TIRS instrument 

aboard PREFIRE. Three different trials of the PCR retrieval algorithm were conducted to 

illustrate its performance relative a high spectral resolution instrument and assess the impact of 

preconditioning the retrieval and the influence of FIR wavelengths. The average testing profile 

serves as a baseline or lower limit to the skill of the retrieval, and the IASI retrieval acts as an 

upper limit, being a retrieval from an instrument with a higher spectral resolution than TIRS. 

In the initial test, the TIRS retrieval performance was between the other two retrievals, 

with a bias generally consistent with zero, and a SDE between that of IASI and the average 

training profile. The average standard deviation of temperature error in troposphere was 1.3 K 

for IASI, 2.8K for TIRS, and 12.8 K for the average training profile. For water vapor, the 

tropospheric average of SDE was 0.65 g/kg for IASI, 1.1 for TIRS, and 2.2 for the average 

profile. The primary purpose of this first test was to establish a baseline for the TIRS retrieval 

performance. From the results we conclude that the TIRS retrieval performance is within 

expected limits, and performs more similarly to the high spectral resolution instrument 

represented by IASI, rather than the no-skill benchmark of the average training profile. 

Brightness temperature classification was found to have a positive impact on the 

PREFIRE PCR retrieval. Brightness temperature classification uses the brightness temperature of 

a certain channel (in this case, the 10.97 μm channel) as a proxy for surface temperature, and 

selects a set of retrieval coefficients based on that brightness temperature. This method has the 

potential to reduce errors in the retrieval from skewed representation of surface temperatures in 

the training data set. In the case of the SeeBor dataset used to train the PREFIRE retrieval 

algorithm, more profiles originate from mid and lower latitudes than high latitudes. Therefore, 

use of brightness temperature classification reduced the error in high-latitude profiles, which had 
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lower representation. Findings showed that BTC resulted in a reduction in SDE throughout the 

atmosphere for the temperature retrieval, and reduction in SDE at lower altitudes for the mixing 

ratio retrieval. The changes in retrieval bias were small and may be attributed to random noise 

rather than improved retrieval bias. More improvement from BTC could be seen in the Arctic 

compared to the overall global case. Changes in both bias and SDE occurred in the Arctic 

retrievals, primarily showing improvement in retrieval performance. Though in some regions the 

bias magnitude increased with the added BTC, these positive changes are small and may be 

attributed to random noise. This affirms the assertion that the BTC would help to compensate for 

the lower representation of high-latitude profiles in the training dataset. 

The third test was a comparison of the TIRS retrieval with and without far infrared 

channels. By reducing the number of principal components to equal the number of mid infrared 

channels, this comparison is made possible. This comparison allows us to see how measurement 

of FIR impacts the ability to retrieve atmospheric variables such as temperature and water vapor. 

Overall, adding the FIR channels to the retrieval saw minimal reduction in bias from the MIR-

only retrieval, but significant reduction in the standard deviation of error. More improvement 

was seen in the temperature retrieval than in the mixing ratio retrieval. Larger improvements 

were seen when considering only profiles from the Arctic. In both the temperature and mixing 

ratio retrievals, as well as the skin temperature and TPW retrievals, the addition of FIR channels 

resulted in decreased retrieval bias and SDE. As with the comparison to IASI in the base 

retrieval test, this third test confirms the benefit of using FIR measurements in atmospheric 

retrievals, particularly in cold and dry regions such as the Arctic. 
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Chapter 5:  Future Work 
 

Though the PREFIRE PCR retrieval algorithm is fully functional, there are still ways in 

which the algorithm may be built upon and improved. Prior to the launch of the PREFIRE 

satellites, the current PCR algorithm will be retrained with supplementary profiles to further 

improve retrieval performance. In particular, additional profiles from high latitude regions will 

be included in the training data to account for skewed representation of atmospheric states in the 

SeeBor dataset.  

In addition, the algorithm will be tested with cloudy scenes to assess the retrieval 

performance in the presence of clouds. Given the sensitivity of the FIR to water and water vapor, 

the PCR algorithm could potentially serve as a test for clouds in a scene. Moreover, even if the 

retrieval is not accurate within and below a cloud base, information of the atmosphere above the 

cloud may still be obtained. 
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