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Abstract 

 Profiles, or soundings, of atmospheric temperature and water vapor from remotely sensed 

platforms provide critical observations within the temporal and spatial gaps of the radiosonde 

network. The 2017 National Academies of Science Decadal Survey highlighted that observations 

of the planetary boundary layer (PBL) from the current space-based observing system are not of 

the necessary accuracy or resolution for monitoring and predicting high impact weather 

phenomena. The National Research Council (NRC, 2009) suggested the development of a network 

of ground-based profilers to supplement the existing space-based observing system in order to 

improve observations of the PBL. One instrument that fits the requirements outlined by the NRC 

(2009) for the ground-based network for profilers is the Atmospheric Emitted Radiance 

Interferometer (AERI). 

 This dissertation advances the understanding of the benefits of a synergy between the 

ground-based AERI and space-based hyperspectral infrared (IR) sounders as a method for 

improving thermodynamic sounding using three studies: 1) A synthetic information content 

analysis in clear sky conditions to quantify improvements offered by the synergy of profilers in 

terms of degrees of freedom, vertical resolution, and uncertainties. 2) A synthetic information 

content study in three cloudy sky scenes to assess the potential of the ground-based and space-

based synergy as a possible solution to IR sounding in cloudy environments. 3) Develop an optimal 

estimation retrieval that combines AERI with the space-based Cross-track Infrared Sounder (CrIS) 

on S-NPP and NOAA-20 to assess the performance of the synergy in practice, outside of synthetic 

studies. 

 The clear sky information content study shows that a combination of AERI with any of the 

three polar-orbiting IR sounders: The Atmospheric Infrared Sounder (AIRS), the Cross-track 
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Infrared Sounder (CrIS), or the Infrared Atmospheric Sounding Interferometer (IASI), results in a 

30-40% increase in degrees of freedom (DOF) in the surface to 700 hPa layer compared to the 

space-based instrument alone. Introducing AERI measurements to the observing system also 

results in significant improvements to vertical resolution and uncertainties in the bottom 1000 m 

of the atmosphere compared to CrIS measurements alone. 

 The cloudy sky information content analysis show that the synergy of CrIS+AERI has 

greater temperature information in cloudy sky conditions than in clear sky because the cloud 

provides an opaque layer that sharpens the Jacobians enabling a temperature retrieval at that layer. 

AERI and CrIS both lose water vapor information as the cloud becomes optically thick, though a 

synergy of CrIS+AERI would minimize those losses. In partly cloudy scenes, the information 

content of the synergy is most sensitive to cloud cover at greater than 50% aerial cloud fraction. 

 The combined CrIS+AERI retrieval is assessed for a single case study. CrIS+AERI did not 

produce the best comparison to the radiosonde profile when compared to the individual instrument 

retrievals and was found to have greater uncertainty as well. It is shown that this is likely due to 

the small uncertainties used for each instrument. The synergy of CrIS+AERI was found to replicate 

the improvements in vertical resolution identified in the information content analysis. The vertical 

resolution of the combined retrieval in this case study is found to exceed the 1 km resolution goal 

stated by the 2017 Decadal Survey. 
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Chapter 1: Introduction 

 Vertical profiles, also referred to as soundings, of atmospheric temperature and water 

vapor, are critical for atmospheric diagnostics and the accuracy of numerical weather prediction 

(NWP) (eg: Langland and Baker 2004, LaRoche 2010). Soundings enable the diagnosis of 

atmospheric stability, total precipitable water vapor, freezing levels, and precipitation type among 

other applications. Radiosondes are considered the gold standard for atmospheric sounding. 

However, radiosonde observations are generally taken every 12 hours at locations 100s to 1000s 

of km apart. The large time and spatial gaps in observations cause the radiosonde network to be 

unable to identify features in the mesoscale with horizontal length scales around 10 to 100s of km 

and time scales of a few hours. Of primary concern for this work, the radiosonde network in North 

America is unable to observe transitions in the planetary boundary layer (PBL) under daytime 

heating, which is crucial for monitoring changes in atmospheric stability to identify the location 

and timing of severe convection. 

 Remotely sensed observations from satellite-based infrared (IR) and microwave sounders 

and Global Positioning System (GPS) radio occultation, in addition to in situ observations from 

commercial aircraft, are necessary for filling in the temporal and spatial gaps in radiosonde 

observations. The current observing system makes use of IR sounders on polar-orbiting satellites. 

In addition, the Feng-Yun 4 satellite, centered over western Asia, has demonstrated the utility of 

hyperspectral infrared soundings from geostationary orbit. However, both the National Research 

Council (2009) and 2017 NASA Decadal Survey (National Academies of Sciences, Engineering, 

and Medicine, 2018; hereafter referred to as the Decadal Survey) have noted that thermodynamic 

soundings from the current space-based observing system lack the accuracy and resolution within 

the PBL that is necessary to improve predictions of high impact weather phenomenon. The 
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Decadal Survey designated improving observations of the PBL as a priority for the next decade. 

Previously, the NRC (2009) proposed the development of a nationwide network of ground-based 

thermodynamic profilers to supplement the space-based sounders in order to improve observations 

of the PBL. This dissertation will focus on supplementing space-based IR sounders with a ground-

based IR sensor in order to improve atmospheric sounding. 

 

1.1 History of Infrared Sounding 

 Kaplan (1959) is largely credited with developing the initial concept on how to infer 

atmospheric temperature profiles using IR radiance measurements. Kaplan (1959) used simple 

radiative transfer simulations to show that radiances measured by a space-based instrument at the 

15 μm CO2 absorption band would originate from approximately 100 hPa. Each channel at an 

incrementally shorter wavelength would detect radiation originating from a lower level in the 

atmosphere, until reaching the surface at the 13 μm atmospheric window channel. In 1969, the first 

two atmospheric sounding instruments were launched into orbit on the Nimbus-3 satellite. One of 

those instruments, the Satellite Infrared Spectrometer (SIRS) had eight total channels with 5 cm-1 

resolution spanning between the CO2 absorption band at 15 μm to the atmospheric window at 11 

μm. Wark and Hilleary (1969) applied the theory of Kaplan (1959) to retrieve an estimated 

temperature profile using a set of eight equations that are solved simultaneously. While the 

comparison of their retrieval to radiosondes was considered a success at the time, they identified 

large errors near strong vertical temperature gradient, such as the top of the PBL and the 

tropopause. Conrath et al. (1970) made a temperature retrieval derived from measurements made 

by the second instrument on Nimbus-3, the Infrared Interferometer (IRIS), with similar results to 

Wark and Hilleary (1969). In contrast to SIRS, IRIS provided measurements from 5 μm to 25 μm, 
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allowing for the retrieval of total column water vapor and other trace gases in addition to 

temperature.  

 Ohring (1979) provided a review of various impact studies that assessed the value that 

satellite-based sounding data had in numerical weather prediction. In general, satellite-based 

soundings proved to be useful to improving forecast accuracy in the data-sparse Southern 

Hemisphere (eg: Kelly et al. 1978) but impacts in the Northern Hemisphere were much smaller. 

Ohring (1979) also documented mixed reactions to this new satellite-based sounding data: both 

the South African Weather Bureau and the French Meteorological Service believed that satellite 

sounding data was considerable and impactful, while the German Meteorological Service would 

not even assimilate the sounding data because they felt the old system with eight weather ships in 

the Atlantic Ocean provided more valuable information. 

 Chahine (1974) and Kaplan et al. (1977) identified that the 4.3 μm CO2 and N2O absorption 

bands may be used to retrieve temperature in the lower troposphere, in addition to the 15 μm region 

utilized in SIRS. In 1979 the TIROS-N Operational Vertical Sounder (TOVS, Smith et al. 1979) 

was launched. TOVS was a combination of IR and microwave sounding instruments, of which the 

High-resolution Infrared Radiation Sounder (HIRS) was the IR component. HIRS had 20 channels, 

extending those in the 15 μm region that SIRS had, to include channels in the water vapor 

continuum and the near-IR around those CO2 and N2O absorption bands, as was suggested by the 

findings of Chahine (1974) and Kaplan et al. (1977). In addition to the polar-orbiting HIRS 

instrument, the Visible and Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS, 

Smith et al. 1981) was put in geostationary orbit on GOES-4 in 1980. The VAS had 12 channels 

ranging from 4 μm to 15 μm and its geostationary orbit allowed for the detection of temporal 

changes in thermodynamic profiles at a given location (Smith et al. 1985). Given its geostationary 
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orbit, VAS also enabled the calculation of upper tropospheric wind vectors, which improved 

tropical cyclone forecasts (Velden et al. 1984). TOVS remained the polar-orbiting sounder for the 

United States from 1979 until the launch of the Atmospheric Infrared Sounder (AIRS) in 2002. 

 Phillips et al. (1979) found that the soundings from TOVS were improved compared to the 

original SIRS instrument, but still had large errors near strong vertical temperature gradients (as 

originally found with SIRS by Wark and Hilleary 1969). Smith (1991) showed how the poor 

vertical resolution of the TOVS retrievals resulted in errors as large as 10 K near the tropopause 

where the temperature changed rapidly with height. The VAS, using the same channels as the 

TOVS, also had limited impacts because of the poor vertical resolution. Smith (1991) documented 

how NWP skill stagnated during the 1980s, coincident in time with the stagnation in sounder 

technology and suggested that improved sounding would lead to more accurate NWP.  

 While it took two decades for a new instrument to be put into orbit, scientific achievements 

during the 1980s and 1990s cultivated the successes that would come in the 2000s. Notably, 

advances in engineering enabled the development of hyperspectral interferometers and grating 

spectrometers. While the early SIRS and IRIS instruments had spectral resolution of 5 cm-1, and 

the HIRS instrument had 10 cm-1 resolution, newer instruments, such as the aircraft-based High 

spectral resolution Infrared Sounder (HIS) were able to achieve spectral resolution of 1 cm-1 or 

better. Hyperspectral resolution is necessary to differentiate between the transparent and opaque 

regions of individual absorption bands, crucial for high vertical resolution sounding. The 

hyperspectral resolution sharpens the weighting functions for each channel – that is sensitive to a 

thinner layer of the atmosphere (Kaplan et al. 1977, Smith 1991). Smith (1991) presented 

experimental data from the HIS when flown on an aircraft, with the sensor looking downward. In 
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this setting, HIS was capable of doubling the vertical resolution of the TOVS and reducing errors 

in the temperature retrievals by up to 50% compared to TOVS. 

 The launch of AIRS in 2002 (still operational in 2021) marked the beginning of the current 

era for IR sounding. AIRS is a grating spectrometer with more than 2000 channels and a spectral 

resolution ranging from 0.55 cm-1, in the longwave part of the spectrum to 2.0 cm-1 in the 

shortwave. This was a significant upgrade from the 15 cm-1 spectral resolution of the HIRS 

instrument. Early validation efforts by Chahine et al. (2006) found that AIRS retrievals achieved 

root mean square errors (RMSE) of about 1.5 K or less throughout the troposphere. For 

comparison, the RMSE values for TOVS presented by Smith (1991) were 2.5 K to 3 K and greater 

throughout the profile. An IR sounder capable of significantly more accurate retrievals addressed 

the primary areas of focus for the IR sounding community that Smith (1991) had highlighted a 

decade earlier. 

 Today, AIRS along with the Infrared Atmospheric Sounding Interferometer (IASI), first 

launched by EUMETSAT in 2006, and the Cross-track Infrared Sounder (CrIS), first launched by 

the United States National Aeronautics and Space Administration (NASA) and National Oceanic 

and Atmospheric Administration (NOAA) in 2011, provide IR soundings from polar-orbit. Until 

recently, hyperspectral sounders have been restricted to polar-orbit. In 2016, the Chinese 

Meteorological Agency (CMA) launched the Geostationary Interferometric Infrared Sounder 

(GIIRS), to be the first hyperspectral sounder in geostationary orbit. EUMETSAT currently plans 

to put the Infrared Sounder (IRS) in geostationary orbit by 2023 as part of the Meteosat Third 

Generation (MTG) deployment while NOAA’s GEO-XO program intends to put an IR sounder in 

geostationary orbit around 2038. The reader is directed to Menzel et al. (2018) for an additional 

perspective on the history and development of IR sounding instruments. 
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 While modern day NWP assimilates radiances from IR sounders instead of retrievals, 

Smith et al. (2021) demonstrates that there is much more information available in these IR sounders 

than is currently being used in data assimilation techniques. However, thermodynamic retrievals 

from IR sounders are used for nowcasting and have the potential to provide important information 

on the pre-convective state of the atmosphere (Iturbide-Sanchez et al. 2018, Esmaili et al. 2020). 

That potential has yet to be realized though, as extensive validations of the NOAA Unique 

Combined Atmospheric Processing System (NUCAPS, Gambacorta 2013) by Sun et al. (2017) 

and Nalli et al. (2018) reveal large errors up to 3 K near the surface. Gartzke et al. (2017) and 

Bloch et al. (2019) have shown that calculations of Convective Available Potential Energy (CAPE) 

from AIRS retrievals have no correlation to CAPE calculations from radiosondes, largely driven 

by the near surface errors in the retrievals. Despite the many technological and scientific advances 

in the IR sounding field over the last 50+ years, thermodynamic sounding of the PBL from space 

remains challenging, just as Wark and Hilleary (1969) had found in the first known sounding 

efforts. These errors significantly limit the use of IR soundings in modern day weather forecasting 

and analysis. 

 

1.2 Motivation 

 Figure 1.1 shows an example of a CrIS-derived retrieval from NUCAPS (Gambacorta 

2013) compared to a collocated radiosonde. The NUCAPS minus radiosonde difference is less 

than 1.5 K above 700 hPa, and less than 2.0 g kg-1 above 800 hPa. From the surface to 800 hPa, 

however, differences are much greater, 2 – 3 K and 4 – 5 g kg-1 in this example. In particular, the 

errors below 800 hPa cause the NUCAPS retrieval to completely miss the existence of the 
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nocturnal inversion centered at 875 hPa. These retrieval errors in the PBL significantly reduce the 

utility of these soundings in operational weather forecasting. 

 
Figure 1.1: Comparison of AERIoe (AERI-derived, red), NUCAPS (CrIS-derived, blue), and 

radiosonde (black) profiles of temperature (left) and water vapor mixing ratio (right) on 20 June 

2015. 

 

 Given these weaknesses of the space-based observing system at sounding the PBL, the 

Decadal Survey made it a priority to improve observations of the PBL. The NRC (2009) proposed 

the development of a nationwide network of ground-based thermodynamic profilers to supplement 

the space-based sounders and improve observations of the PBL. The Atmospheric Emitted 

Radiance Interferometer (AERI, Knuteson et al. 2004a,b) is one of the instruments that would fit 

the criteria outlined by the NRC (2009) for the hypothetical network of ground-based profilers 

(Hoff and Hardesty, 2012). AERI is a Michelson interferometer that measures downwelling 

atmospheric emitted radiances between 520 and 3000 cm-1 (19.2 to 3.3 μm) and has been 

demonstrated to achieve an absolute radiometric accuracy of better than 1% of the ambient 
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radiance (Knuteson et al. 2004a,b). AERI has been widely used in PBL studies including 

monitoring convective indices (Feltz et al. 2003, Wagner et al. 2008) and gravity waves in the PBL 

(Tanamachi et al. 2008, Loveless et al. 2019). AERI has been deployed around the world as part 

of the ARM Program (Mlawer and Turner 2016) and has provided observations critical for 

improving and validating radiative transfer modelling (Mlawer et al. 2016). Figure 1.1 also 

displays the AERIoe (Turner and Löhnert 2014, Turner and Blumberg 2019) retrieval for the same 

time and location as the radiosonde/NUCAPS matchup. While NUCAPS had its greatest 

differences near the surface, the AERIoe retrieval has a difference of less than 1 K up to 850 hPa, 

and less than 2 g kg-1 up to 800 hPa. This is in line with the larger validation performed in Turner 

and Löhnert (2014). 

 Conceptually, the benefits of a combination of a space-based sounder with a ground-based 

profiler are intuitive. Satellite-based sounders have low information content near the surface but 

greater sensitivity in the middle and upper-troposphere (eg: Ebell et al. 2013, Smith and Barnet 

2020). Meanwhile, ground-based sounding instruments such as AERI or a microwave radiometer 

are almost exclusively sensitive to the lowest 4 km of the troposphere (eg: Löhnert et al. 2009, 

Turner and Löhnert 2014, Blumberg et al. 2015). The optimal combination of an upward-pointing 

sensor and a downward-pointing satellite-based sensor would permit each system’s strengths to be 

represented in the final retrieved profile. 

 Given the well-established retrieval methods for using IR or microwave radiance 

measurements to produce estimated profiles of thermodynamic variables, one potential method to 

combine the two sets of measurements would be an a posteriori combination of the single-

instrument retrievals based on the uncertainties of each individual system. Aires et al. (2012) tested 

this theory for a combination of space-based IR and microwave sounders, comparing a synergy 
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(both instruments in the same retrieval) to a combination of the individual retrievals, using the 

retrieval with the lesser uncertainty at a given height. They found that the synergy displays greater 

improvements than a combination of single-instrument retrievals. This is because the combined 

retrieval allows the shared information content of the two sets of measurements to interact within 

the retrieval process and improve the accuracy of the retrieval. Ebell et al. (2013) showed that 

information content for a ground-based microwave radiometer plus the space-based Infrared 

Atmospheric Sounding Interferometer (IASI) would be nearly double that of a ground-based 

microwave radiometer alone. This provides the basis for the underlying hypothesis for this 

dissertation: by adding ground-based sensors to the satellite observing system, thermodynamic 

soundings of the PBL will be greatly improved and will approach the desired accuracy and 

resolution outlined by the 2017 Decadal Survey. 

 

1.3 Background on Instrument Synergy Studies 

 Instrument synergies have become common practice in situations where multiple 

instruments are making simultaneous observations of the same environment (such as collocated 

instruments at research facilities or on the same satellite platform). Löhnert et al. (2009) 

demonstrated a synergy between the ground-based AERI and a ground-based microwave 

radiometer finding that the microwave radiometer provides additional information to the AERI in 

high moisture environments, when the IR signal from the AERI is attenuated. Turner and 

Blumberg (2019) experimented with the synergy between a water vapor Differential Absorption 

Lidar (DIAL) and AERI. Despite the DIAL only offering information on water vapor, combining 

AERI with the DIAL actually improves both the temperature and water vapor retrieval compared 

to AERI alone. In space, IR and microwave sounders have been flown together on the same 
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satellite since the launch of TOVS in 1979. The current NUCAPS retrieval utilizes a retrieval from 

a microwave sounder as a first guess for the IR retrieval in clear sky conditions. In cloudy sky 

conditions, NUCAPS will supplement the IR retrieval (which can retrieve above the cloud layer) 

with the microwave retrieval below the cloud layer. 

 Despite the wide-spread use of instrument synergies from the same research facility or 

satellite platform, limited research has been done combining space-based and ground-based 

sensors together. Both Gartzke et al (2017) and Bloch et al. (2019) showed that calculations of 

Convective Available Potential Energy (CAPE) from space-based retrievals had poor correlations 

with CAPE calculated from radiosondes. By replacing the estimate of temperature and water vapor 

at the surface from the retrieval with a surface observation, the correlation with radiosonde 

calculations was drastically improved. 

 The aforementioned study by Ebell et al. (2013) compared information content for space-

based IASI with a ground-based microwave radiometer. They found that the combination of IASI 

with the ground-based microwave radiometer nearly doubled the total information content of both 

temperature and water vapor compared to the ground-based microwave radiometer alone. 

Specifically, the combination with IASI resulted in small increases in information content near the 

surface, even though the ground-based microwave radiometer was found to have significantly 

greater information in that layer than IASI. The synergy also resulted in significant reductions in 

uncertainties: in particular a 20% reduction in near-surface uncertainties for absolute humidity. 

Overall, their results proved that the synergy of space-based and ground-based instruments had 

greater information content and smaller uncertainties than either instrument individually: the same 

result that Aires et al. (2012) found for a synergy of two space-based sensors. 
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 Ho et al. (2002) developed a synergistic retrieval between the downward-looking, aircraft-

mounted Scanning High-resolution Interferometer Sounder (S-HIS) with the ground-based AERI. 

Compared to radiosonde measurements, the combined AERI+S-HIS retrieval displayed a decrease 

of 1.5 K in root mean square error (RMSE) in the near surface layer versus the S-HIS alone. Near-

surface water vapor mixing ratio retrievals improved from RMSE of about 2.5 g kg-1 to about 1.5 

g kg-1 for the combined retrieval. 

 Toporov and Löhnert (2020) utilized a synthetic retrieval (based on reanalysis data) 

combining simulated measurements for IRS (EUMETSAT’s future geostationary IR sounder) with 

those of a ground-based microwave radiometer. Similar to the findings of Gartzke et al. (2017) 

and Bloch et al. (2019), they found that CAPE calculated from IRS had only had a correlation of 

0.68 to the true CAPE. The ground-based microwave radiometer alone had a correlation of 0.77. 

However, when combined in a synergistic retrieval, the two sensors had a correlation of 0.84 to 

the true CAPE in clear sky conditions. They also demonstrated that the combination of the two 

sensors performed well at identifying temporal changes in CAPE, while the IRS alone struggled 

to identify periods of very high CAPE. 

 The results of Ebell et al. (2013) and Toporov and Löhnert (2020) suggest that a synergy 

of space-based sounders with ground-based sensors will significantly improve remotely sensed 

soundings of the atmosphere. However, Ebell et al. (2013) used a small sample size of only 100 

profiles. Toporov and Löhnert (2020) had a larger sample size, but only documented the 

improvements in retrievals based on the accuracy of convective indices derived from those 

retrievals. Both of these studies focused on assessing the ground-and-space-based synergy within 

atmospheric conditions found in western Europe. This dissertation has three goals that will expand 
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upon the work presented by Ebell et al. (2013) and Toporov and Löhnert (2020) in order to further 

quantify the benefits of a synergy of ground-based and space-based sensors: 

 1) Expand upon the clear sky analysis of Ebell et al. (2013) to consider conditions from 

multiple climate regimes and document improvements in vertical resolution with the ground-and-

space-based synergy.  

 2) Assess information content of the ground-and-space-based synergy in cloudy sky 

environments using three case studies with varying cloud heights  

 3) Create a ground-and-space-based synergistic retrieval in order to demonstrate that the 

improvements suggested by the information content studies may appear in practice. 
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Chapter 2: Retrieving Thermodynamic Information from Radiance 

Measurements 

 

 Hyperspectral sounders make radiance measurements of upwelling (from aircraft or space-

based platforms) or downwelling (from ground-based platforms) atmospheric emitted radiation at 

spectral resolutions around 1 cm-1 or better. By utilizing prior estimates of the atmosphere (referred 

to as an a priori), the emission from trace gases such as water vapor, CO2, and O3, at particular 

frequencies enable the retrieval of thermodynamic information from these radiance measurements. 

An example of IR radiance measurements from the ground-based AERI and the space-based CrIS 

are shown in Figure 2.1. One thing to note about Figure 2.1 is how the observed spectra from the 

two instruments are largely mirrors of each other. For example, consider the CO2 absorption band 

near 700 cm-1. In this region, AERI’s radiance is greater than CrIS’s due to the strong opacity of 

the atmosphere in this spectral region: the AERI observations are sensitive to the warm near-

surface air immediately adjacent to the sensor while the CrIS observations can only observe the 

cold upper troposphere and stratosphere as the atmosphere is completely opaque below those 

levels. The opposite pattern is observed in the relatively transparent window channels between 800 

cm-1 and 1000 cm-1, where CrIS is most sensitive to the warm surface and AERI has little 

sensitivity to any part of the atmosphere in this region. Clearly, by combining upward-pointing 

and downward-pointing views of the atmosphere from these two instruments, a more complete 

view of the atmosphere emerges than what is possible from a single instrument. The retrieval 

process originally outlined by Kaplan (1959) assigned the brightness temperature of a single 

channel as the temperature at a given level. However, that process has many flaws and limited 

applications as the radiances at each spectral channel are frequently highly correlated with each 
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other and are sensitive to many layers of the atmosphere, not just a single layer. Because of this, 

the retrieval process is non-linear and has an infinite number of potential solutions that exist for a 

given set of radiance measurements. As a result, iterative numerical methods that utilize prior 

estimates of the atmosphere are required to retrieve thermodynamic information from radiance 

measurements. 

 

Figure 2.1: Radiances for the upward looking AERI (red) and downward looking CrIS (blue). 

 

2.1 Gauss-Newton Estimation 

 Turner and Löhnert (2014) describe a Gauss-Newton optimal estimation retrieval using 

AERI, and a similar approach will be made here in order to demonstrate the synergy of the ground-

based AERI with space-based IR sounders. A simplified derivation of the Gauss-Newton method 

described in Rodgers (2000) is presented here, along with the modifications to the method 

suggested by Turner and Löhnert (2014). In order to relate the measurement vector y to the 
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atmospheric state vector x, a forward model F is needed to physically relate the two. In this case, 

y is an m-dimensional vector of radiance observations while x is an n-dimensional vector that 

contains the temperature and moisture profiles. In essence, our goal is to take our observations of 

y and return the most likely values of x that are physically capable of producing y. We can describe 

this system in the following manner: 

                                                                   𝑦 = F(𝑥) +  𝜀                                                          (2.1) 

where ε is the error vector, encompassing both instrument noise and errors of the forward model. 

Linearizing this system about a reference state x0 will yield: 

                                              𝑦 = F(𝑥0) + 
𝜕F(𝑥)

𝜕𝑥
|𝑥=𝑥0

 (𝑥 − 𝑥0) +  𝜀                                       (2.2) 

where the Jacobian matrix, commonly referred to as the weighting function matrix, K can be 

defined as the partial derivative of each element of the forward model with respect to each element 

of the state vector x: 

                                                                    𝐊𝑗,𝑘 =  
𝜕𝐹𝑗(𝑥)

𝜕𝑥𝑘
                                                          (2.3) 

where j is an index of the measurement y and k is an index of the state vector x. K is a m by n 

matrix where m is the number of measurements and n is the number of elements in the state vector 

x. K describes the sensitivity of each element of the measurement vector y to each element of the 

state vector x. Substituting K into equation 2.2 and rearranging some terms: 

                                                      𝑦 − F(𝑥0) = 𝐊(𝑥 − 𝑥0) +  𝜀.                                              (2.4) 

For IR sounders making thermodynamic retrievals, the number of measurements m is typically 

greater than the number of elements in the state vector x, which would technically make this 

problem over-determined if the measurements were independent from one another. For example, 

AERI has 2655 channels and we can consider AERIoe (Turner and Löhnert 2014) which will 

retrieve temperature and water vapor at 55 different levels in the atmosphere, resulting in a state 
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vector with 110 elements. However, the measurements are not independent of one another, but 

rather highly correlated. This can be seen in Figures 2.2a and 2.2b which displays the temperature 

Jacobians for AERI and CrIS respectively. The Jacobians show how each measurement is sensitive 

to many layers instead of just one. Because the measurements are correlated with one another, 

there is actually far less information than the number of measurements. As will be shown later, 

these measurements result in about 5 independent pieces of information about temperature from 

the surface to 200 hPa. Comparatively, there are approximately 40 levels in the grid used for these 

calculations, so 40 elements in the state vector. Thus, this retrieval process is actually ill-posed or 

under-determined because there is less information than the number of variables we are seeking to 

retrieve. This results in a problem where an infinite number of solutions for x may be physically 

possible given measurement y and therefore requires a prior estimate of the atmosphere in order to 

overcome that lack of information compared to number of variables being retrieved. 

 
Figure 2.2: Temperature Jacobians for AERI (a) and CrIS (b). 

 

 Because there are an infinite number of solutions, the retrieval process is inherently a 

conditional probability problem: given some measurement y what is the most likely solution for 

the state vector x? We can consider Bayes’ Theorem for conditional probability: 
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                                                             𝑃(𝑥|𝑦) =  
𝑃(𝑦|𝑥)𝑃(𝑥)

𝑃(𝑦)
                                                     (2.5) 

which describes the probability of the state vector being x given some measurement y. P(x) is the 

prior probability distribution function (pdf) of the state vector. This is what is known about x before 

a measurement is made (e.g.: a climatology). P(y) is the prior of the measurement before the 

measurement is made. P(y|x) is the probability of measurement y given some state vector x. If we 

assume that the errors of our linearized system (described in equation 2.4) are Gaussian in 

distribution, then we can describe P(y|x) as: 

                                         −2 ln 𝑃(𝑦|𝑥) = (𝑦 − 𝐊𝑥)𝑇 𝐒𝜀
−1(𝑦 − 𝐊𝑥) + 𝑐1                               (2.6) 

where Sε is the error covariance matrix. We can also describe P(x) as: 

                                            −2 ln 𝑃(𝑥)  = (𝑥 − 𝑥𝑎)𝑇𝐒𝑎
−1(𝑥 − 𝑥𝑎) +  𝑐2                                (2.7) 

where xa is the a priori and Sa is the a priori covariance matrix. Sa is calculated as: 

                                                          Sa
j,k = CORR(xj,xk) σxj σxk.                                                                       (2.8) 

where σxj and σxk are the standard deviation of the atmospheric state (temperature or water vapor 

mixing ratio) at height levels j and k respectively, and CORR(xj,xk) is the correlation between the 

atmospheric state at height levels j and k. The constants c1 and c2 in equations 2.6 and 2.7 are both 

independent of x are important for normalizing these pdfs. If we substitute equations 2.6 and 2.7 

into Bayes’ Theorem in equation 2.5 we can determine the pdf for what we are interested in, which 

is the conditional probability of a state vector x given some measurement y, P(x|y): 

                −2 ln 𝑃(𝑥|𝑦) =  [𝑦 − F(𝑥)]𝑇 𝐒𝜀
−1[𝑦 − F(𝑥)] + [𝑥 − 𝑥𝑎]𝑇𝐒𝑎

−1[𝑥 − 𝑥𝑎] +  𝑐3        (2.9) 

Since we are looking for the most likely solution, we maximize the probability by taking the 

derivative of equation 2.9 and setting it equal to zero: 

                    ∇𝑥[−2 ln 𝑃(𝑥|𝑦)] =  −[∇𝑥F(𝑥)]𝑇𝐒𝜀
−1[𝑦 − F(𝑥)] + 𝐒𝑎

−1[𝑥 − 𝑥𝑎] = 0              (2.10) 

We can substitute K(x) = ∇𝑥F(𝑥): 
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                                       −[�̂�(�̂�)]
𝑇

𝐒𝜀
−1[𝑦 − F(�̂�)] + 𝐒𝑎

−1[�̂� − 𝑥𝑎] = 0                                  (2.11) 

where ^ indicates an estimated variable. In particular, �̂� represents the most likely state vector 

given measurement y. While we can solve for �̂� in equation 2.11, the non-linearity of the system 

requires an iterative method to minimize the difference between the measurement y and the 

modeled measurement given our estimated state �̂�. We consider Newton’s method for a general 

vector equation g(x) = 0: 

                                                      𝑥𝑖+1 =  𝑥𝑖 − [∇𝑥 𝐠(𝑥𝑖)]−1 𝐠(𝑥𝑖).                                       (2.12) 

where i is the iteration number. Substituting the left-hand side of equation 2.11 for g(x): 

                                   ∇𝑥 𝐠(𝑥) =  𝐒𝑎
−1 + 𝐊𝑇𝐒𝜀

−1𝐊 − [∇𝑥𝐊𝑇]𝐒𝜀
−1[𝑦 − 𝐹(𝑥)]                         (2.13) 

Note that the ∇𝑥𝐊 term is a second derivative of the forward model (recall the definition of K in 

equation 2.3). For cases that are not too non-linear, this term is small and can be ignored. We can 

substitute equations 2.11 and 2.13 into equation 2.12 and find the Gauss-Newton Method: 

                 𝑥𝑖+1 =  𝑥𝑖 +  (𝐒𝑎
−1 +  𝐊𝑖

𝑇𝐒𝜀
−1𝐊𝑖)

−1 [𝐊𝑖
𝑇𝐒𝜀

−1(𝑦 − 𝐹(𝑥𝑖)) −  𝐒𝑎
−1(𝑥𝑖 −  𝑥𝑎)].         (2.14) 

This equation provides x at the next iteration i+1 based on x at the current iteration i. This method 

will move incrementally toward the final solution for x (which is the most likely solution given 

measurements y). Because K is a function of the state vector x, it should be re-evaluated at each 

iteration such that Ki is the Jacobian evaluated at xi. Masiello et al. (2012) and Turner and Löhnert 

(2014) utilize a 𝛾 factor to weight the prior information relative to the observations. This factor is 

used to change the weight of the prior information compared to the observation. This acts to 

stabilize the retrieval, as 𝛾 is initially large and is decreased in value with each iteration (e.g.: 1000, 

300, 100, 30, 10, 3, 1, 1…), slowly allowing more information from the observation to be used in 

each successive iteration until 𝛾 = 1. We will also consider the departure of our final solution xi+1 



 19 

from the a priori xa instead of xi and rearrange some terms to provide us the final equation for our 

Gauss-Newton optimal estimation method: 

                 𝑥𝑖+1 =  𝑥𝑎 +  (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜀
−1𝐊𝑖)

−1 𝐊𝑖
𝑇𝐒𝜀

−1[(𝑦 − 𝐹(𝑥𝑖)) − 𝐊𝑖(𝑥𝑖 − 𝑥𝑎)].        (2.15) 

Following Turner and Löhnert (2014), the retrieval is deemed to converge when: 

                                              (𝑥𝑖+1 − 𝑥𝑖)
𝑇  𝐒∗−1 (𝑥𝑖+1 − 𝑥𝑖)  ≪ 𝑁.                                         (2.16) 

where N is the number of variables in the state vector and S* is the posterior error covariance 

matrix. Physically speaking, the retrieval is deemed to have converged when the change in x from 

one iteration to the next is smaller than the uncertainties of the retrieval. Note that the posterior 

error covariance matrix is typically referred to as S, however in order to avoid confusion with the 

traditional Rodgers (2000) formulation of S which will be used in the next section discussing 

information content, we will refer to the error covariance matrix for the modified Gauss-Newton 

method as S*:  

                  𝐒∗  =  (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜀
−1𝐊𝑖)

−1(𝛾2𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜀
−1𝐊𝑖)(𝛾𝐒𝑎

−1 + 𝐊𝑖
𝑇𝐒𝜀

−1𝐊𝑖)
−1.         (2.17) 

When 𝛾 = 1, S* will collapse to equal the traditional version of S presented by Rodgers (2000).  

 A radiosonde climatology will be used for the first guess xa and a priori covariance matrix 

Sa. Since model errors are difficult to quantify, the noise characteristics for each instrument, to be 

described in Table 3.1, will be used for Sε. This will result in an underestimation of the 

uncertainties of the retrieval. Smith et al. (2021) suggests performing a dry temperature retrieval 

on bands not sensitive to water vapor, and then performing the water vapor retrieval with the 

knowledge of the temperature profile. However, this method would omit temperature information 

contained in the water vapor channels. We choose to follow the decisions of Ebell et al. (2013) 

and Turner and Löhnert (2021) and calculate the averaging kernel A for both temperature and 



 20 

water vapor simultaneously. Chapter 6 will demonstrate the optimal estimation retrieval for a 

synergy of the ground-based AERI and space-based CrIS. 

 

2.2 Information Content 

 Instrument studies will often quantify the information content that an instrument can 

provide to a retrieval. Information content is a convenient measure to compare instruments without 

the computational complexities of an iterative retrieval. For example, the Jacobian matrix only 

needs to be computed once when calculating information content but multiple times in the retrieval 

method. Chapters 4 and 5 will assess information content of the ground-and-space-based synergy 

in clear sky and cloudy sky environments, respectively. There are several methods that may be 

used to compute information content of an instrument (such as change in entropy or Shannon 

information content) but in this study we will compute degrees of freedom (DOF) because it is 

calculated using variables that are already needed for the optimal estimation retrieval. Following 

Rodgers (2000), we know the Bayesian solution for the retrieved state in a linear system is: 

                                    �̂� =  𝑥𝑎 + (𝐊𝑇𝐒𝜀
−1𝐊 + 𝐒𝑎

−1)−1𝐊𝑇𝐒𝜀
−1 (𝑦 − 𝐊𝑥𝑎).                              (2.18) 

We can see that the retrieved solution �̂� is a function of the prior knowledge of the state (xa) and 

the change to that prior expected value as contributed by the measurement. The second term on 

the right-hand side of equation 2.18 is commonly called the gain matrix G: 

                                                    𝐆 = (𝐊𝑇𝐒𝜀
−1𝐊 + 𝐒𝑎

−1)−1𝐊𝑇𝐒𝜀
−1                                          (2.19) 

The gain matrix G is composed of the posterior error covariance matrix S, which is spread across 

the instrument space by the Jacobian K and the instrument noise Sε: 

                                                            S = (KTSe
-1K + Sa

-1)-1.                                                  (2.20) 



 21 

The diagonal elements of the posterior error covariance matrix S provide the expected uncertainties 

of the retrieved state vector x. The posterior uncertainties are a function of the instrument noise 

(spread across the state space by K) and the uncertainties of the a priori. This may also be 

calculated for an iterative retrieval by evaluating K at state vector xi (referred to as Ki in the 

previous section). This leads us to the averaging kernel A which may be calculated as: 

                                                         𝐀 = 𝐆𝐊 = 𝐒 (𝐊𝑇𝐒𝜀
−1𝐊).                                                (2.21) 

The averaging kernel A describes the subspace of the state in which the retrieval must lie and thus, 

contains descriptions of the information content in a retrieval. In essence, A is the contribution of 

the measurement (G) spread out over the state space based on the sensitivity of the measurement 

to changes in the state, which is the Jacobian K.  

 From the averaging kernel A, two variables can be computed that we will center our 

information content analyses on. First, the DOF is calculated as the trace (or the sum of the 

diagonal elements) of A: 

                                                                  DOF = Trace(A)                                                     (2.22) 

Given the relation to the gain matrix G, DOF quantifies the additional information contributed to 

the retrieval due to a signal from the instrument beyond what is already known from the prior. This 

allows us to compare differences in information provided by different instruments and different 

instrument synergies, as has been previously shown in Ebell et al. (2013) as well. 

 Second, the averaging kernel A may also be used to derive the vertical resolution. 

Physically speaking, the vertical resolution describes the depth of the atmospheric layer 

contributing to the measured signal that is being used to estimate the atmospheric state at a given 

level. Following Hewison (2007) the vertical resolution may be approximated by scaling the 
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inverse of the diagonal elements of A (note: the same elements that get summed to calculate DOF) 

by the vertical spacing of the grid: 

                                                         𝐕𝐫𝐞𝐬𝑗 =  
𝑧(𝑗−1)− 𝑧(𝑗+1)

𝐀𝑗,𝑗
                                                       (2.23) 

where z is the height. Note that the vertical resolution cannot exceed the resolution of the grid used 

for radiative transfer calculations. The instrument noise described in Table 3.1 in the next chapter 

will be used for the error covariance matrix Sε. This will result in an over-estimation of information 

content and vertical resolution, and underestimate the uncertainties described by the posterior error 

covariance matrix S since additional sources of error (such as errors in the forward model) are 

unaccounted for. 
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Chapter 3: Instrumentation 

 

 This dissertation utilizes IR instruments to study a synergy of ground-based and space-

sensors for thermodynamic sounding. While microwave sensors have the advantage of non-

precipitating clouds being largely transparent at the frequencies used for microwave sounding, this 

dissertation focuses on the IR because of both the greater vertical resolution and smaller footprints 

(allowing for a better match up with the point observations of a ground-based sensor) offered by 

IR sounders compared to microwave sounders. Table 3.1 is a summary of the instrumentation 

considered in this study, which includes five different space-based IR instruments along with the 

ground-based AERI. We include three polar-orbiting space-based hyperspectral IR sounders: The 

Atmospheric Infrared Sounder (AIRS) on the Aqua spacecraft, the Cross-track Infrared Sounder 

(CrIS) flown on Suomi NPP and NOAA-20, and the Infrared Atmospheric Sounding 

Interferometer (IASI) onboard MetOp A, B, and C. With the potential for hyperspectral IR 

sounding from geostationary orbit becoming a key component of the future observing suite, we 

include the proposed Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS, 

described in Elwell et al. 2006) to explore the benefits of soundings from geostationary orbit when 

combined with improved by ground-based systems. Lastly, we utilize the 12 IR channels on the 

Advanced Baseline Imager (ABI) as the only current instrument in geostationary orbit over North 

America offering measurements that could be used for sounding information to provide a baseline 

for comparison. The noise characteristics for each instrument described in Table 3.1 will make up 

the error covariance matrix Sε used in both the optimal estimation retrieval (equation 2.15) and in 

the calculation of the averaging kernel (equation 2.21). 
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Instrument Platform Orbit-type Spectral Range Range of 

Instrument Noise 

(mW m-2 sr-1 cm-1) 

Noise 

Reference 

ABI GOES-16, GOES-

17 

Geostationary 3.90, 6.19, 6.93, 

7.34, 8.44, 9.61, 

10.33, 11.21, 12.29, 

13.28 μm 

0.0038 to 0.52 Schmidt et al. 

2017 

AERI Multiple locations Ground-based 520 - 1800 cm-1 0.01 to 1.8 Löhnert et al. 

2009 

AIRS Aqua Polar 649 - 2665 cm-1 0.0015 to 0.79 Pagano et al. 

2014 

CrIS S-NPP, NOAA-20 Polar 650 - 1095 cm-1, 

1210 - 1750 cm-1, 

2155 - 2550 cm-1 

0.1, 0.04, 0.005 Zavyalov et 

al. 2013 

GIIRS/GIFT

S 

Feng-Yun 4 

/Proposed 

Geostationary 700 - 1130 cm-1, 

1650 - 2250 cm-1 

GIFTS noise: 

0.4, 0.06 

Elwell et al. 

2006 

IASI MetOp-A, B, C Polar 645 – 2760 cm-1 0.005 to 0.45 Hilton et al. 

2012 

Table 3.1: Summary of instrumentation considered in this study. 

 

 AIRS (launched in 2002 on the Aqua satellite) and CrIS (launched in 2011 on Suomi-NPP 

and in 2017 on NOAA-20) are part of the A-Train (Stephens et al. 2018) with an approximate 1:30 

pm local time equator overpass. AIRS (Chahine et al. 2006) is a grating spectrometer with 2378 

channels spanning 650 to 2665 cm-1. AIRS has a noise equivalent differential temperature ranging 

from 0.1 to 0.7 K, described in Figure 5 of Pagano et al. (2014). CrIS (Han et al. 2013) is a 

Michelson interferometer with three distinct spectral bands ranging from 650 to 1095 cm-1 with 

spectral resolution of 0.625 cm-1, 1210 to 1750 cm-1 with spectral resolution of 1.25 cm-1, and 2155 

to 2550 cm-1 with spectral resolution of 2.5 cm-1. CrIS noise is described in Figure 1 of Zavyalov 

et al. (2013), ranging from approximately 0.1 mW m-2 sr-1 cm-1 in the long- and midwave bands, 

and about 0.01 mW m-2 sr-1 cm-1 in the third band. 

 IASI, first launched in 2006, is deployed on MetOp-A, -B, and -C with equator overpass 

times of approximately 9:30am local time. IASI is similar to CrIS in that it is also a Michelson 

interferometer. It provides continuous coverage of the radiative spectrum from 645 to 2760 cm-1 

at a spectral resolution of 0.25 cm-1. IASI’s noise equivalent differential temperature is described 

in Figure 3 of Hilton et al. (2012), and ranges from 0.3 K to 0.5 K at a reference temperature of 
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280 K. This results in noise ranging from approximately 0.1 to 0.45 mW m-2 sr-1 cm-1 in the long- 

and midwave bands, and 0.1 to 0.01 mW m-2 sr-1 cm-1 in the shortwave bands. While AIRS, CrIS 

and IASI are very similar instruments, we consider all three as part of our study because they differ 

in spectral resolution and error characteristics, which could result in different impacts on 

information content and the resulting synergy with ground-based instruments. 

 While the ABI, on GOES-16 and GOES-17, only offers 12 IR broadband measurements 

over wider spectral bands, it is the only instrument in geostationary orbit over the United States at 

this time that provides thermodynamic sounding information. The broadband channels on ABI 

have broad sensitivity across a large depth of the atmosphere and provide little information for 

sounding compared to the hyperspectral sounders. However, the nearly continuous observations 

from ABI over the United States would mean that the benefits of a ground-based synergy would 

not be limited to specific overpass times. 

 Given the community interest in moving towards IR sounding from geostationary orbit, we 

consider the Geostationary Interferometric Infrared Sounder (GIIRS) that is currently in 

geostationary orbit on the Feng-Yun 4 satellite (Yang et al. 2017). Work by Elwell et al. (2006) 

assessing noise characteristics of a different hyperspectral IR sounder for geostationary orbit 

suggest that GIIRS has greater noise than expected. Thus, we utilize noise characteristics of the 

GIFTS instrument, a prototype geostationary IR sounding instrument studied by NASA, the 

University of Wisconsin-Madison, and Utah State University (Elwell et al. 2006) in conjunction 

with the GIIRS spectral channels. The noise characteristics of GIFTS are closer to what is expected 

from the future geostationary sounders proposed by EUMETSAT and NOAA’s GEO-XO 

program. We denote this hypothetical instrument as GIFTS throughout this paper to avoid 

confusion with the full characteristics of the GIIRS instrument. 
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 The ground-based instrument of focus in this study is the AERI. The AERI is also a 

Michelson interferometer, similar to CrIS and IASI, that measures downwelling atmospheric 

emitted radiance between 520 and 3000 cm-1 at approximately 1 cm-1 resolution at better than 99% 

radiometric accuracy (Knuteson et al. 2004 a,b). The temporal resolution of the AERI is ideal for 

studying PBL processes (e.g., Tanamachi et al. 2008, Loveless et al. 2019), as a data source for 

data assimilation experiments associated with severe weather (e.g., Degelia et al. 2020, Hu et al. 

2019, Coniglio et al. 2019), and the temporal evolution of static stability (e.g., Feltz and Mecikalski 

2002, Feltz et al. 2003, Wagner et al. 2008). The AERI is chosen because of its worldwide 

deployment in multiple climate regimes as part of the U.S. Department of Energy’s Atmospheric 

Radiation Measurements (ARM) program (Mlawer and Turner 2016). Since ARM launches 

radiosondes at each of its sites between two and four times a day, we have a multi-year collected 

dataset consisting of radiosonde thermodynamic profiles and AERI radiance observations. These 

radiosonde profiles provide the thermodynamic profiles used for radiative transfer simulations for 

this synthetic study and will be described in the following chapter. 

 Previous information content analyses and retrievals utilized limited selections of the 

thousands of channels available on each of these instruments. We choose to consider all channels 

on all of these instruments in order to identify their full capabilities. Utilizing the full spectral 

coverage of these instruments would also allow thermodynamic retrievals to overcome poor 

estimates of trace gases.  
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Chapter 4: Radiosonde Data 

 

 The information content analyses presented in Chapters 5 and 6 utilize radiosonde profiles 

to provide thermodynamic information for radiative transfer modeling. Additionally, these 

radiosonde profiles provide observations for the calculation of the a priori covariance matrix Sa 

(equation 2.8) as part of the optimal estimation retrieval (equation 2.15) and for calculations of the 

averaging kernel A (equation 2.21). Given that one of the goals of this study is to better understand 

the effects of water vapor on information content, this study utilizes ARM observation sites in the 

East North Atlantic (ENA; Dong et al. 2014) on the Azores islands, North Slope of Atlantic (NSA; 

Verlinde et al. 2016) in Barrow/Utqiagvik, AK, and Southern Great Plains (SGP; Sisterson et al. 

2016) in Lamont, OK. This provides the analysis with profiles from a marine subtropical 

environment, a polar environment, and a mid-latitude continental environment in order to assess 

the gains in information content of a synergy of ground-based and space-based instruments in 

varying climate regimes. While SGP and NSA have radiosonde archives that extend back more 

than 15 years, ENA only has radiosonde data available beginning in September 2013. In order to 

maintain uniformity, this study uses profiles from 1 October 2013 to 30 September 2019 for all 

three stations to make up our radiosonde profile database. With six years of observations available, 

this will provide a large range of environments to simulate for the information content experiment 

in Chapter 5 and for the calculation of the a priori covariance matrix Sa throughout this dissertation. 

 The first analysis presented in Chapter 5 will utilize clear sky profiles. This is because 

radiative transfer calculations in cloudy sky scenes require several orders of magnitude more 

calculations than clear sky scenes and one of the goals of the information content analysis is to 

expand upon the work of Ebell et al. (2013) and include a large number of profiles. Three cloudy 
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sky profiles will be selected from SGP for analysis in Chapter 6. These cloud free profiles are also 

used in the calculation of Sa. Profiles are flagged as possibly containing clouds if any relative 

humidity measurement in the radiosonde profile is greater than 90%. We also require a radiosonde 

to reach 100 hPa to ensure that the entire troposphere has been observed. As summarized in Table 

4.1, these quality control measures result in a dataset that consists of 464 clear sky profiles at ENA, 

491 at NSA, and 3765 at SGP – which will be used for analysis in Chapter 5. SGP has many times 

more profiles that meet the clear sky requirements than ENA and NSA in because SGP has nearly 

double the total number of archived radiosondes (as SGP launches four radiosondes a day while 

the other sites only launch two) but also experiences fewer clouds and thus a lower percentage of 

profiles are flagged for being cloudy. 

 

Station SGP ENA NSA 

Total Radiosondes 8536 4739 5037 

Removed for Quality Control 42 18 15 

Removed for not Reaching 100 hPa 112 36 25 

Total Cloudy Profiles 4617 4221 4506 

Total Clear Sky Profiles 3765 464 491 

Table 4.1: Overview of radiosonde data considered for this study. Total radiosondes are the 

number of radiosondes in the ARM archive from 1 October 2013 to 30 September 2019. 

 

 Since the radiative contributions of the atmosphere above the typical heights that 

radiosondes reach are necessary for radiative transfer calculations, the radiosonde-observed 

profiles are augmented with the United States Air Force standard atmosphere geophysical model 

(McClatchey 1972) to provide a continuous profile up to the height that is designated as the top of 

the atmosphere in each experiment. The model atmosphere is blended with the radiosonde 
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observations such that the modeled lapse rates of the upper atmosphere are preserved while 

increasing or decreasing the temperature and water vapor mixing ratio to match the top 

measurement of the radiosonde. 
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Chapter 5: Clear Sky Information Content Analysis 

 

5.1 Introduction 

 Ebell et al. (2013) presented the benefits of a synergy of a ground-based microwave 

radiometer with the space-based IASI in terms of the increase in DOF and reduction in 

uncertainties. They found that a synergy of the ground-based microwave radiometer with IASI 

resulted in greater information content and reduced uncertainties compared to the ground-based 

sensor alone. Notably, these improvements were seen in the near-surface layer, even where IASI 

provides very little information. The results of their study are promising for the prospects of a 

synergy of ground-based and space-based sensors offering a significant improvement in 

thermodynamic sounding of the troposphere, especially the PBL. However, their study utilized 

only 100 profiles from a single site in Germany. They also note that their results are highly 

dependent upon the atmospheric state, in particular water vapor. Turner and Löhnert (2014) also 

identified that AERI’s information content is dependent on water vapor. Given the small sample 

size of the study presented by Ebell et al. (2013) and their focus on a single site, the variability of 

information content and uncertainties with the atmospheric state are not fully characterized by 

their study. 

 Additionally, while the 2017 Decadal Survey and NRC (2009) reports set goals for the 

vertical resolution of soundings, instrument studies have focused on information content, leaving 

the vertical resolutions of both single instrument and synergistic retrievals under-investigated. 

Given the results of Ebell et al. (2013) that the synergy increases DOF compared to a single sensor 

and the relationship between DOF and vertical resolution where both depend on the diagonal 

elements of the averaging kernel A (shown in equations 3.22 and 3.23), it is reasonable to conclude 
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that the vertical resolution of a ground-and-space-based synergy will be improved compared to a 

single sensor alone. However, quantifying those improvements and comparing the vertical 

resolution of the synergy to the goals of the 2017 Decadal Survey are necessary for proving the 

benefits of the synergy. 

 The analysis presented in this section will build upon the clear sky information content 

study presented by Ebell et al. (2013). We will extend the analysis to include multiple climate 

regimes, utilizing radiosonde profiles from the ARM stations at ENA, NSA, and SGP, described 

in Chapter 4. This provides our analysis with profiles from a marine subtropical environment, a 

polar environment, and a mid-latitude continental environment in order to assess the gains in 

information content of a synergy of ground-based and space-based instruments in varying climate 

regimes. The analysis focuses on clear sky profiles because simulating clouds in the IR requires 

several orders of magnitude more calculations to account for the radiative effects of clouds, which 

would make an analysis like this on such a large set of atmospheric profiles impractical. The 

vertical resolution of single instrument retrievals from ground-based and space-based sensors will 

also be quantified in this analysis, as will the improvements in vertical resolution offered by a 

synergy of the two sets of sensors.  

 

5.2 Radiative Transfer Modelling 

 The input profiles for this analysis are the 4,720 clear sky profiles from the three ARM 

stations, ENA, NSA, and SGP, summarized in Table 4.1. These radiosonde profiles (augmented 

with upper atmosphere information from the United States Air Force standard atmosphere 

geophysical model) are interpolated onto the 101-level AIRS pressure grid for radiative transfer 

modeling. The AIRS pressure grid is chosen due to its widespread use in the satellite-based 
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sounding community. To make it practical to compute radiative transfer calculations over such a 

large number of profiles for all of the channels on each instrument described in Table 3.1, this 

analysis uses an optical spectral sampling (OSS) fast radiative transfer model (Moncet et al. 2008 

and Moncet et al. 2015). OSS is written by Atmospheric Environmental Research Inc. (AER) and 

produces radiances and temperature and trace gas Jacobians for a given atmospheric state. The 

model is a lookup table with coefficients specifically derived for each instrument, derived from 

the Line-By-Line Radiative Transfer Model (LBLRTM, Clough et al. 2005). Currently, OSS is 

designed to simulate the spectral characteristics of AERI, AIRS, CrIS, and IASI. Because of the 

continuous coverage and high spectral resolution of IASI, radiance and Jacobian simulations for 

IASI are used to calculate those measures for ABI and GIIRS (what we are designating as GIFTS) 

by using their spectral response functions to the IASI channels. Radiative transfer calculations for 

the geostationary sensors, ABI and GIFTS, simulates those instruments from the viewing angles 

of GOES-16 (longitude of 75.2° W) for SGP, and Meteosat-11 (longitude of 0° E) for ENA. The 

geostationary sensors are not simulated for NSA because of the oblique viewing angle for the polar 

regions from geostationary orbit. The polar-orbiting sensors (AIRS, CrIS, and IASI) are simulated 

at nadir. 

 Radiative transfer calculations using OSS accounts for absorption by water vapor and the 

trace gases of carbon dioxide, methane, ozone, and nitrous oxide. In order for the analysis to focus 

on the effects that changes in the thermodynamic profiles (specifically water vapor) have on 

information content, similar to the study done by Ebell et al. (2013), the same trace gas 

concentrations are used for every profile, regardless of the station. A representative trace gas 

profile is chosen from a NUCAPS (Gambacorta 2013) retrieval over SGP, since the majority of 

profiles are from the SGP site. The decision is made to focus the information content analysis on 
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parameters both instruments can retrieve. Therefore, emissivity and skin temperature are specified 

in the calculations and not included as part of the averaging kernel calculations for the satellite-

based sensors. The NASA Combined Aster and MODIS Emissivity for Land (CAMEL, Borbas et 

al. 2018 and Loveless et al. 2021) monthly climatology of surface emissivity is used for each of 

the three stations to provide characteristic surface emissivity for the calculations. 

 

5.3 Constructing the A Priori Covariance Matrix: 

 Calculations of the averaging kernel (recall equation 2.21) needed to compute DOF and 

vertical resolution require an a priori covariance matrix Sa (equation 2.8). Given the large 

differences in surface pressure across the three stations in this analysis, the natural log of the ratio 

of the surface pressure to each pressure level is used as a vertical coordinate to ensure that the 

surface information from each profile is covaried together. Sa is calculated as a pseudo-global a 

priori – including profiles from every station. This is done to ensure that Sa is constant across the 

stations in order to highlight the relationship between information content and variations in water 

vapor. Thus, 50 profiles from each season at each station are randomly selected and those 600 

radiosonde profiles are combined to form Sa, which is displayed in Figure 5.1. 
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Figure 5.1: A priori covariance matrix used in this analysis. Bottom-left is temperature covaried 

against itself. Top-right is water vapor varied against itself. Top-left and bottom-right are 

temperature and water vapor covaried against each other. 

 

5.4 Results 

 5.4.1 Degrees of Freedom 

We begin by considering the results of the DOF (see equation 2.22) analysis for all 6 

instruments described in Table 3.1. The DOF calculations across the full troposphere (which we 

denote as the surface to 200 hPa) are displayed in Figure 5.2. Both Ebell et al. (2013) and Blumberg 

et al. (2015) presented DOF calculations for AERI alone, finding roughly 5.5 DOF for temperature 

and roughly 3 DOF for water vapor across a similar layer, largely consistent with the full 

troposphere results we find for AERI. Ebell et al. (2013) finds about 4 DOF for both temperature 

and water vapor for IASI alone. Our methods produce about 5 DOF for temperature and 6 DOF 

for water vapor from IASI alone. This difference is likely attributable to the coarser grid of only 

43 levels that Ebell et al. (2013) used compared to the AIRS 101 pressure levels used in this study, 

but channel selections, the a priori covariance matrix, and model differences may also contribute 

to the differences. 
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Figure 5.2: DOF for temperature (a-c) and water vapor (d-f) for the full troposphere (surface to 

200 hPa). DOF for the individual sensors is displayed in black. DOF for the synergy of the AERI 

with each respective space-based senor is displayed in red. 

 
Assessing the results in Figure 5.2, AIRS, CrIS, and IASI (the three polar-orbiting 

hyperspectral sounders) all have very similar DOF to one another. While the results presented here 

for those three instruments are nadir only, we did not find significant changes in DOF with changes 

in scan angle (up to 35°) as we found that the Jacobians did not change much with scan angle. 

GIFTS has about 0.5 to 1 DOF less than the polar-orbiting sounders. We found that this is more 

of a result of the noise characteristics and the fewer total channels of the hypothetical 

GIFTS/GIIRS sensor compared to the AIRS, CrIS, or IASI than the sensor angle used to simulate 
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geostationary orbit. ABI has less than half of the information that the sounders offer, as would be 

expected given the few broadband channels that it has. The 2 DOF for temperature from ABI come 

from a combination of approximately 1 DOF near the surface from the window channels and 1 

DOF in the free troposphere from the water vapor channels. 

The combination of AERI with the space-based hyperspectral sounders (AIRS, CrIS, 

GIFTS, and IASI) results in a 30-40% increase in total DOF compared to the space-based sounder 

alone while the addition of AERI to the geostationary ABI results in more than doubling the 

information when compared to the ABI alone. The variations in DOF across the three sites are 

relatively small. Information content for AIRS, CrIS, and IASI at NSA is about 1 DOF lower for 

temperature, compared to SGP and ENA, and 1 DOF higher for water vapor. For the upward-

facing AERI, profiles at NSA and SGP result in largely similar DOF for temperature, while the 

DOF for temperature at ENA is only marginally less. AERI gets about 4 to 5 DOF for water vapor 

at NSA, but only about 3 to 3.5 DOF at ENA and SGP. The synergy combinations largely follow 

the patterns of the space-based sensors, resulting in greater temperature information at ENA and 

greater water vapor information at NSA. 

Figure 5.3 focuses on the PBL and lower free troposphere by displaying DOF calculations 

for the surface to 700 hPa layer. ABI only offers 1 DOF for temperature, while the space-based 

hyperspectral sounders produce about 1.5 to 2.5 DOF (more at ENA, less at NSA) for temperature 

in the PBL. The space-based hyperspectral sounders have about 1.5 to 2 DOF for water vapor 

while ABI has less than 0.5 DOF in the PBL. The benefits of ground-based remote sensing in the 

PBL are clear as AERI by itself produces about 1.5 times greater DOF for temperature in the 

surface to 700 hPa layer than any of the space-based hyperspectral sounders. However, the synergy 

of AERI with the space-based hyperspectral sounders promises even greater benefits, with results 
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indicating a doubling of DOF for temperature, and an increase of about 40-50% for DOF for water 

vapor as compared to the space-based hyperspectral sounders alone. The synergy of AERI with 

the space-based hyperspectral sounders produces greater DOF than AERI alone in the surface to 

700 hPa layer. AERI paired with a space-based hyperspectral sounder would result in about 4 to 

4.5 DOF for temperature and 3 to 4 DOF for water vapor. This would present a significant 

improvement in PBL sounding, compared to what is currently provided with space-based 

hyperspectral sounders alone. The increased DOF enables the retrieval of greater detail in the 

structure of variations in low-level temperature and water vapor, thus producing more finely 

resolved inversion and moist layers. Similar to the patterns identified in the full troposphere view 

in Figure 5.2, the space-based hyperspectral sounders provide marginally greater temperature DOF 

from the surface up to 700 hPa at ENA, with greatest water vapor DOF at NSA. AERI provides 

similar temperature information across the three sites, but greater water vapor information at NSA 

than at ENA or SGP. The variation of the synergies once again more closely follows the variation 

of the space-based sensors more than that of the AERI. 
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Figure 5.3: Same as in Figure 5.2 but for the surface to 700 hPa layer. 

 

 5.4.2 Variations in Information with Precipitable Water Vapor 

 While comparing DOF across the different sites may allow for broad generalizations (as 

ENA usually has greater atmospheric moisture content than NSA, for example), the profiles 

compiled for each site exhibit significant variability throughout the duration of the analyzed period 

so that some profiles at SGP may have greater moisture than profiles at ENA. To gain a better 

understanding of the effects of moisture on information content for each of these sensors, we 

compute the precipitable water vapor (PWV) of each profile using the SHARPpy program 

(Blumberg et al. 2017). Given how similar AIRS, CrIS, GIFTS, and IASI are in the DOF 
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calculations, we focus the remainder of the results section on CrIS since it is the most recent 

sounder put into operation by NOAA, while keeping in mind that we expect these results to be 

consistent with AIRS, GIFTS, and IASI. Given the relative lack of sounding information that ABI 

provides, we omit it from the remainder of the discussion.  

 To assess how DOF varies with PWV, we bin profiles for every 1 cm of PWV and compute 

the range of DOF for those profiles. While every PWV bin less than 4 cm contains greater than 

650 profiles, the 4+ cm bin only contains 128 profiles. This 4+ cm bin still should be a large enough 

sample size to draw conclusions from, given that Ebell et al. (2013) had a sample of only 100 

profiles. 

 Figure 5.4a displays AERI’s DOF for temperature demonstrating that there is little 

variation in DOF with PWV at either the full troposphere view (surface to 200 hPa), or in the near-

surface layer (surface to 700 hPa). Since DOF is an integrated quantity, it is difficult to discern the 

heights at which the variations may be found. In order to determine if PWV variations cause 

changes in what height levels the information is, we create composite mean averaging kernels from 

the profiles with 4+ cm of PWV (high PWV composite), with 2 – 3 cm (medium composite), and 

with less than 1 cm (low composite). Since DOF is the trace of the averaging kernel (equation 

2.22), we can assess the changes in information at different heights by plotting the diagonal 

elements of the three sets of composite averaging kernels; this analysis for temperature with AERI 

is shown in Figure 5.4b. Just as there was no variation in DOF with varying PWV, there is no 

difference in information at different height levels with the varying precipitable water composites. 

This suggests that greater water vapor does not result in greater attenuation of the temperature 

signal aloft, compared to dry environments. Figures 5.5a, 5.5b, and 5.5c display the temperature 

Jacobians for AERI in the high, medium, and low PWV composites, respectively. Comparing the 
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three figures, only the shortwave channels at 1200 cm-1 and greater change with changing PWV. 

The signal from the CO2 band, around 650 cm-1, remains the same in each composite, resulting in 

the pattern seen in Figures 5.4a and 5.4b. 

 
Figure 5.4: AERI DOF for temperature (a) and water vapor (c) binned for every 1 cm of PWV. 

Number of profiles in each PWV bin is displayed as the gray bars, DOF for the full troposphere 

(surface to 200 hPa) is displayed in black, and the DOF for the surface to 700 hPa is displayed in 

red. The diagonal of high (4+ cm, green), medium (2-3 cm, orange), and low (less than 1 cm, 

purple) PWV composite mean averaging kernels for AERI for temperature and water vapor are 

shown in b and d respectively. 

 

a) b)

c)
d)
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Figure 5.5: Composite temperature (a – c) and water vapor (d – f) Jacobians for AERI in the high 

(4+ cm, a and d), medium (2 – 3 cm, b and e), and low (less than 1 cm, c and f) PWV composites. 

 

 However, AERI’s DOF for water vapor is susceptible to changes in the PWV content of 

the environment, as shown in Figure 5.4c. AERI has greatest water vapor DOF in dry 

environments, and a minimum in DOF in very moist environments; this is in agreement with 

Turner and Löhnert (2014). On average, there is approximately a 1.5 DOF difference between the 

0 – 1 cm bin and the 4+ cm bin for the surface to 200 hPa layer, and a difference of about one DOF 

for the surface to 700 hPa layer. Figure 5.4d reflects this pattern as the low PWV composite has 

the greatest information throughout the profile compared to the high and medium composites. The 

water vapor Jacobians for AERI for each of the three precipitable water composites are shown in 

Figures 5.5d, 5.5e, and 5.5f. Comparing Figures 5.5d and 5.5e, it is seen that the high and medium 

a)

b)

c)

d)

e)

f)
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precipitable water composites have very similar water vapor Jacobians, which matches the relative 

similarity seen in Figure 5.4c. However, the water vapor Jacobians for the low precipitable water 

composite in Figure 5.5f has weaker sensitivity to water vapor in the window channels from 800 

to 1000 cm-1 compared to the high and medium composites, but much stronger signal in the far IR 

from 520 to 600 cm-1. Thus, it is the far IR channels provided by the AERI, that result in the greater 

water vapor information throughout the profile in very dry environments (which tend to also be 

cold) that was seen in Figure 4.3d. The advantages of water vapor sounding in cold and dry 

environments using the far IR have also been documented by Bianchini et al. (2011). 

 Unlike AERI, the DOF for temperature from CrIS does vary with PWV, as is shown in 

Figure 5.6a. Across the surface to 200 hPa layer, CrIS has the least DOF in dry environments and 

maximizes DOF in the 3 – 4 cm and 4+ cm bins. The difference between the 0 – 1 cm bin and the 

4+ cm bin is approximately 1.75 DOF on average. CrIS temperature DOF for the surface to 700 

hPa layer, like the surface to 200 hPa layer, is also at a minimum in the driest environments. 

However, DOF for the surface to 700 hPa layer increases from about 1.5 in the 0 – 1 cm bin to 2.5 

in the 2 – 3 cm PWV, bin but remains around 2.5 for the 3 – 4 cm and 4+ cm bins as well. Figure 

5.6b reveals more detail on this difference between the surface to 200 hPa layer compared to the 

surface to 700 hPa layer DOF for temperature. The medium and high PWV composites have nearly 

the exact same information below 2500 m above ground level (AGL), reflective of the lack of 

variation in CrIS temperature DOF in the surface to 700 hPa layer between 2 cm and 4+ cm PWV. 

The difference between the medium and high composites is above 2500 m AGL, where the high 

composite has greater information than the medium composite, resulting in the DOF pattern in the 

surface to 200 hPa layer. The low PWV composite has the least information throughout the profile. 

Figures 5.7a, 5.7b, and 5.7c display composite temperature Jacobians for CrIS, which reveals that 
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only the water vapor channels in the midwave band are changing across the different composites. 

Note that this indicates that if a retrieval’s channel selection does not include midwave bands for 

retrieving temperature, then its DOF will not be sensitive to variations in PWV. Synthesizing these 

pieces together, higher concentrations of water vapor generally result in increased temperature 

information for CrIS. However, beyond very dry environments, greater PWV will not result in 

greater information in the PBL. 

 
Figure 5.6: Same as in Figure 5.4 but for CrIS. 

a) b)

c)
d)
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Figure 5.7: Same as in Figure 5.5 but for CrIS. 

 

 Figure 5.6c displays CrIS DOF for water vapor with varying PWV. In general, across the 

surface to 200 hPa layer, CrIS has greater DOF for water vapor in dry environments than in moist 

environments, opposite the pattern seen for temperature with CrIS. The median water vapor DOF 

in the 0 – 1 cm bin is about 1.5 greater than the median DOF in the 4+ cm bin. The variation in 

DOF across the surface to 700 hPa layer is similar to the surface to 200 hPa layer, with the greatest 

information in dry environments and the 4+ cm bin having about 0.5 DOF less than the 0 – 1 cm 

bin. Figure 5.6d reveals that the dry environments result in greater water vapor information 

throughout the profile, while the very moist environments result in the least water vapor 

information throughout the profile. Figures 5.7d, 5.7e, and 5.7f show that the water vapor 

a)

b)

c)

d)

e)

f)
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Jacobians in the midwave band from 1210 cm -1 to 1750 cm-1 are strongest in the low PWV 

composite, resulting in the patterns seen in Figure 5d. 

 Figure 5.8 displays the variations in DOF and information with PWV for the synergy of 

CrIS and AERI (referred to as CrIS+AERI for the rest of this paper). As will be displayed in the 

vertical resolution and uncertainties sections, signal from CrIS informs the synergy aloft, while 

AERI informs the synergy very close to the surface. Figure 5.8a reveals that the surface to 200 hPa 

DOF for temperature from CrIS+AERI varies primarily like temperature DOF for CrIS alone 

across the surface to 200 hPa layer with about 1.5 DOF less in the 0 – 1 cm bin than in the 4+cm 

bin. There is small variation across the PWV bins in the surface to 700 hPa layer. The diagonal 

elements of A in the three composites in Figure 5.8b gives a sense of how AERI and CrIS are 

blended in the synergy. Below 500 m AGL, the information of the composites is all the same, 

similar to what was seen for AERI in Figure 5.8b. Increasing in height from 1000 m AGL to 3000 

m AGL the pattern of information transitions to reflect CrIS alone more than the AERI alone, and 

thus the low PWV composite has less information than the high and medium composites. Above 

4000 m AGL, CrIS+AERI mirror the pattern seen for CrIS alone in Figure 5.6b. 

 As shown in Figure 5.8c, the DOF for CrIS+AERI for water vapor across the surface to 

200 hPa layer has a maximum in the 0 – 1 cm bin and decreases with increasing moisture to have 

a minimum in the 4+ cm bin. The difference in DOF between the 0 – 1 cm bin and the 4+ cm bin 

is about two. The same pattern as was described for the DOF in the surface to 200 hPa layer is 

present in the surface to 700 hPa layer, with a difference of about one DOF between the maximum 

in the 0 – 1 cm bin and the 4+ cm bin. This is approximately the same difference that was seen 

between the same bins in Figure 5.4c for AERI water vapor DOF. Figure 5.8d shows how the 

AERI’s sensitivity to water vapor in cold and dry environments from its far IR channels dominates 
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the pattern in information near the surface, driving the variations seen in the DOF for the surface 

to 700 hPa. This increased water vapor information from AERI’s far IR channels causes the 

increased difference in DOF across the surface to 200 hPa layer between the 0 – 1 cm bin and the 

4+ cm bin compared to the pattern seen for CrIS alone. 

 We will conclude this section noting that despite these variations in DOF across the two 

layers we have considered, CrIS+AERI offers greater DOF in every PWV bin than AERI or CrIS 

alone. This indicates that the synergy would be expected to provide an improvement in 

thermodynamic sounding accuracy in all ranges of environments. 

 

 
Figure 5.8: Same as in Figure 5.4 but for CrIS+AERI. 

 

a) b)

c)
d)
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 5.4.3 Vertical Resolution 

 As noted in equation 2.23 (from Hewison 2007), the averaging kernel allows for calculation 

the vertical resolution of a retrieval by spreading the diagonal elements of the averaging kernel 

(the same elements used to calculate DOF) across the vertical grid used for calculations. The 

vertical resolution of a retrieval is analogous to the thickness of the layer over which the signal is 

coming from when the retrieval makes an estimate at a particular level. Vertical resolution for 

AERI, CrIS, and CrIS+AERI is shown in Figure 5.9. The shadings for each sensor are between the 

25th and 75th percentiles of all 4,720 profiles included in this analysis. As noted earlier, the vertical 

resolution of a retrieval is dependent on the grid used in calculations. Since we use the AIRS 101 

pressure levels, this coarser grid under-estimates the vertical resolution that AERI is capable of 

near the surface. This can be seen when comparing our calculations for AERI’s temperature 

resolution over the lowest 200 m of the atmosphere with those presented by Turner and Löhnert 

(2014) and Blumberg et al. (2015), who did their vertical resolution calculations on a grid designed 

for the AERI. As seen in Figure 5.9a, the vertical resolution of the AERI below 200 m AGL is 

never better than about 250 m, which is the resolution of the grid near the surface. [Note that 

Turner and Löhnert (2014) and Blumberg et al. (2015) demonstrated that the AERI’s vertical 

resolution for temperature at any height below 1 km is approximately that height; i.e., at 50 m 

AGL the vertical resolution is 50 m, whereas at 500 m AGL the vertical resolution is 500 m]. 

Above 250 m AGL, the vertical resolution for temperature for the AERI largely increases linearly 

with height such that it has a resolution of about 1000 m at 1000 m AGL, and 2000 m at 2000 m 

AGL. AERI and CrIS are comparable in vertical resolution between 1000 m and 2000 m AGL, 

with a resolution of about 1500 m. The vertical resolution of CrIS for temperature is about 2500 – 

3500 m through most of the free troposphere, gradually getting larger with height. CrIS+AERI 
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provides the greatest improvements, compared to CrIS alone, in the bottom 1000 m. The synergy 

of CrIS+AERI results in an improvement of about 400 m in vertical resolution compared to CrIS 

alone in the bottom 1000 m. The synergy of the two instruments is better than that of the individual 

instruments between about 500 m AGL and 5000 m AGL, though marginal improvements are seen 

all the way up to 8000 m AGL. 

 
Figure 5.9: Vertical resolution for AERI (red), CrIS (blue), and the synergy of CrIS+AERI (gray) 

for temperature (a) and water vapor (b). Shading is between the 25th and 75th percentiles for all 

4,720 profiles in the analysis. 

 

 Vertical resolution for water vapor sounding is displayed in Figure 5.9b. AERI’s vertical 

resolution for water vapor (Figure 5.9b) is about 800 m at the surface and increases with height. 

[Again, the vertical grid chosen does matter, as the vertical resolution of the water vapor profiles 

from Turner and Löhnert (2014) is about 200 m at the surface and rapidly decreases to 700 m at 

approximately 300 m AGL, which is in rough agreement with this work]. The vertical resolution 

of the water vapor profiles from the AERI and CrIS are comparable in the 1000 m to 3000 m AGL 

range, with AERI having better resolution below, and CrIS being better aloft. Overall, vertical 

resolution of water vapor for CrIS is better than 2500 m throughout the lowest 8000 m of the 

troposphere. CrIS+AERI provides an improvement of about 400 m in resolution over the bottom 
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2000 m of the troposphere. Similar to what was shown in Figure 5.9a for temperature, CrIS+AERI 

is better than either instrument individually from about 500 m up to 4000 m AGL.  

 The 2017 Decadal Survey set a goal of 1000 m resolution soundings, which is exceeded in 

the bottom 1000 m AGL for both temperature and water vapor by CrIS+AERI. Neither temperature 

nor water vapor sounding above 1000 m for CrIS+AERI meets the 1000 m resolution goal. 

However, the improvements in vertical resolution made by CrIS+AERI near the surface improves 

the retrieval in the PBL where sharp gradients in temperature and water vapor are present. These 

improvements will aide in detecting the strength and vertical location of the capping inversion and 

detecting low-level variations in water vapor – two important features that would improve 

monitoring of both the timing and severity of severe convection. 

 Figure 5.10 displays the composite vertical resolution profiles for AERI, CrIS, and 

CrIS+AERI in the high, medium, and low PWV composites. Given the relationship that the 

averaging kernel has with the calculation of DOF and vertical resolution (again, recall equations 

2.22 and 2.23), it is expected that the patterns displayed in Figure 5.10 are similar to what was 

discussed in the previous section.  

 AERI’s vertical resolution for temperature, shown in Figure 5.10a, is not affected by 

variations in precipitable water below 3000 m AGL. Above 3000 m AGL, the vertical resolution 

in the low PWV composite becomes worse than the medium and high composites, but the AERI’s 

information content above 3000 m AGL is limited anyway, and thus the AERI-retrieved profiles 

are typically not used above that level (e.g., Hu et al. 2019; Coniglio et al. 2019, Degelia et al. 

2020). The vertical resolution of water vapor for AERI is shown in Figure 5.10d. As was shown 

previously, the sensitivity of the AERI’s far IR bands improves water vapor sounding in cold and 

dry environments, resulting in improved vertical resolution in the low PWV composite. 
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Figure 5.10: Vertical resolution for temperature (a-c) and water vapor (d-f) for AERI (a and d), 

CrIS (b and e), and CrIS+AERI (c and f) in high (4+ cm, green), medium (2-3 cm, orange), and 

low (less than 1 cm, purple) PWV composites. 
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 Vertical resolution of temperature for CrIS is shown in Figure 5.10b. The PWV composites 

result in similar vertical resolution for temperature below 500 m AGL, but the vertical resolution 

of the low PWV composite is about 100 m worse than the high and medium composites. Above 

500 m AGL, the low PWV composite is about 1000 m worse than the medium composite. The 

high and medium composites are similar from the surface up to 2000 m AGL. The high PWV 

composite results in the best vertical resolution above 2000 m AGL. The variations in vertical 

resolution across the three PWV composites shown here range from about 500 m at 1000 m AGL 

to almost 2000 m at 5000 m AGL. This suggests that temperature soundings from CrIS would 

have notably better vertical resolution in moist environments than in dry environments. However 

as was shown in the previous section, this effect would only be seen if the CrIS midwave bands 

(which are sensitive to water vapor) are included in a given temperature retrieval. A method 

retrieving temperature separately from water vapor (as suggested by Smith et al. 2021) would not 

see this effect. In contrast to our results for temperature, dry environments result in the best vertical 

resolution for water vapor sounding from CrIS, as seen in Figure 5.10e. The high PWV composite 

results in the worst vertical resolution for water vapor throughout the profile. The difference 

between the high and the low PWV composites is about 500 - 1000 m throughout the profile. 

 The vertical resolution composites for CrIS+AERI in Figures 5.10c and 5.10f result in a 

blend of the results of the composites for AERI alone and CrIS alone. For temperature, there is no 

variation in the vertical resolution of temperature soundings by CrIS+AERI below 800 m AGL. 

Above 2000 m AGL, CrIS+AERI behaves like CrIS alone for temperature, with better resolution 

in the high and medium PWV composites than in the low PWV composite. Both AERI and CrIS 

have better vertical resolution for water vapor sounding in the low PWV composite than in the 

high and medium PWV composites, which results in CrIS+AERI also having better vertical 
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resolution of water vapor in the low PWV composite throughout the profile as well. In general, 

CrIS+AERI presents an improvement to vertical resolution of sounding both temperature and 

water vapor in all environments. 

 

 5.4.4 Uncertainties 

 The 1σ uncertainties are calculated by taking the square root of the elements of the diagonal 

of the posterior error covariance matrix (described in equation 2.20). Figure 5.11 displays the 1σ 

uncertainties for AERI, CrIS, and CrIS+AERI. The temperature uncertainties of the AERI increase 

with height while the uncertainties for CrIS are greatest near the surface, as is expected for the 

upward and downward pointing instruments respectively. Both AERI and CrIS have a maximum 

in water vapor mixing ratio uncertainty at about 1000 m AGL, roughly corresponding to the mean 

inversion height in the radiosonde dataset used in this study. If skin temperature Jacobians for an 

unknown skin temperature were to be included in the calculation of the averaging kernel, the near-

surface uncertainties for CrIS would increase. Future work is needed to better understand the 

effects of skin temperature and surface emissivity on these uncertainties. Combining the 

temperature and water vapor mixing ratio uncertainties we consider the relative humidity 

uncertainties of each instrument in Figure 5.11c. The relative humidity uncertainty has a maximum 

for CrIS at the inversion height, where its water vapor mixing ratio and temperature uncertainties 

were greatest as well. AERI’s relative humidity uncertainty generally increases with height. 
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Figure 5.11: 1σ uncertainties for AERI (red), CrIS (blue), and CrIS+AERI (gray) for temperature 

(a), water vapor mixing ratio (b), and relative humidity (c). Shading is between the 25th and 75th 

percentiles for all 4,720 profiles in the analysis. For reference, the 1σ uncertainties of the a priori 

are about 14 K and 4 g kg-1 at the surface. 

 

 The temperature and water vapor uncertainties for AERI very closely resemble the 

uncertainty profile displayed by Blumberg et al. (2015) and Turner and Löhnert (2014). Klein et 

al. (2015) also found very good agreement between the near-surface temperature in AERI 
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retrievals and collocated in-situ observations. While a different type of analysis, the radiosonde 

validation of NUCAPS presented in Sun et al. (2017) does not identify the local maximum in 

uncertainty at the top of the inversion around 1000 m AGL that we identify here. This could be a 

product of the majority of profiles in this analysis coming from SGP. Also note that Sun et al. 

(2017) has differences between radiosonde and NUCAPS retrievals about 40% greater for 

temperature for CrIS than this study, as expected given the noise assumptions. 

 CrIS+AERI results in a decrease of 0.5 – 1.5 K or about a 50% reduction in uncertainties 

in the lowest 1000 m AGL, compared to CrIS alone. Similarly, CrIS+AERI results in a decrease 

of about 50% in the water vapor mixing ratio uncertainties and reduces the relative humidity 

uncertainties by half in the lowest 1000 m AGL. While the greatest improvements are in the lowest 

1000 m, improvements of CrIS+AERI compared to CrIS alone occurs up to 4000 m AGL. Similar 

to what was seen with vertical resolution, between 500 m and 4000 m AGL CrIS+AERI is better 

than either AERI or CrIS alone – once again emphasizing the benefits of a combined retrieval. 

 Given that these instruments have far less information than the number of layers used in 

the radiative transfer calculations, the information gained at each level is spread over multiple 

levels. Similarly, uncertainties associated with one layer result in uncertainties in other layers as 

well. As has been shown in Turner and Blumberg (2019), the posterior correlation matrix offers a 

useful view to understand the improvements of an instrument synergy by looking at the cross-layer 

correlations in uncertainties. The posterior correlation matrices for AERI, CrIS, and CrIS+AERI 

are shown in Figure 5.12. CrIS+AERI reduces the cross-layer sources of uncertainties compared 

to each instrument alone in the lowest 1000 m AGL, the same region that CrIS+AERI was shown 

to have the greatest improvements in vertical resolution and uncertainties. The improvement that 

the synergy offers in the lowest 1000 m compared to CrIS alone presents the case for why this 
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ground-based/space-based synergy should be considered as a solution to the difficult problem of 

PBL sounding. 

 
Figure 5.12: Posterior correlation matrix for temperature (a-c) and water vapor (d-f) for AERI (a 

and d), CrIS (b and e), and the synergy of CrIS+AERI (c and f). 

a) b)

c) d)

e) f)
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Figure 5.13: 1σ uncertainties for temperature (a-c) and water vapor (d-f) for AERI (a and d), CrIS 

(b and e), and CrIS+AERI (c and f) in high (4+ cm, green), medium (2-3 cm, orange), and low 

(less than 1 cm, purple) PWV composites. 
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 The composite mean profiles for uncertainty for the high, medium, and low PWV 

composites are presented in Figure 5.13. Overall, the environment has very little effect on changing 

the uncertainty profiles as the high and low PWV composite profiles are generally within 5 – 10% 

of the medium PWV composite. However, a general pattern can be identified that temperature 

uncertainties are slightly greater in dry environments, and water vapor uncertainties are greater in 

moist environments. CrIS appears to be most susceptible to changing environments, as water vapor 

uncertainties below 1000 m AGL can differ by as much 50% compared to the medium PWV state. 

CrIS+AERI reduces the variance in uncertainty that is dependent upon the atmospheric state and 

provides greater consistency in the uncertainty profiles, in addition to the reductions in uncertainty 

compared to CrIS alone. 

 

5.5 Summary and Conclusions 

 This information content study has demonstrated the benefits of adding the AERI to the 

existing space-based operational hyperspectral IR sounding system in clear sky conditions. We 

have assessed these gains using DOF as a measure of information content and assessing the vertical 

resolution and uncertainties of temperature and water vapor sounding for AERI, CrIS, and 

CrIS+AERI for cloud-free conditions in three different climate regimes. 

 Adding the AERI to a retrieval with a space-based hyperspectral IR sounder, such as CrIS, 

results in a 30-40% increase in information across the entire troposphere for both temperature and 

water vapor. When focusing on the near-surface layer below 700 hPa, a synergy with the AERI 

provides double the temperature information and 1.5 times more water vapor information over 

what is currently provided by the space-based sounders alone. This improvement is consistent in 
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both dry and moist environments, despite the ranges of information content that both sensors have 

across varying PWV. 

 The combination of AERI with a space-based hyperspectral IR sounder results in 

significant improvements to the vertical resolution of the retrieval below 1000 m compared to what 

is currently available with a space-based hyperspectral IR sounder alone. The ground-/space-based 

synergy results in improved vertical resolutions from the surface up to 4000 m AGL. The vertical 

resolution of the CrIS+AERI synergy is better than the 1 km vertical resolution goal stated by the 

Decadal Survey below 1000 m AGL. While synergy does not meet the 1 km resolution soundings 

goal of the Decadal Survey above 1000 m AGL, the improvements to vertical resolution offered 

by a ground-/space-based synergy would improve the ability of retrievals to resolve PBL features 

like a capping inversion, resulting in better monitoring of convective initiation. We found that 

vertical resolution of temperature is best in moist environments, while the vertical resolution of 

the water vapor retrieval is best in dry environments. This is caused by AERI’s far-IR channels 

being most sensitive to water vapor in dry environments, while the sensitivity of CrIS’s midwave 

bands to water vapor result in CrIS’s improved sounding of temperature in moist environments. 

This effect for CrIS would not be realized in retrievals that omit water vapor channels from its 

temperature retrieval (such as the method of Smith et al. 2021).  

 Similarly, the synergy between AERI and a space-based hyperspectral IR sounder results 

in a 50% decrease in uncertainties (compared to a space-based hyperspectral sounder alone) in the 

lowest 500 m. The Decadal Survey set a goal of 1 K uncertainties, which the CrIS+AERI synergy, 

explored in this study, exceeds throughout the troposphere. Water vapor mixing ratio uncertainty 

is reduced by 25% in the lowest 1000 m AGL but does not meet the 0.3 g kg-1 goal of the Decadal 

Survey. We have shown that this reduction in uncertainty is a result of the two instruments, with 
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their different views of the atmosphere, reducing the cross-layer correlations of uncertainties in 

the posterior correlation matrix. It has been shown that the ground-/space-based synergy produces 

a reduction in these uncertainties in both dry and moist environments, though the temperature 

uncertainties are somewhat greater in dry environments and water vapor uncertainties are greater 

in moist environments.  

 While the discussion in this chapter has focused on the improvements that AERI brings to 

the existing sounding methods with space-based hyperspectral IR sounders, users of ground-based 

sensors may realize benefits of a ground-/space-based synergy as well. We have found that the 

inclusion of a space-based hyperspectral IR sounder results in about a 20% increase in DOF across 

the surface to 700 hPa layer, compared to the ground-based AERI alone. The synergy also offers 

improvements to vertical resolution and uncertainties above 500 m AGL. Given that the ABI is 

the only instrument currently in geostationary orbit providing nearly continuous observations over 

North America, it may be worthwhile for ground-based instrumentation users to consider a synergy 

with the ABI. While we have found that a synergy with an imager like ABI does not result in 

increases in DOF near the surface (compared to the AERI alone), the ABI does increase DOF by 

about 15% in in the free troposphere. 
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Chapter 6: Cloudy Sky Information Content Analysis 

 

6.1 Introduction 

 The effects of clouds on the synergy of upward and downward pointing sensors are under-

researched as previous studies, such as Ebell et al. (2013) and the analysis presented in Chapter 5, 

have primarily focused on clear sky conditions. However, in an assessment of the HIRS sounder, 

Wylie and Menzel (1999) found that only 25% of observations were clear sky scenes, with 32% 

of observations being opaque clouds and 43% semi-transparent clouds. With the possible 

exception of the clear sky pre-convective environment, observations in cloudy sky conditions tend 

to be more important for reducing forecast errors (McNally 2002). While non-precipitating clouds 

are largely transparent at frequencies used for microwave sounding, clouds are significant emitters 

in the IR. Thus, the presence of clouds will significantly affect the shape of Jacobians and in turn 

the retrievals and NWP assimilation techniques that depend on those Jacobians. 

 Both NWP and thermodynamic retrievals that utilize IR radiances from space-based 

sensors will use various cloud-clearing methods in partly cloudy scenes and along the edges of 

cloud formations to make greater use of IR sounding data. Cloud-clearing attempts to remove the 

signal of the cloud in the radiance field in order to estimate the clear sky contribution to the 

observed radiances. The data assimilation or retrieval then uses that estimated cloud-cleared 

radiance. The NUCAPS retrieval supplements cloud-cleared IR radiances with microwave 

observations for its thermodynamic retrieval.  

 Outside of partly cloudy scenes and cloud edges where cloud-clearing methods may be 

applied, only microwave sensors offer observations below a cloud layer in the space-based 

observing system. However, Turner and Löhnert (2014) demonstrates that a ground-based IR 



 61 

sensor may retrieve thermodynamic profiles up to the cloud base (and by the same logic a space-

based IR sensor may retrieve down to the cloud top). In this regard, the ground-and-space-based 

synergy of IR sensors would pose a potential solution to IR sounding in cloudy environments. This 

setup would allow for the ground-based sensor to inform the retrieval below the cloud layer and 

the space-based sensor inform the retrieval above the cloud layer. While it seems intuitive how 

each sensor would inform the retrieval in environments with optically thick clouds, how that 

information would blend when clouds are not completely opaque and in partly cloudy scenes is an 

open question. How cloud cover affects the information content available above the cloud for a 

space-based sensor, and below the cloud for a ground-based sensor, is under-investigated as well. 

This section will present three case studies to incrementally advance the understanding of the 

information content of a ground-and-space-based synergy of IR sensors in cloudy sky conditions. 

 

6.2 Experimental Design 

 Designing a synthetic study for cloudy sky scenes is difficult because clouds have a large 

amount of variability in terms of their height, thickness, and droplet size and density. Additionally, 

simulating cloudy sky radiances for IR hyperspectral sounders requires several orders of 

magnitude more calculations than clear sky radiances in order to account for the radiative effects 

due to the emission and scattering of clouds in the IR. This significantly limits the size of an 

analysis like this that attempts to account for clouds. Thus, this analysis will explore the synergy 

of CrIS+AERI using three case studies of single layer liquid water clouds. Recall that the results 

of the clear sky information content analysis in Chapter 4 suggest that AIRS and IASI would have 

similar results to CrIS – so the results with CrIS in this analysis would be expected to be similar if 

the analysis were to be applied to these other instruments. The three case study profiles are taken 
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from the radiosonde dataset at the ARM SGP site (Sisterton et al. 2016). The cloud height will 

significantly affect the location at which temperature Jacobians peak, while cloud properties will 

only somewhat alter the scattering properties of the cloud. Therefore, it is assumed that the 

information content of each sensor and the synergy will be more dependent on the height of the 

clouds than the cloud properties (like droplet size and number density). The three cases will vary 

the cloud base heights at 3000 m (Case 1), 2000 m (Case 2), and 500 m (Case 3) AGL while 

simulations will maintain the same cloud properties in each case. The temperature and dew point 

temperature profiles for the three cases are shown in Figure 6.1. For each case, the information 

content of the synergy will be assessed across varying cloud optical depths (COD) and varying 

cloud fraction. 

 
Figure 6.1: Temperature (red) and dew point temperature (blue) profiles used for each cloudy 

sky case, interpolated to the 500 m grid used for radiative transfer calculations. The black lines 

indicate the location of the cloud layer in the simulations. 

 

 6.2.1 Constructing the A Priori Covariance Matrix 

 Recall that calculating the averaging kernel (recall equation 2.21) requires an a priori 

covariance matrix Sa (equation 2.8). The clear sky analysis in Chapter 5 utilized a pseudo-global 

a priori which comprised of profiles from all three ARM stations. This was done to ensure that Sa 

was constant throughout the calculations to highlight the variations in information content caused 

a) b) c)
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by water vapor. Both Aires (2011) and Ebell et al. (2013) have highlighted the sensitivity of 

retrievals to Sa. In practice, it is likely that the prior will be derived from a single location that is 

climatologically similar to the location of the sounding. For example, NUCAPS (gambacorta 

2013) will utilize a climatology on a 2.5º grid as part of its prior lookup table. For the analysis in 

this section, since the three profiles are chosen from the SGP site, we utilize the 3,765 clear sky 

radiosonde profiles from SGP to construct Sa. This result is shown in Figure 6.2. Overall, while 

the magnitude of the values are different, the general patterns remain similar to the pseudo-global 

prior used in Chapter 5 (Figure 5.1). 

 
Figure 6.2: A priori covariance matrix used in this analysis. Bottom-left is temperature covaried 

against itself. Top-right is water vapor varied against itself. Top-left and bottom-right are 

temperature and water vapor covaried against each other. 

 

 

 6.2.2 Radiative Transfer Modelling 

 The LBLDISORT (LBLDIS, Turner et al. 2003, Turner 2005) model is used to simulate 

cloudy sky radiances for CrIS and AERI. LBLDIS utilizes layer optical depths for a given 

thermodynamic profile from LBLRTM (Clough et al. 2005), which are calculated assuming a 
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cloud-free atmosphere. LBLDIS computes the scattering and absorption of the cloud layer and 

combines that information with the cloud-free layer optical depths from LBLRTM in order to 

simulate cloudy sky radiances. The COD is varied to be run at: 0 (clear sky), 0.1, 0.5, 1, 5, 10, 20, 

and 40. In all three cases, a liquid water cloud is simulated with a gaussian distribution of droplets 

with an effective radius set to 7.5 μm. Conceptually, this is similar to a stratus cloud. LBLDIS is 

limited to 66 height levels, so instead of using the AIRS pressure grid, a 500 m grid is used up to 

32.5 km (approximately 8 hPa). The vertical resolution of the grid is balanced with having layers 

in the upper stratosphere to account for radiative contributions above the tropopause that strongly 

impact space-based radiance measurements. In each case, the geometric thickness of the cloud is 

500 m, or one model layer. Perturbations of +1 K and -10% water vapor mixing ratio are used at 

each level in order to calculate Jacobians for AERI and CrIS. Aside from the model difference, the 

radiative effects of carbon dioxide, methane, ozone, and nitrous oxide are considered in these 

simulations, just as in the clear sky analysis in Chapter 5. The same trace gas profiles used in 

Chapter 5 are applied in this analysis as well. The CAMEL dataset (Borbas et al. 2018 and Loveless 

et al. 2021) is also used to provide surface emissivity for the SGP site for these calculations. 

Finally, CrIS is simulated to have a nadir overpass, just as in the clear sky analysis in Chapter 5.  

 

 6.2.3 Computing Jacobians in Partly Cloudy Scenes 

 Because the sensitivity across the field of view (FOV) or field of regard (FOR) of an 

instrument is not uniform, radiances (and Jacobians) in partly cloudy scenes depend not only the 

aerial cloud fraction but also on the location of the clouds within the FOV or FOR. Being a ground-

based instrument, AERI’s FOV is so small that it is reasonable to assume that cloud cover is binary 

for AERI: either completely clear or completely cloudy. However, CrIS has a 14 km diameter 



 65 

FOV at the surface when at nadir, and a FOR that consists of nine FOVs aligned in a 3x3 grid. At 

this point, the decision is made to simulate a match-up between CrIS and AERI where the retrieval 

is performed on the FOV that encompasses AERI’s location, as opposed to the larger spatial 

footprint of the FOR. While most space-based retrievals (such as NUCAPS) utilize a radiance 

measurement averaged across the nine FOVs in a FOR, the decision to use a single FOV is made 

because the smaller FOV ensures the environment viewed by CrIS is closer to what is being 

measured by AERI. Furthermore, there is precedent to utilize the individual FOVs in this scenario, 

as cloud-clearing techniques will identify and utilize clear sky FOVs adjacent to the partly cloudy 

FOVs (eg: Susskind et al. 2003, Li et al. 2005). 

 Smith (1967) first showed that the total radiance I at frequency 𝜐 in partly cloudy scenes 

may be calculated as: 

                                                       𝐼𝜐 = 𝑁 𝐼𝐶𝐷𝜐
+ (1 − 𝑁)𝐼𝐶𝑅𝜐

                                                       (5.1) 

where N is the cloud fraction and ICD is the radiance from the cloudy part of the scene and ICR is 

the radiance from the clear part of the scene. Equation 5.1 assumes a uniform sensitivity across the 

FOV though. The sensitivity of the CrIS FOV to the scene is quite complex (see Han et al. 2018) 

though it is generally most sensitive in the center of the FOV and least sensitive on the edges. 

Thus, the sensitivity of the FOV is approximated as a cone here (see Figure 6.3). Returning to 

equation 5.1, rather than the cloud fraction N, the clear and cloudy radiance contributions need to 

be weighted by the fraction of the total FOV sensitivity that is cloud covered (we will call this 

variable SCD). Thus, our partly cloudy radiance I may be computed as: 

                                                    𝐼𝜐 = 𝑆𝐶𝐷 𝐼𝐶𝐷𝜐
+ (1 − 𝑆𝐶𝐷)𝐼𝐶𝑅𝜐

                                                    (5.2) 

This method to calculate the radiance assumes within the FOV, the clear and cloudy regions are 

homogenous within themselves. Radiative transfer calculations also assume that the same 
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thermodynamic profile is present across the FOV, with the presence of the cloud layer being the 

only difference between the clear and cloudy regions. 

 
Figure 6.3: Approximate sensitivity of the CrIS FOV. Dots represent the 375 m grid of the 

resolution of the Visible Infrared Imaging Radiometer Suite (VIIRS). 

 

 Lastly, the locations of the clouds within the FOV must be simulated in order to calculate 

radiances in the partly cloudy scene. In practice, knowledge of the location of clouds within the 

CrIS FOV can be known from the Visible Infrared Imaging Radiometer Suite (VIIRS) that is 

onboard S-NPP and NOAA-20 with CrIS. The University of Wisconsin-Madison and University 

of Maryland Baltimore County produce collocated CrIS and VIIRS data for NASA (Revercomb 

and Strow, 2020). Li et al. (2005) has utilized a similar data product to perform cloud-clearing for 

AIRS radiances by using the Moderate Resolution Imaging Spectroradiometer (MODIS) that is 

onboard the Aqua satellite with AIRS. Therefore, a grid with spacing of 375 m (the spatial 

resolution of VIIRS, Hillger et al. 2013) is overlayed on the approximated CrIS sensitivity in order 
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to calculate SCD (as shown in Figure 6.3). The selection of which pixels are clear or cloudy are 

selected randomly. Figures 6.4a, 6.4b, and 6.4c display the histograms of the total CrIS FOV 

sensitivity that is cloudy for 25%, 50%, and 75% areal cloud fractions respectively. Randomly 

selected pixels may roughly approximate scattered cumulus in the real world but will not simulate 

the scenario when clouds are completely contained to one side of the FOV. This additional scenario 

is accounted for in what will be referred to as Cloudy Scene 2, which simulates a cloud mass 

approaching from the south. The orientation of clear and cloudy pixels for approximately 25%, 

50%, and 75% areal cloud fraction in this scenario is displayed in Figures 6.4d, 6.4e, and 6.4f 

respectively, which correspond to cloudy FOV sensitivities of about 16.6%, 52.6%, and 83.4% 

respectively. 
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Figure 6.4: a-c display the histograms of the fraction of the total CrIS FOV sensitivity that is 

cloudy, given random placements of the clear and cloudy pixels, for 25% (a), 50% (b), and 75% 

(c) areal cloud fraction. d-f display the pattern of clear and cloudy pixels when simulating a cloud 

mass approaching from the south with 25% (d), 50% (e), and 75% (f) areal cloud fractions. 

 

a)

b)

c)

d)

e)

f)
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6.3 Results 

 The results will be organized such that we first consider the scenario with 100% aerial 

cloud fraction and observe changes in DOF (equation 2.22) with varying the COD for each of the 

three cases: Case 1 with a cloud base at 3000 m AGL, Case 2 with a cloud base at 2000 m AGL, 

and Case 3 with a cloud base at 500 m AGL. In the second section of the results, we keep COD 

equal to 40 and assess the changes in DOF for Case 2 (with a cloud base at 2000 m AGL) with 

respect to varying aerial cloud fraction. 

 

 6.3.1 Information Content with Varying Cloud Optical Depth 

 6.3.1a Case 1: 3000 m AGL Cloud Base 

 First, we will consider how information content varies with COD, given a cloud fraction 

of 100% and beginning with the Case 1 with the cloud base at 3000 m (and cloud top at 3500 m) 

AGL. DOF calculations for AERI, CrIS, and CrIS+AERI are shown in Figure 6.5. Across the full 

troposphere (designated as the surface to 200 hPa to maintain continuity with the clear sky analysis 

in Chapter 5), Figure 6.5a shows that both CrIS and AERI have greater DOF for temperature when 

the cloud is optically thin (COD less than 1) than in clear sky conditions. Optically thick clouds 

result in nearly the same total DOF as in clear sky conditions for each sensor though the vertical 

location of that information is very different in the two scenarios. 

 In Figure 6.5b it is shown that above the cloud (designated as the cloud top up to 200 hPa), 

AERI’s DOF for temperature increases from a COD of 0 to a COD of 0.5, with a maximum in 

DOF occurring with a COD of 0.5. AERI’s above-cloud temperature DOF decreases with 

increasing COD for CODs greater than 1 and approaches zero with a COD of 40. It would be 

expected that AERI has no information above optically thick clouds. Comparatively, CrIS’s above-
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cloud DOF for temperature increases with increasing COD, resulting in 1 DOF greater than clear 

sky conditions when the COD is greater than 5. 

 
Figure 6.5: DOF for AERI (purple), CrIS (orange), and CrIS+AERI (green) for the full 

troposphere (a and d), above-cloud (b and e), and below-cloud (c and f). DOF for temperature is 

shown in the left column (a-c) and water vapor in the right column (d-f). 

 

a)

b)

c)

d)

e)

f)
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 Figure 6.5c displays the DOF for temperature below the cloud (designated as the surface 

up to cloud base). Below the cloud, the sensors have the reversed relationships with COD. AERI’s 

DOF increases as the cloud becomes optically thicker (similar to CrIS’s above-cloud DOF). CrIS’s 

below-cloud temperature DOF marginally increases as COD goes from 0 to 0.5. However, CODs 

greater than 1 result in less DOF than in clear sky conditions. Unlike AERI’s temperature DOF 

above the cloud, CrIS’s DOF below the cloud unexpectedly approaches one instead of zero. This 

will be addressed in further detail below. 

 Across Figures 6.5a, 6.5b, and 6.5c, it is shown that CrIS+AERI has greater DOF 

throughout the troposphere than AERI or CrIS alone. While the DOF from the surface to 200 hPa 

for both AERI and CrIS decreases marginally at high CODs compared to clear sky, CrIS+AERI 

actually has greater DOF at high COD (Figure 6.5a). This is because CrIS+AERI benefits from 

the increased DOF at high COD from CrIS above the cloud (Figure 6.5b), in addition to the 

increased DOF at high COD from AERI below the cloud (Figure 6.5c). Figures 6.5b and 6.5c also 

confirm the hypothesis that at high CODs, the synergy of CrIS+AERI will revert to what CrIS 

provides above the cloud and what AERI provides below the cloud. 

 The DOF for water vapor across the full troposphere is displayed in Figure 6.5d. Unlike 

the sensors’ response with temperature, as COD increases, both AERI and CrIS lose water vapor 

information: CrIS losing 2 DOF and AERI losing 3 DOF compared to clear sky conditions. 

However, CrIS+AERI only loses about 1.5 DOF at high COD compared to clear sky. In the above-

cloud layer (Figure 6.5e), the water vapor DOF from CrIS remains unchanged despite varying 

COD. AERI’s water vapor DOF decreases compared to clear sky conditions as soon as the cloud 

is introduced (COD of 0.1) and goes to 0 at CODs greater than 10. CrIS+AERI has greater DOF 

above the cloud layer than CrIS in clear sky conditions, benefiting a small amount from the 
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additional information AERI provides above the cloud layer. But for CODs greater than 1, 

CrIS+AERI’s DOF for water vapor above the cloud layer is completely derived from what CrIS 

provides above the cloud layer. Below the cloud layer (Figure 6.5f), DOF for CrIS decreases to 

less than one at high CODs. AERI loses 1 DOF at high COD compared to clear sky. For CODs 

greater than 1, the DOF for CrIS+AERI below the cloud is nearly equal to what is provided by 

AERI. 

 Figures 6.6a and 6.6b display the diagonal of the averaging kernel for temperature for 

AERI and CrIS respectively for simulations at select CODs. Given that DOF is the trace of the 

averaging kernel (equation 2.23), this shows the levels at which changes in information content 

are occurring. For both sensors, the cloud presents a boundary which acts to sharpen the 

temperature Jacobians at the level of the cloud, thus increasing information at that level. For AERI, 

that peak in information comes at the cloud base, while that peak comes at the cloud top for CrIS. 

The optically thick cloud allows each sensor to retrieve the temperature of the cloud layer, whereas 

in clear sky it would have very little information about that layer. 

 Figures 6.6c and 6.6d display the diagonal of the water vapor averaging kernels for AERI 

and CrIS respectively. Increasing COD results in less water vapor information for AERI above 

1000 m AGL despite the cloud base being at 3000 m AGL. This is because the cloud saturates the 

AERI radiance measurement and in doing so, reduces the sensitivity of AERI to perturbations in 

the water vapor field at those levels. This can be seen in Figure 6.7 where AERI has large 

sensitivity to water vapor perturbations below 3000 m AGL in clear sky conditions but becomes 

less sensitive to perturbations in the water vapor profile as the cloud becomes optically thicker. 

Figure 6.6d shows that CrIS’s water vapor information does not change above the cloud, despite 

varying CODs. 
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Figure 6.6: Diagonal of the averaging kernel for AERI (a and c) and CrIS (b and d) at select 

cloud optical depths. Diagonal of the averaging kernels for temperature are shown in a and b, and 

water vapor is displayed in c and d. Absorption only refers to the LBLDIS calculation that only 

considers the absorption of the cloud layer and not the contributions from scattering. 

a)

b)

c)

d)
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Figure 6.7: AERI water vapor Jacobians for clear sky (a), a cloud optical depth of 1 (b), and 

cloud optical depth of 40 (c). 

 

 Figures 6.6b and 6.6d also provide perspective for why the below-cloud DOF for CrIS is 

not zero (as would be expected) for a COD of 40. Some of the below-cloud DOF for CrIS comes 

from the cloud base, but there are also contributions to DOF from the surface and 500 m AGL. In 

order to test if this is a result of scattering of information through the cloud, LBLDIS is run to only 

consider the absorption of the cloud – this result is also displayed in Figures 6.6b and 6.6d. The 

absorption-only run produces nearly the exact same result as the full LBLDIS calculations. Similar 

results are found when setting surface emissivity equal to zero. Temperature and water vapor 

Jacobians for CrIS with a COD of 40, presented in Figures 6.8a and 6.8b, reveal that this 

information comes from a weak sensitivity at 500 m AGL and below in the longwave from 700 

cm-1 to 1100 cm-1 and in the midwave from 1400 cm-1 to 1800 cm-1. These unexpected results will 

be discussed further in the next section. 

 

a) b) c)
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Figure 6.8: CrIS temperature (a) and water vapor (b) Jacobians for a cloud optical depth of 40. 

 

 6.3.1b Case 2: 2000 m AGL Cloud Base 

 Figure 6.9 displays the DOF for Case 2 with a cloud base at 2000 m AGL. Overall, similar 

patterns to what was seen in Case 1 persist with the cloud base just 1000 m lower. While AERI 

and CrIS lose about 0.5 and 1 DOF respectively throughout the troposphere for temperature in a 

scene with an optically thick cloud compared to clear sky, CrIS+AERI gains 1 DOF (Figure 6.9a). 

CrIS+AERI benefits from both the increased above-cloud DOF (Figure 6.9b) for CrIS, and the 

increased below-cloud DOF (Figure 6.9c) for AERI, without suffering the loss of information that 

both sensors have at high CODs. 

a)

b)
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Figure 6.9: Same as in Figure 6.5 but for a cloud base of 2000 m AGL. 

 

 As seen in Figure 6.9d, water vapor DOF across the full troposphere for the 2000 m AGL 

cloud base behaves similarly to the 3000 m AGL cloud in Case 1 as well. While CrIS loses almost 

1 DOF at high CODs compared to clear sky and AERI loses 3 DOF, CrIS+AERI only loses 0.75 

DOF for water vapor across the full troposphere. Above the cloud (Figure 6.9e), AERI’s water 

vapor DOF decreases as the cloud becomes optically thicker and goes to zero at CODs of 20 and 

a)

b)

c)

d)

e)

f)
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greater. CrIS’s above-cloud water vapor DOF remains nearly the same across the range of CODs 

simulated here. Below the cloud (Figure 6.9f), CrIS’s water vapor DOF goes to zero and AERI’s 

decreases by about 0.5 DOF at high CODs compared to clear sky. CrIS+AERI reverts to CrIS 

above the cloud and AERI below the cloud at CODs greater than 5. 

 The trace of the diagonal of the averaging kernel for select CODs is presented in Figure 

6.10. Just as was shown with a cloud base at 3000 m AGL, increasing the COD of the 2000 m 

AGL cloud results in an increase of temperature information at the cloud top for CrIS, and at the 

cloud base for AERI. Increasing COD has minimal effect on water vapor information above the 

cloud for CrIS but results in a decrease of water vapor information between 1000 m AGL and the 

cloud base for AERI. AERI’s decrease in water vapor information below the cloud is a result of 

the cloud saturating the spectrum, reducing the sensitivity to small perturbations in the water vapor 

field (as was shown for the 3000 m AGL cloud in Figure 6.8). 

 One key difference between the 2000 m AGL cloud base case and the 3000 m AGL cloud 

base case is CrIS’s information below the cloud layer at high CODs. While Case 1 with a 3000 m 

AGL cloud base showed CrIS having information at 500 m AGL and the surface for both 

temperature and water vapor with a COD of 40, CrIS’s information at a COD of 40 is zero below 

the cloud base for both temperature and water vapor in the 2000 m AGL cloud case. This is the 

pattern that would be expected of CrIS at high CODs, as opposed to the unexpected result of Case 

1. As will be shown in Case 3, it is not likely that this difference is a result of the differing cloud 

heights. 
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Figure 6.10: Same as in Figure 6.6 but for a cloud base of 2000 m AGL. 

 

 6.3.1c Case 3: 500 m AGL Cloud Base 

 The DOF for Case 3 with the cloud base at 500 m AGL is displayed in Figure 6.11. In Case 

1 and Case 2, AERI’s above-cloud DOF for temperature increased compared to clear sky 

conditions for the simulations with COD less than 1 (Figures 6.5b and 6.9b). In this case, the cloud 

layer is so low that AERI’s above-cloud DOF for temperature only decreases with increasing COD 

compared to clear sky. At high optical depths, AERI only lost 1 DOF for temperature above the 

cloud in Case 1 (Figure 6.5b) and 2 (Figure 6.9b) but in Case 3 AERI loses 2 DOF compared to 

a)

b)

c)

d)
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clear sky. Figure 6.11c shows that below the cloud layer AERI does not see an increase in DOF 

with increased COD as what shown in Case 1 (Figure 6.5c) and 2 (Figure 6.9c), but this is because 

there are only two model layers below the cloud so 2 DOF is the maximum DOF possible below 

the cloud. Figure 6.12a shows that the cloud is so low that AERI has the maximum information 

from the surface to 500 m AGL layer in clear sky, so the additional absorption of the cloud does 

not provide additional information as was seen in Case 1 and Case 2. The increasing COD only 

reduces AERI’s temperature information above the cloud. In Figure 6.11e it is shown that AERI’s 

above-cloud DOF for water vapor decreases with increasing COD, just as was seen in Case 1 and 

Case 2. Below the cloud in Figure 6.11f, the cloud is again so low that changing the COD does not 

affect the DOF for AERI. Synthesizing the three cases together, the lower the cloud is, the less 

information that AERI may derive from the atmosphere. 

 While AERI is significantly limited in its total DOF by low clouds, CrIS is least affected 

by the 500 m AGL cloud compared to Case 1 and Case 2. The total DOF for CrIS for both 

temperature and water vapor (shown in Figure 6.11a and 6.11d respectively) across the full 

troposphere changes very little with varying COD. Similar to what was seen in the previous cases, 

the increased absorption by the cloud results in CrIS gaining temperature information about the 

cloud top (Figure 6.12b) at the expense of information below the cloud layer. Combining the 

information shown in Figures 6.11b, 6.11c, and 6.12b, CrIS has so little information below the 500 

m AGL cloud base to start with that the increased temperature DOF above the cloud cancels out 

the losses below the cloud at high CODs. This combination results in nearly the same DOF across 

the troposphere in clear sky as with a COD of 40. The water vapor DOF for CrIS has very little 

change either above-cloud (Figure 6.11e) or below the cloud (Figure 6.11f). 
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Figure 6.11: Same as in Figure 6.5 but for a cloud base of 500 m AGL. 

 
 While the total DOF for CrIS is similar in both clear sky and with a COD of 40, the vertical 

location of that information changes, resulting in CrIS having very little information below the 

cloud. While AERI provides very little information at high CODs in this case, it still provides 

observations of the PBL where CrIS cannot make observations due to the absorption of the cloud. 

a)

b)

c)

d)

e)

f)
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Figure 6.12: Same as in Figure 6.6 but for a cloud base of 500 m AGL. 

 
 In Figure 6.12d, we can also see that the model produces an unrealistic signal for CrIS 

below the cloud at high CODs, as was seen with Case 1. CrIS’s water vapor information throughout 

the troposphere is nearly identical for every simulation above 1500 m AGL. At the cloud top (at 

1000 m AGL), the clear sky simulation results in the greatest information, and increasing optical 

depths result in decreased information (COD of 40 results in the least information). The same 

pattern is seen at 500 m AGL at the cloud base. However, the varying CODs does not result in a 

a)

b)

c)

d)
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meaningful change in water vapor information at the surface. Recall that in Case 1 (Figure 6.6d), 

the water vapor information did decrease at the surface with increased COD, it just did not go to 

zero as expected. This suggests that there is not necessarily something unique about a cloud at 

2000 m AGL, but rather these features are a result of modelling error of some unknown cause. 

 

 6.3.2 A Comment on Unexpected Results 

 The hypothesis coming into this analysis would be that at high CODs and 100% cloud 

cover, the above-cloud information content of AERI and the below-cloud information content for 

CrIS would be zero. Across the three cases, we see that the above-cloud DOF for AERI approaches 

zero (only the height index that is the cloud top provides a small bit of information above the cloud, 

which is included as part of the above-cloud DOF summation). However, for CrIS Cases 1 and 3 

result in information originating from the near-surface layer even at high CODs (as was shown in 

Figures 6.6b and 6.6d for Case 1, and. 6.12b and 6.12d for Case 3). Comparatively, Case 2 

followed our hypotheses exactly, as CrIS’s below-cloud information went to zero (besides a small 

bit of information from the height index that is the cloud base). Furthermore, CrIS’s below-cloud 

information does not follow the same pattern in Case 1 and Case 3. In Case 1, CrIS has non-zero 

temperature and water vapor DOF below the optically thick cloud. In Case 3, only CrIS’s below-

cloud water vapor DOF is non-zero.  

 Given the inconsistencies in how CrIS’s below-cloud information behaves, it is difficult to 

conclude that this is a physical phenomenon, having signal below an optically thick cloud. Case 2 

is colder than Cases 1 and 3 (Figure 6.1), so it is possible that the cooler atmosphere with lower 

specific humidity explains some of the differences. In general though, given the relationship of 

transmission (t) to optical depth (𝜏): 
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                                                                        𝑡 = 𝑒−𝜏                                                               (5.3) 

there is no reason to expect radiative signal of the surface to be transmitted through a cloud with 

an optical depth of 40 (transmittance would be about 10-18), even in scenes with a warm and moist 

PBL. It was shown in Figures 6.6, and 6.12 that this information is not being scattered through the 

cloud. One path of further exploration on the topic would be assessing the CODs that the model 

interpolates at IR frequencies because the model assumes that the user-input COD is at a visible 

frequency. 

 

 6.3.3 Information Content with Varying Cloud Fraction 

 To calculate information content with varying cloud fraction, locations of clouds within 

the CrIS FOV are randomly chosen in order to determine the fraction of the total CrIS FOV 

sensitivity that is cloudy. We also consider the situation where the clouds are constrained to one 

side of the FOV, simulating an approaching cloud mass (Cloudy Scenario 2). The distribution of 

the cloud covered FOV sensitivities from the random simulations and the pattern of Cloudy 

Scenario 2 are shown in Figure 6.4. Given the similarity of the three cases analyzed in the previous 

section, the rest of this analysis will focus on Case 2 with the cloud base at 2000 m AGL since the 

below-cloud DOF for CrIS in that case behaved as we would expect at high CODs. The partly 

cloudy scenes are simulated to have a COD of 40. 

 Figure 6.13 displays the box plot representing the range of DOFs possible for CrIS in the 

above- and below-cloud layers. Given the lack of variability produced by randomly selecting 

locations of cloudy and clear pixels within the FOV, the mathematical maximum and minimum 

cloud covered fraction of the total FOV sensitivity (SCD) for a given aerial cloud fraction are also 

simulated and are displayed in Figure 6.13 for reference. This simulates the largely unrealistic 
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scenario where clouds are only located at the center of the FOV (maximizing the sensitivity of the 

FOV to the cloud cover) and when clouds are located around the edges of the FOV (minimizing 

the sensitivity of the FOV to the cloud cover). Figure 6.13 also shows that the DOF in the scenario 

where the cloud shield is contained to one side of the FOV (Cloudy Scenario 2) is not much 

different than the average of a large number of random simulations. In general, it is shown that 

increasing cloud fraction causes similar response in DOF to increasing COD shown in the previous 

section. CrIS’s above-cloud DOF for temperature increases with increasing cloud fraction, and 

below-cloud DOF for temperature decreases with increasing cloud fraction (Figure 6.13a). Above-

cloud DOF for water vapor remains similar with increasing cloud fraction, similar to the pattern 

shown in Figure 6.9e with increasing COD. Below-cloud DOF for water vapor goes to zero as the 

cloud fraction increases, the same response as with high CODs. The response of CrIS DOF to 

cloud cover is greatest when the aerial cloud fraction is greater than 50%. Sun et al. (2017) 

compares the NUCAPS retrieval to radiosondes with varying cloud fraction. While the IR 

measurements are supplemented with a microwave sounder in NUCAPS, they found that retrieval 

errors are also most sensitive when cloud fraction is greater than 50%. 

 In general, the greatest mathematically feasible variations occur with the 50% and 75% 

aerial cloud fractions – of which CrIS’s below-cloud DOF is most sensitive to those variations. 

CrIS’s below-cloud DOF can vary up to 0.75 DOF for both temperature and water vapor at a cloud 

fraction of 75% simply based on the location of clouds within the FOV. The methods used to 

simulate cloud location within the FOV here did not identify the full extent of those mathematically 

feasible variations. However, given the patterns of clouds required for the maximum and minimum 

cloud covered FOV sensitivity, it is not something likely to be seen in the real world.  
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Figure 6.13: CrIS DOF for temperature (a) and water vapor (b). Above-cloud DOF is 

represented in black, below-cloud DOF represented in red. For reference, the DOF at the 

mathematical maximum and minimum sensitivity possible for the given areal cloud fraction are 

represented with an x. Teal and blue dots represent DOF in cloudy scenario 2 for above-cloud 

and below-cloud respectively. 

 

 The box plots for DOF for CrIS+AERI in the above-cloud and below-cloud layers are 

presented in Figure 6.14. Because AERI’s cloud cover is binary, the partly cloudy scenes are 

simulated to have AERI with and without cloud cover. While the AERI cloudy sky simulation at 

0% cloud fraction, and AERI clear sky simulation at 100% cloud fraction are physically 

impossible, they are presented to show the end points of those simulations where AERI would be 

located in the single cloudy pixel with a cloud fraction less than 1% and located in the single clear 

pixel with a cloud fraction greater than 99% respectively. 

 In general, it is shown that the synergy of CrIS+AERI has significantly less variability with 

cloud fraction than CrIS alone. Above the cloud, the synergy only changes about 0.25 DOF when 

AERI is in clear sky versus cloudy sky. Below the cloud, that difference is about 0.5 DOF for 

temperature and ranges from approximately 0.25 DOF for water vapor with a 0% cloud fraction 

to 0.75 DOF at 100% cloud cover. In the case of the synergy of CrIS+AERI, above-cloud DOF 

for temperature is most sensitive near cloud fractions of 0% – as any cloud cover introduced results 

a) b)
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in the increased absorption at the cloud layer, resulting in the increased DOF (as was explained in 

the previous section). Otherwise, the synergy has almost the exact same DOF despite the varying 

cloud fraction. This means that the information content of the ground-and-space-based synergy in 

cloudy scenes would not only be greater than that of CrIS alone, but also more consistent regardless 

of the scene.  

 

Figure 6.14: CrIS+AERI DOF for temperature (a and b) and water vapor (c and d). Above-cloud 

DOF is presented in a) and c) and below-cloud DOF presented in b) and d). The simulations for 

AERI in clear sky are presented in black, and AERI in cloudy sky presented in red. For reference, 

the DOF at the mathematical maximum and minimum sensitivity possible for the given areal cloud 

fraction are represented with an x. Teal and blue dots represent DOF in cloudy scenario 2 when 

AERI is in clear sky and when AERI is in cloudy sky respectively. 

 

 

 

 

a)

b)

c)

d)
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6.5 Summary and Conclusions 

 

 This chapter has assessed the DOF of CrIS and AERI in cloudy sky conditions in order to 

understand the benefits of the synergy of CrIS+AERI with varying COD and varying cloud 

fraction. Simulations shown here confirm the hypothesis that in the case of an optically thick cloud, 

the synergy of CrIS+AERI would be informed by CrIS above the cloud layer and informed by 

AERI below the cloud layer. It is found that CODs greater than one result in a decrease in total 

DOF across the troposphere compared to clear sky conditions for both AERI and CrIS. However, 

the synergy of CrIS+AERI loses less total water vapor information than CrIS or AERI while also 

increasing the total temperature information compared to a clear sky scene. Introducing AERI to 

the observing system helps mitigate the loss of IR sounding information in scenes with opaque 

clouds because AERI provides the information below the cloud layer that is otherwise lost when 

using a space-based IR sounder alone. As shown in Chapter 5 in clear sky conditions, the synergy 

maximizes the information available from both of these sensors. 

 The information content of CrIS with varying cloud fraction behaves similarly to varying 

the COD, with greater cloud fraction acting as an increase in COD. Effects of the clouds on DOF 

in the partly cloudy scene are most sensitive when cloud fractions are greater than 50%. The 2000 

simulations of randomly selecting the locations of cloudy and clear pixels within the CrIS FOV 

did not produce much variability in CrIS DOF for given aerial cloud fractions. It has been shown 

however, that below-cloud DOF for CrIS could vary up to 0.75 when considering the 

mathematically possible maximum and minimum in cloud covered FOV sensitivity (though this 

variation is likely an over-estimation given the cloud patterns necessary to create those variations). 

However, the synergy of CrIS+AERI is not sensitive to the location of clouds within the CrIS 
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FOV. This analysis has assumed a homogenous CrIS FOV, and testing that assumption is 

necessary to prove the benefits and viability of the synergy in both clear sky and cloudy sky scenes. 

 While the unexpected and unexplained result of CrIS having non-zero information content 

below optically thick clouds does not restrict us from drawing important conclusions on the 

performance of the synergy of CrIS+AERI in cloudy skies, the model should be further evaluated 

to understand why it produces the results it does. It has been suggested that assessing how the 

model assigns CODs to the IR frequencies after receiving a user-input COD at visible frequencies 

is one path of further exploration.  

 The changes in information content with cloud cover for CrIS and AERI shown here 

suggest that retrievals from IR sensors should be evaluated cloudy environments in addition to 

clear sky environments. Sun et al. (2017) assessed the accuracy of NUCAPS temperature retrieval 

compared to radiosondes across varying cloud fractions and found that the retrieval had similar 

performance regardless of cloud fraction from the middle troposphere (650 hPa by their 

designation) up to the stratosphere. However, the differences between radiosonde and retrieval 

went from 1.5 K at 0% cloud fraction to 2.5 K at 85% cloud fraction for the surface to 650 hPa 

layer. Like Sun et al. (2017), the simulations for partly cloudy scenes shown here also suggested 

that CrIS is most sensitive to cloud cover when the FOV has greater than 50% aerial cloud fraction. 

While NUCAPS utilizes both IR and microwave space-based sounders in its retrieval, results of 

Ebell et al. (2013) suggest that a space-based microwave sounder would provide only 1 DOF for 

temperature and nearly zero DOF for water vapor below 3 km. In this sense, AERI (and particularly 

the synergy of CrIS+AERI) still provides an improvement over the current space-based observing 

system, even when the IR sensors are limited by cloud cover. Based the results in this Chapter, 

supplementing CrIS with ground-based AERI observations in cloudy sky scenes would be 
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expected to reduce the retrieval errors that Sun et al. (2017) found in both partly cloudy and fully 

overcast scenes.  

 One limitation of a synthetic study of this sort is that all of the information known for the 

modelling, which is not always practical in an operational setting. IR sounding in cloudy 

environments requires observations from additional instruments. The imagers that make collocated 

observations with AIRS and CrIS are able to derive cloud top pressure and some cloud properties, 

which could be used in modeling the cloudy sky radiances for a retrieval in the cloudy scene. From 

the ground-based perspective, the AERIoe retrieval (Turner and Löhnert 2014, Turner and 

Blumberg 2019) requires cloud base height observations from another instrument. Currently 

AERI’s are deployed in research settings and almost always collocated with a ceilometer or lidar 

that could provide such observations. One requirement of a future network of ground-based 

profilers would be to have lidars or ceilometers collocated with an IR sensor for this reason. While 

an active sensor like a lidar or ceilometer would be able to identify clouds with very low optical 

depths, work by Ackerman et al. (2008) suggest that cloud masks from passive visible and IR 

imagers are only reliable when the COD is greater than 0.4. Thus, the small increases in DOF for 

semi-transparent clouds compared to clear sky conditions may not be realized in practice if the IR 

retrieval depends on the cloud mask from a visible and IR imager to determine if clouds are present. 

The computational expense of calculating cloudy sky radiances also limits the practicality of IR 

sounding in cloudy sky environments. AERIoe for example utilizes the cloud base height to make 

assumptions about the cloud contributions to the radiance field before retrieving temperature and 

water vapor below that height. Recent work by Martinazzo et al. (2021) to create a fast model for 

cloudy sky radiances in the IR may make simulations of cloudy sky radiances more practical on 

the timescales necessary for operational retrievals.  
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Chapter 7: Developing a Synergistic Retrieval 

 

7.1 Introduction 

 To this point, it has been demonstrated that the synergy of ground-based and space-based 

sensors provides greater information content and vertical resolution in the lower troposphere 

compared to the current observing system, which is space-based only. These results have been 

displayed for synthetic information content analyses that have used radiosonde profiles as input 

conditions for radiative transfer calculations. This chapter will utilize real radiance measurements 

from CrIS and AERI to display that the improvements the synthetic information content analyses 

showed for the synergy of CrIS+AERI may be replicated in practice with an optimal estimation 

retrieval. 

 A pristine clear sky case is identified on 20 June 2015 from the PECAN (Geerts et al. 2017) 

dataset. On this day, AERI was located in central Kansas and S-NPP CrIS made an overpass at 

approximately 830 UTC. A radiosonde collocated with the AERI was launched at 900 UTC. This 

provides an ideal set up where the CrIS overpass is close in time to the radiosonde observation, 

which will be the reference to assess retrieval performance. Figure 7.1 displays the location of the 

AERI within the CrIS granule. Each point in Figure 7.1 represents a CrIS FOR. However, as was 

described in Chapter 6, the motivation would be to utilize a single FOV because of the smaller 

footprint and therefore greater overlap in the scene being observed by CrIS and AERI. The 

radiances for each instrument for this scene were presented in Figure 2.1. The scanning angle for 

the CrIS FOV that is closest to AERI is 14.7º from nadir. While the information content analyses 

in previous chapters focused on nadir only views from CrIS, changes in scan angle were not found 

to have much impact on clear sky information content. 
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Figure 7.1: Location of AERI (black square) within the S-NPP CrIS granule for the overpass at 

approximately 830 UTC on 20 June 2015. 

 

7.2 Algorithm Details 

 While the framework for existing and well-documented retrievals could be modified for a 

synergistic retrieval, the decision is made to create a new primitive retrieval for this analysis. This 

is because a retrieval such as AERIoe (Turner and Löhnert 2014) has been tuned to optimize its 

performance with AERI radiances but has never been used with CrIS. The goal for the primitive 

retrieval developed here is to present an objective comparison between CrIS and AERI and display 

the benefits of a synergy of the two sensors in a combined retrieval. It is expected that the retrieval 

presented here for AERI and CrIS individually should perform notably worse than the existing 

retrievals (AERIoe and NUCAPS) that utilize their observations because it has not been assessed 

beyond this single case. Future work will seek to apply lessons learned in tuning the algorithms 

for individual instruments in order to improve the synergistic algorithm presented here. 

 We will utilize the Gauss-Newton optimal estimation framework described in Chapter 2 

for the retrieval. Recall that the iterative Gauss-Newton optimal estimation equation is described 

in equation 2.15. The method iterates on the difference between the measured radiance y and the 
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simulated radiance for the given estimated state vector. As is noted in Chapter 2, Turner and 

Löhnert (2014) implemented a 𝛾 factor to add greater weight to the prior in order to stabilize the 

model and help it overcome a poor first guess. 𝛾 starts out large and gets smaller with each iteration 

in the retrieval. While Turner and Löhnert (2014) subjectively determined the ideal 𝛾 factor was 

[1000, 300, 100, 50, 30, 10, 3, 1, 1…] for their retrieval, it was found that 𝛾 = [5000, 1500, 500, 

150, 50, 5, 5…] resulted in reasonable results for this case study. The retrieval was found to be 

very sensitive to 𝛾 and would return unphysical solutions if 𝛾 was allowed to go to 1. Thus, the 

retrieval was allowed to converge if 𝛾 = 5 and the retrieval satisfied the convergence criteria 

described in equation 2.16. 

 We utilize LBLRTM version 12.6 (Clough et al. 2005) as the forward model for the 

algorithm. Future versions of the algorithm will seek to implement the OSS fast model, but 

LBLRTM is used for this case study because of the greater accuracy that it offers. The same trace 

gas profiles of CO2, N2O, CH4, and O3 that were used for modelling in the previous chapters are 

utilized here and are held constant in the retrieval throughout each iteration. In order to highlight 

the vertical resolution of the AERI near the surface, the vertical grid has a resolution of 25 m near 

the surface and gradually increases to 500 m resolution at 1500 m AGL. The resolution remains 

500 m up to 60,000 m AGL, which is considered top of atmosphere for these calculations. This 

pattern in resolution is chosen based on results in Chapter 5 and in Blumberg et al. (2015) that 

suggest AERI’s vertical resolution is about 1500 m at 1500 m AGL. The grid ensures that the 

vertical resolution offered by either AERI or CrIS will not be limited by the vertical grid used for 

calculations. 

 The a priori covariance matrix Sa is calculated from all clear sky profiles at SGP, which 

were summarized in Table 4.1. This is the same set of radiosondes used to calculate Sa in Chapter 
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6 but applied to a different vertical grid in this case. The Sa matrix used for the retrieval is displayed 

in Figure 7.2 and has the same general patterns that have been seen in Sa used for Chapters 5 and 

6. The first guess xa is the mean of all summer SGP clear sky radiosondes. The final solution was 

not found to be sensitive to whether xa was calculated with all SGP radiosondes or only summer 

radiosondes. The decision was made to follow the seasonal first guess used in AERIoe (Turner 

and Löhnert 2014) for this retrieval as well. As has been done in the information content studies 

in previous chapters, we use the instrument noise characteristics (from Table 3.1) for the error 

covariance matrix Sε. 

 
Figure 7.2: A priori covariance matrix used in this analysis. Bottom-left is temperature covaried 

against itself. Top-right is water vapor varied against itself. Top-left and bottom-right are 

temperature and water vapor covaried against each other. 

 

7.3 Results 

 The results of the retrieval for AERI and CrIS alone in addition to the synergy of 

CrIS+AERI compared to the collocated radiosonde are presented in Figure 7.3. Figure 7.3a 

displays the results for the temperature retrievals. Each retrieval identifies the presence of a 

nocturnal inversion, though each retrieval produces inversions of varying degrees of strength 
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(difference between surface temperature and temperature at the inversion) and varying heights. 

AERI has the closest comparison to the radiosonde from the surface up to 1000 m AGL and has 

the best representation of the nocturnal inversion compared to CrIS and CrIS+AERI. For water 

vapor in Figure 7.3b, AERI produces a solution that is very close to the radiosonde measured 

profile from the surface up to 1000 m AGL. CrIS and CrIS+AERI detect the small increase in 

moisture identified by the radiosonde at 1200 m AGL, but it is obvious that signal is spread across 

several layers. Figure 7.4 displays the same data for the differences calculated between the 

radiosonde measurement and the retrievals. Figure 7.4a shows that AERI tends to have the better 

temperature representation in the lowest 1000 m ALG (as was noted with Figure 7.3a). Overall, 

there is no clear pattern of one sensor having a better comparison across a large layer. Similar is 

seen for the water vapor differences in Figure 7.4b. Results of the information content analysis in 

Chapter 5 suggest that CrIS+AERI should converge to the solution of AERI alone near the surface 

and CrIS alone aloft, with a blend in information between 500 m and 4000 m AGL. Those results 

also suggest that CrIS+AERI should have the superior retrieval compared to either sensor 

individually, which is also not the case. 
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Figure 7.3: Temperature (a) and water vapor (b) comparisons of the AERI (purple), CrIS (orange), 

and CrIS+AERI (green) retrievals to radiosonde observation (black dotted). 

 

 
Figure 7.4: Differences in temperature (a) and water vapor (b) between the AERI (purple), CrIS 

(orange), and CrIS+AERI (green) retrievals to the radiosonde observation. Differences are 

calculated such that a positive difference indicates the retrieval has greater temperature or water 

vapor than the radiosonde. 

 

 We can compute the vertical resolution of the retrieval by following equation 2.23 again. 

However, since 𝛾 does not go to 1 in the retrieval, the definition of the averaging kernel is slightly 

different than what was presented in equation 2.21:  

a) b)

a) b)
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                                             𝐀 =  (𝛾𝐒𝑎
−1 + 𝐊𝑖

𝑇𝐒𝜀
−1𝐊𝑖)

−1 (𝐊𝑖
𝑇𝐒𝜀

−1𝐊𝑖).                                     (7.1) 

The vertical resolution of the retrievals is shown in Figure 7.5. Here, the pattern is what we would 

have expected based on the results of the information content study as AERI has greater resolution 

than CrIS below 1500 m AGL for temperature and 2000 m AGL for water vapor, while CrIS is 

better than AERI above those heights. The vertical resolution of CrIS+AERI tracks closely to 

AERI near the surface and is better than both single instrument retrievals from 1000 m AGL up to 

5000 m AGL before largely converging with the resolution of CrIS alone. The heights at which 

AERI has superior vertical resolution compared to CrIS (and vice-versa), and the region where 

CrIS+AERI is better than either sensor alone very closely match what was identified in the clear 

sky information content study in Chapter 5. This is an encouraging result, and suggests that a 

synergy of CrIS+AERI would exceed the 1 km resolution sounding goal set by the Decadal Survey 

in the lowest 1000 m of the atmosphere. 

 
Figure 7.5: Vertical resolution of the temperature (a) and water vapor (b) retrievals. AERI is 

shown in purple, CrIS in orange, and CrIS+AERI in green. 

 

a) b)
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Figure 7.6: 1σ uncertainties of the temperature (a) and water vapor (b) retrievals. AERI is shown 

in purple, CrIS in orange, and CrIS+AERI in green. 

 
 The 1σ uncertainties of each retrieval are presented in Figures 7.6a and 7.6b for temperature 

and water vapor respectively. AERI alone has the least uncertainty of the three retrievals (for both 

temperature and water vapor) from the surface up to 2000 m AGL. Above 2000 m AGL, CrIS has 

the least uncertainty for both temperature and water vapor. CrIS+AERI has the greatest 

temperature uncertainty of the three retrievals above 1000 m AGL. Instead of the synergy reducing 

uncertainty (as was expected based on results in Chapter 5), the combination of two sensors has 

increased uncertainty compared to the individual sensor retrievals when applied to real data. One 

possible explanation is that the differences in the retrieved state from CrIS and AERI are quite 

large in comparison to the 1σ uncertainties. For example, in Figure 7.6a it is shown that at 2000 m 

AGL both CrIS and AERI have a 1σ uncertainty of about 1.25 K. However, as seen in Figure 7.4a, 

the difference between the temperature retrievals at 2000 m AGL is 6 K. Thus, the synergy of 

CrIS+AERI is receiving two very different signals from the two sensors that are informing it. This 

leads to the conclusion that the retrievals are over-constrained: That is the uncertainties are too 

small. Aires (2011) identified something similar where a synergy of IASI and AMSU-A provided 

a) b)
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no improvement because the uncertainty of the IASI instrument was so small that the AMSU-A 

measurements made no impact on the combined retrieval. One key difference between the result 

here and the result of the Aires (2011) study is that Aires (2011) did not find that the uncertainties 

increased in the synergy but rather matched that of IASI alone. 

 To test if the retrievals are indeed over-constrained, the retrievals are run again with five 

times greater noise in the error covariance matrix Sε to assess how increased noise changes the 

retrievals. These results are displayed in Figure 7.7. First, there is much less variation among the 

three retrievals, as the first guess has greater influence on the retrievals than in the standard run 

shown in Figure 7.3. The 1σ uncertainty profiles for the retrievals with five times greater noise are 

displayed in Figure 7.8. These results are much more in-line with what the information content 

analysis in Chapter 5 suggested, as CrIS+AERI has the least uncertainty throughout the profile 

compared to AERI and CrIS alone. While CrIS+AERI does not have the best comparison to the 

radiosonde here compared to AERI and CrIS alone, the combined retrieval may provide better 

comparisons to radiosondes than the lone instrument retrievals on average in a large dataset.  

 
Figure 7.7: As in Figure 7.3 except the retrievals are run with five times greater noise. 

a) b)



 99 

 
Figure 7.8: As in Figure 7.6 except the retrievals are run with five times greater noise. 

 
 Heterogeneity of both the surface and the atmosphere is an unavoidable issue with the 

matchup between the two sensors and is likely a factor in the conflicting signals from AERI and 

CrIS in this scene. However, quantifying that influence is difficult. The center of the CrIS FOV is 

offset by 25 km from the AERI location, thus (given the 7 km radius) AERI is 18 km outside the 

CrIS FOV. The NUCAPS skin temperature retrievals shown for the CrIS FORs in Figure 7.1 

provide some indication on the regional gradients in surface heterogeneity, with adjacent FORs 

having skin temperature differences around 5 K. Investigating the effects of local heterogeneities 

on the matchup between the large aerial footprint of the space-based sensor with the AERI is a key 

piece of future work required to demonstrate the value of the ground-and-space-based synergy. 

 

7.4 Summary and Future Work 

 In summary, the combined retrieval of CrIS+AERI was not found to have superior 

comparisons to the radiosonde observation than the lone instrument retrievals from AERI and 

CrIS. This goes against our expectations, in light of the results of the information content analysis 

a) b)
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in Chapter 5. A significant finding however, is that CrIS+AERI offers greater vertical resolution 

than AERI or CrIS alone throughout the majority of the profile, replicating one of the major 

findings of the synthetic information content study in Chapter 5. The results suggest CrIS+AERI 

would exceed the 1 km resolution goal stated by the 2017 Decadal Survey from the surface up to 

1000 m AGL. The uncertainties of the CrIS+AERI retrieval did not match expectations given the 

results of the synthetic information content analysis, as CrIS+AERI had uncertainties greater than 

the individual instrument retrievals for large layers of the profile. It was shown that this is likely 

due to the retrievals being over-constrained, as CrIS+AERI provided smaller uncertainties 

compared to the single instrument retrievals (as was to be expected originally) when they were run 

with five times greater noise. Therefore, including additional sources of uncertainty in the 

construction of the error covariance matrix Sε is important to further develop the combined 

retrieval. Cimini et al. (2018) provides a framework for assessing model uncertainties (applied to 

a microwave absorption model) which could potentially be applied to LBLRTM in order to expand 

the Sε in physically meaningful ways instead of artificially inflating the uncertainties. 

 Even with the increased noise resulting in the expected pattern in uncertainty profiles for 

the three retrievals assessed, CrIS+AERI did not provide the best comparison with the radiosonde 

observation. Given that the retrieval runs with increased noise resulted in CrIS+AERI reducing 

uncertainties compared to either instrument individually, it is possible over a larger validation that 

CrIS+AERI would prove to have better comparisons to radiosonde observations than either 

instrument operating alone. Future work involves identifying a larger dataset of clear sky matchups 

between AERI and polar-orbiting sounders and comparing the ground-and-space-based synergy 

with radiosonde observations. 
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 In general, the retrieval process was found to be quite unstable with low 𝛾 and identifying 

a progression of 𝛾 that produced physically reasonable results was only subjectively identified. 

Carissimo et al. (2005) developed a method to optimize the value of 𝛾 in the retrieval, which can 

be implemented for the combined retrieval presented here moving forward. Additional 

investigation is necessary to better understand the sources of instability in the retrieval. Increasing 

the magnitude of the error covariance matrix Sε is likely to decrease that instability as well. 

 Lastly, the impact of heterogeneities on the matchup of the AERI and space-based sensor 

must be further explored. This single case study provides a bit of insight into what may happen to 

the combined retrieval in regions with a strong temperature gradient. Skin temperature retrievals 

from NUCAPS using the CrIS FORs found differences of about 5 K in adjacent FORs which are 

approximately 50 km apart. AERI and the CrIS FOV are offset by 25 km in this case, which may 

explain the 6 K difference between the single instrument retrievals at 2000 km AGL. These 

differences in observed scenes for CrIS and AERI may explain the relatively poor comparison 

between the CrIS+AERI retrieved profile and the radiosonde observations.  
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Chapter 8: Conclusions and Future Work 

 

8.1 Summary of Results 

 The analyses presented were designed to advance the understandings of a synergy of 

ground-based and space-based sounders as a potential solution for improving thermodynamic 

retrievals in the PBL. We have assessed the synergy between the ground-based AERI with space-

based IR sounders, with a particular focus on CrIS, in a clear sky information content study across 

multiple climate regimes, in Chapter 5. Notably, the improvements in vertical resolution offered 

by the synergy of CrIS+AERI have been documented, which has been previously understudied. 

The potential for the ground-based AERI to be a solution to IR sounding in cloudy sky 

environments was assessed in Chapter 6. Finally, a prototype of the synergistic retrieval between 

AERI and CrIS was developed and applied to a clear sky case study to determine if the 

improvements suggested by the clear sky information content study would be replicated in 

practice. 

 The clear sky information content study in Chapter 5 found that combining the ground-

based AERI with one of the polar-orbiting IR sounders would result in an increase in DOF of 30-

40% across the full troposphere as compared to what is offered by the space-based sensor alone. 

In the surface to 700 hPa layer, including AERI would double the DOF for temperature and offer 

1.5 times more DOF for water vapor than what is provided by the polar-orbiting IR sounder alone. 

The vertical resolution and uncertainty profiles of the synergy of CrIS+AERI converge to AERI 

alone below 500 m AGL and converge to CrIS above about 4000 m AGL. Between 500 m and 

4000 m AGL CrIS+AERI provides better vertical resolution and lesser uncertainties than either 
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instrument operating alone. CrIS is found to have more information on temperature in moist 

conditions, and less information on water vapor in moist conditions. Contrastingly, AERI has more 

information content on water vapor in cold and dry scenes due to its far-IR channels. CrIS+AERI 

reduces the variability that key retrieval parameters have with respect to PWV, as compared to 

either sensor individually. This makes the retrieval more consistent, regardless the thermodynamic 

state. 

 Chapter 6 assessed the information content of CrIS+AERI in cloudy scenes. It was shown 

that both AERI and CrIS lose water vapor information as clouds become optically thick, compared 

to clear sky conditions. It was also found that an optically thick cloud sharpens the Jacobians of 

both CrIS and AERI, enabling the retrieval of the temperature of the cloud layer. However, CrIS’s 

information becomes limited to above the cloud, and AERI’s information becomes limited to 

below the cloud at high CODs. The hypothesis is confirmed that at high CODs, the synergy of 

CrIS+AERI converges to the information content of AERI alone below the cloud, and CrIS alone 

above the cloud. In this regard, the synergy provides a significant improvement compared to what 

is provided by CrIS alone as the total temperature information increases with increased COD 

(compared to clear sky conditions) and mitigates the loss of water vapor information that AERI in 

particular experiences with increased COD. CrIS operating alone in partly cloudy scenes is found 

to be most sensitive when the aerial cloud fraction is greater than 50%, though the synergy of 

CrIS+AERI has almost no sensitivity to the aerial cloud fraction. As a whole, introducing AERI 

to the observing system helps mitigate the loss of information in scenes with opaque clouds 

because AERI provides the information below the cloud layer that is otherwise lost when using a 

space-based IR sounder alone. 
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 Chapter 7 developed a synergistic retrieval for CrIS+AERI and applied it to a clear sky 

case study profile. Somewhat surprisingly, CrIS+AERI had a poor comparison to the collocated 

radiosonde, versus CrIS or AERI alone. Additionally, the uncertainties suggested that the 

combination of CrIS+AERI added uncertainty to the retrieval, rather than decreasing the 

uncertainties as suggested by the clear sky information content study. This is likely a result of the 

individual instrument uncertainties being too small, as inflating the error covariance matrix to be 

five times greater produced uncertainty profiles more in line with results from the clear sky 

information content study. A significant finding was that the vertical resolution of the retrieval 

replicated that of the information content study, thus suggesting that adding AERI to the observing 

system would provide soundings that would exceed the Decadal Survey’s goal of 1 km resolution 

in the lowest 1000 m. 

 

8.2 Broader Impacts 

 8.2.1 Sounding from Geostationary Orbit 

 The results of this study display the potential benefits of having a sufficient number of 

dedicated sounding instruments in geostationary orbit to provide nearly continuous global 

coverage. From the North American perspective, while the broadband channels on the ABI offer 

some sounding information, it is approximately 3 – 4 times less than that of a high-spectral 

resolution sounder. GIIRS has only provided observations since 2016 from geostationary orbit so 

the benefits of such an instrument on NWP and nowcasts may still yet to be fully realized. 

However, the international satellite community seems to be moving toward IR sounders in 

geostationary orbit becoming the new normal, with EUMETSAT’s IRS instrument set to launch 

in the near future and NOAA’s GEO-XO program suggesting the use of either one or two 
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geostationary IR sounders to cover North America. Preliminary studies suggest IR sounders in 

geostationary orbit would be beneficial for NWP (Li et al. 2018, Smith et al. 2020). Given the 

growing uses of soundings from polar-orbiting platforms (e.g.: Iturbide-Sanchez et al. 2018, 

Esmaili et al. 2020) it is hard to imagine IR soundings from geostationary orbit not becoming a 

staple of operational weather forecasting.  

 The information content and vertical resolution shown in Chapter 5, when combining the 

ground-based AERI with a space-based IR sounder, suggests the development of a ground-based 

nationwide network of profilers would provide thermodynamic soundings approaching the 

uncertainties and vertical resolution desired by the 2017 Decadal Survey, while exceeding those 

specifications in the lowest 1000 m of the atmosphere. While AERI provides near-continuous 

monitoring in a single location, the polar-orbiting sounders provide a spatial view of a region once 

every several hours. A combination of a network of AERIs with the near-constant monitoring 

offered by a geostationary sounder would provide the high-quality thermodynamic sounding 

desired by the 2017 Decadal Survey while also providing the temporal component monitoring that 

the NRC (2009) states is also crucial for improving NWP and nowcasting of high impact weather. 

 Numerous PBL studies utilizing AERI have proven the benefits of its high-temporal 

resolution with monitoring convective indices (e.g.: Wagner et al. 2008 and Loveless et al. 2019) 

or as a source of data assimilation into NWP (e.g.: Coniglio et al. 2019, Hu et al. 2019, Degelia et 

al. 2020, Lewis et al. 2020). Toporov and Löhnert (2020) have shown that convective indices are 

significantly more accurate when derived from a synergy of ground-based and space-based sensors 

instead of a single platform individually. Thermodynamic retrievals provided by a combination of 

AERI with a geostationary sounder would be expected to be a useful tool for monitoring the timing 

of convective initiation and better predicting the location of severe convection. 
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 8.2.2 Applications to System Process Studies 

 In particular, the synergy would be expected to significantly improve the representation of 

the strength and vertical location of the capping inversion, compared to single-instrument 

retrievals. With the current polar-orbiting sounding system, the synergy could provide high quality 

soundings at two distinct time frames between 12 UTC and 00 UTC synoptic radiosonde launches, 

while the ground-based sensor provides the high-temporal resolution soundings of the PBL. 

Continuous observations from ground-based platforms could also be important in locations where 

the overpass times of the polar-orbiting sounders align with the synoptic time radiosonde launches. 

Understanding how to utilize the data from a polar-orbiting sounder beyond its specific overpass 

time would be important to maximizing the use of the synergy without a geostationary sounder. In 

this regard, the constant monitoring of the ABI could supplement the ground-based sensor. These 

observations could provide validations of PBL transitions for large eddy simulations and system 

process studies. 

 Adding the temporal component offered by pairing the ground-based sensor with a 

geostationary sounder could revolutionize PBL observations. The high-quality soundings at 

high-temporal resolution would provide observations of the capping inversion breaking before a 

severe weather event – which would have impacts on mesoscale studies in addition to 

operational weather forecasting. Better observations of the inversion could lead to an improved 

understanding on how outflow boundaries and PBL waves (such as bores and solitary waves) 

result in convective initiation. For example, Loveless et al. (2019) used AERI observations to 

show that bores will decrease convective inhibition. The physics of bores suggest that the 

capping inversion gets lifted and weakened, but those observations are difficult to make since 
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ground-based sensors alone struggle to offer a sufficiently accurate representation of the capping 

inversion. Therefore, observations of this sort can only be confirmed with well-timed radiosonde 

launches which require intensive resources and time to make. A nationwide network of ground-

based sensors paired with a geostationary sounder would collect observations on numerous cases 

of these sorts of mesoscale phenomena on an almost daily basis during the convective season. 

 The heterogeneities of the surface and atmosphere are a caveat to using a synergy of 

ground-based and space-based sensors to observe mesoscale features. In the example case shown 

in this dissertation, AERI was 18 km outside the nearest CrIS FOV. If a goal of the ground-based 

and space-based synergy is to improve observations of mesoscale phenomena like gravity waves, 

then those horizontal differences in the observed scene become important (that can be the 

difference between viewing ahead of or behind the feature of interest). Improving the spatial 

resolution of IR soundings would be needed to minimize the consequences of pairing the point 

observation of the ground-based sensor with the areal observation of the space-based sensor. 

 

8.3 Future Work 

 Given that the majority of analyses presented here in addition to those by Ebell et al. (2013) 

and Toporov and Löhnert (2020) have made progress in demonstrating the benefits of the ground-

and-space-based synergy in ideal/synthetic settings, a major piece of future work to prove the 

viability of the ground-and-space-based synergy would be to automate the retrieval so that it can 

both process a large set of profiles from prior data for process studies as well as run daily in near 

real-time in order to contemporaneous retrievals for NWP assimilation and operational decision 

support. This would enable expansive validation of the retrieval in order to confirm (or deny) the 

benefits that have been found in synthetic studies. Chapter 7 showed however, that finding 
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additional sources of uncertainty to include in the error covariance matrix is necessary to prevent 

the retrieval from becoming over-constrained. A neural network, as was used by Toporov and 

Löhnert (2020), could also prove to be a beneficial method for retrieving the atmospheric state 

from a single instrument or a synergy of multiple instruments. 

 Supplementing space-based sounders with ground-based sensors would limit 

improvements in thermodynamic sounding to over land only. However, results from both Kwon 

et al. (2012) and Sun et al. (2017) suggest that retrieval errors are greatest over land, so this would 

present a solution to the locations and scenarios with greatest errors. The land surface presents a 

heterogeneous FOV for the satellite sensor based on the local variations in skin temperature and 

surface emissivity. Future work is necessary to address how the heterogeneous FOV of the space-

based sensor affects the matchup with the point observations from a ground-based sensor. A future 

study could make use of the SeeBor dataset (Borbas et al. 2005) to better understand the effects 

that variable skin temperature and surface emissivity over land have on the uncertainties of space-

based sensors and how that may affect the space-based/ground-based synergy. Large eddy 

simulations could also provide synthetic data for such a study. The LAFE campaign (Wulfmeyer 

et al. 2018) had numerous AERIs within 50 km spacing and could provide a dataset with multiple 

AERI observations within a single FOV and in adjacent FOVs of a space-based sounder. 

 As has been noted earlier in this dissertation, cloudy sky environments present a complex 

problem for IR sounding given the computations necessary for simulating cloudy sky IR radiances. 

However, as shown in Chapter 5, these sensors provide information in cloudy sky environments, 

especially when united in a synergy. In fact, these sensors could provide more temperature 

information in certain cloudy scenes than in clear sky scenes. The development of fast models 

(e.g.: Martinazzo et al. 2021) to simulate cloudy sky radiances may make IR sounding in cloudy 
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sky scenes more practical via direct simulation of the cloud instead of removing the signal of the 

cloud from the measurement (as cloud-clearing does). Given the frequency of cloudy sky scenes 

(Wylie and Menzel 1999), it is important to find ways to make use of these observations in cloudy 

sky environments because impactful weather tends to happen in cloudy sky environments. 

 Lastly, funding the development of a ground-based network of profilers presents a large 

obstacle. For example, the per unit cost of the current generation of AERIs is approximately 

$400,000. While mass manufacturing could lower the price per instrument while future simplified 

designs could also lower the unit cost substantially, a very large infrastructure investment from 

federal and state governments and their partners would be necessary to fund such a network. 

Additionally, questions remain on the density of sensors required to exploit the benefits of such a 

network. The NRC (2009) suggested about 400 profiling sites across the United States with 

approximately 150 km spacing (for reference, there are about 140 WSR-88D radars in the 

continental United States). Assessments of the cost-benefits of each sensor to NWP and 

nowcasting efforts by local weather forecasting offices would likely be the preferred analysis of 

the federal government to identify the ideal density of such a network. The New York Mesonet 

(Shrestha et al. 2021) consists of 17 different profiling sites across the state and provides daily 

examples of the benefits of an operational profiling network on a smaller scale. The assimilation 

of retrievals from AERIs deployed at the ARM SGP site in Oklahoma have been shown to improve 

local convective forecasts (Lewis et al. 2020). Lastly, the PECAN (Geerts et al. 2017) campaign 

also featured observations from a combination of 6 fixed profiling sites and 5 mobile profiling 

sites throughout the Central Plains in the summer of 2015 which have been used to assess the 

benefits of a ground-based profiling network on NWP (e.g.: Coniglio et al. 2019, Hu et al. 2019, 

Degelia et al. 2020). While small networks of ground-based sensors have been proven to benefit 
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local short-term (less than 24 hours) forecasts, observation system simulation experiments (OSSE) 

are necessary to quantify the benefits of larger theoretical networks of profilers. As has been 

discussed above, a synergy of ground-and-space-based sensors would provide improved 

monitoring of convective indices, most importantly between synoptic time radiosonde launches. 

These observations should be able to improve nowcasting abilities to identify regions with 

instability to support severe convection and the timing of when that convection would occur. 
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