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The University of Wisconsin High Spectral Resolution Lidar (HSRL) was oper-
ated continuously at Seoul National University as part of the Korea-United States
Air Quality Study (KORUS-AQ). Using the UW-Madison HSRL, AOD can be de-
rived at any time of day and with great frequency. Direct daytime comparisons of
the HSRL-derived and AERONET-derived AOD show good agreement. However,
the HSRL makes a much larger volume of measurements available. These mea-
surements show qualitative differences from AERONET in the mean diurnal cycle
for some seasons. Furthermore, AOD tendency at night can also be characterized.
The HSRL is also able to separate dust and non-dust using signal depolarization,
average dust and non-dust backscatter is highest near the surface and decreases
with increasing altitude. Meanwhile, the fraction of backscatter attributable to dust
is small near the surface and increases to about 50% in the free troposphere. Finally,
surface PM2.5 and near-surface backscatter were found to be highly correlated and
the ratio was dependent on relative humidity.
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1 review

1.1 Introduction
In the past decade, coincident with rapid industrialization and economic growth,
East Asia has experienced a problematic decline in regional air quality (Chan and
Yao, 2008). The effects on health such as cardiovascular disease and lung cancer
have been documented and are responsible for approximately 1.9 million deaths
per year in the Western Pacific and South East Asia (WHO, 2016). The geographical
focus of this thesis is Seoul, South Korea. About half of all Koreans live in the
Seoul Metropolitan Area (SMA) (UNdata, 2019). In response to a history of high
particulate levels in SMA, multiple clean air acts have been passed, and from those
regulations, significant progress towards air quality goals was achieved (Kim and
Lee, 2018; Kim et al., 2017c). Still, understanding the sources and causes of poor air
quality in Seoul has the potential to improve policies and future public health.

This thesis presents and analyzes long-term lidar measurements from the UW-
Madison HSRL located in Seoul during the KORUS-AQ field campaign. The first fo-
cus is on documenting and explaining the seasonal, diurnal, and vertical tendencies
of aerosol optical properties, including optical depth, lidar ratio, and depolarization.
Another focus is on developing dust decomposition, mass estimation, and other
methods from which future long-term HSRL studies can build.

1.2 Overview of Aerosol in East Asia
The study of aerosols and air quality in East Asia has received a great deal of
attention in the past decade from a variety of groups. Some examples of aerosol-
oriented field campaigns conducted in the region are the following: ACE-Asia,
APARE, TRACE-P, PEM-WEST, EAREX, APEX, PEACE, CAREBeijing, MAPS, and
KORUS-AQ. These field experiments collected intensive observations and estab-
lished long-running observational capabilities that formed much of our current
understanding of the region. The aerosol climatology of East Asia has been rela-
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tively well established, as well as the primary factors driving the climatological
mean. It’s important to review the present state of our understanding of the aerosol
climatology in Korea, so the UW-Madison HSRL results can be presented in context
and better interpreted.

Aerosol Climatology of South Korea

First, understanding the meteorological climate is critical to understanding the
aerosol climate as they are closely correlated. The transport of either dust or
pollution depends on the wind. In the absence of transport, meterological factors
also influence the local response of the aerosol environment to local emissions. The
meteorological climate of Seoul is classified as Koppen humid continental with dry
winter (Peel et al., 2007). It is located in a frontal regime, and the polar jet will often
pass overhead during the year. Mid-latitude cyclones as well as typhoons often
impact the Korean peninsula.

The East Asian monsoon exerts the most significant control over the intra-annual
variability in the region’s meteorology. In the winter, the northeastern monsoon
winds bring cold Siberian air south into the East Asian region. When spring arrives,
lows that form in the west cause outbreaks of dust, known as HwangSa. This is
also when the highest aerosol optical depth (AOD) is recorded (Kim et al., 2007b).

Summer ushers in the southwest monsoon. The slow southwesterly flow typical
in the summer make transport from China to Korea favorable, which can dramati-
cally increase the aerosol loading. Stagnant conditions are also more likely to occur
in the summer, leading to a locally produced increase in loading.

A majority of the precipitation falls during the months of June and July, during
the passage of a quasi-stationary convergence zone, called Changma in Korea.
Effects of the summer monsoon in Seoul typically begin between late June and
mid-July and last 20-30 days (Chang, 2004). Wet deposition from precipitation
efficiently removes aerosol in the boundary layer and decreases the overall aerosol
loading. AODs decrease afterwards (Kim et al., 2007b).
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Anthropogenic Particulate Matter

In East Asia, there are two dominant types of aerosol particulate matter (PM):
mineral dust and anthropogenic pollution. Anthropogenic PM is most common in
large cities with the fine-mode size distribution (aerodynamic diameter <2.5 µm)
(Seinfeld and Pandis, 1998). In Seoul, the chemical composition of fine aerosol near
the surface is known to be dominated by organic material (42% of PM1, 34% of
PM2.5), likely from anthropogenic sources and secondary formation pathways. An
almost equal part is composed of secondary inorganic aerosol like nitrate, sulfate,
and ammonium (~50%) (Kim et al., 2018b). Together, these make up about 90% of
the total submicron particulate mass and most of the remaining 10% is elemental
carbon (also known as black carbon) which is directly emitted soot (Heo et al.,
2009; Kim et al., 2018b, 2007a; Kang et al., 2006). Components of anthropogenic
PM in East Asia are moderately hygroscopic (Anderson et al., 2003).

Anthropogenic emissions are known to vary with the seasons in this region.
Variation is caused mostly by the residential sector as opposed to industry, power,
or transportation, which remain relatively constant throughout the year (Ma et al.,
2018). In China, a majority of carbonaceous aerosol (elemental and organic) is
emitted by the residential sector, a large portion of which is from heating using
solid fuel (Ma et al., 2018).

Dust

Dust events exhibit a strong seasonality in Korea, with 87% of dust events occurring
in the spring, connected to the typical north-westerly prevailing flow (Kim et al.,
2007b; Kim, 2008). In Korea, the predominant sources of dust are the high-altitude
deserts in China and Mongolia (Murayama et al., 2001). However, dust generated
from roadways and construction is also thought to contribute. From airborne
in-situ measurements taken during ACE-Asia, dust was found to be primarily
coarse-mode (aerodynamic diameter >2.5 µm), nearly non-absorbing and also
nearly non-hygroscopic (Anderson et al., 2003).
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Biomass Burning

Siberia is a major hotspot for forest fires and the associated aerosol emissions con-
tribute to the aerosol loadings in Korea. In some cases, smoke events are severe
enough to create optical depths as large as 4 and elevate surface aerosol concen-
trations (Jung et al., 2016). However, excluding large events, these sources are
fractionally small (~5%) with regard to the overall sources of aerosol in the Korean
region (Jeong et al., 2011; Choi et al., 2013). Other potential sources of biomass
burning are crop residue burning in the Northern China Plain (NCP) and wood
burning in Pyongyang.

Aerosol Optical Depth

The monthly mean of AOD in Seoul reaches a maximum in the summer and mini-
mum in the winter, about 0.65 and 0.25 respectively (Kim et al., 2007b; Panicker
et al., 2013; Eck et al., 2005; Ma and Yu, 2015; Nam et al., 2018). The AOD maximum
has been attributed to many factors.

Humidification and hygroscopic growth are one significant factor affecting AOD
seasonality. The East Asian monsoon causes relative humidity and rainfall to peak
in July and August. Precipitation reduces the aerosol loading, but in June the
humidity is elevated and loading is still high (Kim et al., 2006, 2007b; Nam et al.,
2018). Another factor in AOD seasonality is actinic flux and secondary production.
Actinic flux peaks in June and so photochemical activity is high (Kim et al., 2007b;
Nam et al., 2018; Buzorius et al., 2004; Yamaji et al., 2006). Wind speed near the
surface is also reduced during the summer monsoon. The effect is that the area
around sources experience greater aerosol loading, and therefore higher AOD (Kim
et al., 2007b).

Surface Particulate Matter

The seasonal variation of AOD is quite large in comparison to the variation in
surface concentration of PM2.5. Nevertheless, PM2.5 also has a seasonal cycle which
is opposite to AOD. Peak AOD occurs in the summer, but often the peak PM2.5



5

concentration occurs in the winter. This also seems to be true for most chemical
components like sulfate, nitrate, and organic carbon. The only exception is non-sea-
salt calcium, which peaks in the springtime when dust transport is highest (Kim
et al., 2018a). The important factors driving PM2.5 seasonality are boundary layer
height, seasonal transport patterns, and wet deposition due to rainfall (Lee et al.,
2013; Kim et al., 2018a).

Diurnal Cycle

Both column-based AOD and surface-based PM2.5 are thought to exhibit a diurnal
cycle. The cycle is a result of cycles in human activity, meteorological variables, and
photochemistry. Previous studies in Korea using AERONET have established the
basic pattern of peaks in AOD at 9am and 2pm local time and a minimum at noon
(Lennartson et al., 2018). However, the HSRL day/night retrievals presented in
this thesis indicate a different and strongly seasonal pattern in AOD diurnal cycle.

Air Quality Trends

Recent trends in emissions and air quality in East Asia make characterization of
aerosols a moving target, motivating regular monitoring and reevaluation of the
state of the science. In the past two decades, Korea has experienced an impressive
decline in the surface aerosol concentration (Ahmed et al., 2015; Kim and Lee, 2018).
From 2000 to 2015 the annual mean PM10 concentration in Seoul declined from 70
µgm−3 to 40 µgm−3 (Heo et al., 2017). PM10 decreased in six out of seven major
cities observed from 1996 to 2010 (Sharma et al., 2014). MODIS AOD retrievals
corroborate this decline in aerosol loading, showing a 22% decline in AOD from
2000 to 2010 (Panicker et al., 2013).

Meanwhile, China’s PM2.5 concentrations have increased from 1999 to 2011
(Peng et al., 2016). Annual mean AOD had a similar increase from 2000 to 2007
(Qin et al., 2018). Such anthropogenic changes can be expected to alter many
aspects of the aerosol climatologies previously established in the region including
chemical composition, seasonality, vertical distribution, and amount.
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Poor air quality in Korea has been partially attributed to transport of aerosol
and gaseous precursors from China; however, there is still much uncertainty due to
the difficulty of establishing such a causal link. That said, in a modeling study, Kim
et al. (2017b) found that 60% of Seoul’s surface particulate matter was attributable
to foreign emissions, and other modeling studies have found similar results (Koo
et al., 2008; Kim et al., 2017a).

Trends in air quality can also be attributed to changing climate. Kim et al.
(2017c) found that recent decreases in mean wind speed since 2012 have reversed
past improvements in air quality in Seoul.

1.3 Overview of Aerosol Observations
The novel observations made by the UW-Madison HSRL are a core component of
this thesis. In this section, the state of aerosol observations is summarized with
emphasis on the particular strengths and weaknesses inherent to each instrument.

Passive aerosol remote-sensing

The state-of-the-art instrumentation for aerosol remote-sensing are ground-based
sun-photometers and satellite visible imagers. AERONET and MODIS are the most
common remote-sensing platforms used for both forecasting and analysis. Passive
observations from ground (AERONET) or from space (MODIS) are limited to only
column aerosol optical properties and cannot be made at night or in cloudy scenes.
The AERONET instrument has a global network, but only provides information
at discrete locations. Satellite imagers such as MODIS provide global coverage;
however, unlike AERONET, MODIS cannot observe the diurnal cycle of aerosol
properties because it is in a sun-synchronous orbit with overpasses at the same local
time every day. The recent launch of Himawari-8 and GOCI geostationary satellites
with coverage in Asia provide similar spectral measurements to MODIS but with
continuous 10 minute observations. However, as with the LEO imagers the AOD
retrieval only provides the total column AOD for cloudless, daytime observations,
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and potentially suffers from selection bias, as AOD, day-length, and cloudiness
co-vary with the seasons (Eck et al., 2018).

Lidar aerosol observation

Active sensors like the UW-Madison HSRL are able to resolve vertical distributions
of aerosol optical properties, can operate day and night, and are not limited to
cloudless scenes. In this thesis, HSRL data is collected in a single location in Seoul,
South Korea.

The UW-Madison HSRL is not the only lidar technology deployed in the region.
Micropulse lidars and multiwavelength Raman lidars are able to make similar mea-
surements of backscatter. However, micropulse lidar retrievals require assumptions
regarding the atmospheric lidar ratio profile and instrument calibration. Further-
more, the signal-to-noise ratio (SNR) is much lower compared to the HSRL. Raman
lidars produce very noisy data during the day when the inelastic scattering signal
is weak compared to the solar background. In comparison, the UW-Madison HSRL
is a much more capable technology, able to make well-calibrated observations at
any time of the day.

In-situ observation

Remotely-sensed AOD is only one measurement of aerosol properties, and corre-
lates well with poor visibility. Sometimes, like during dust or smoke outbreaks,
AOD is increased, but most of the particulate matter is aloft. At other times (e.g. win-
ter), AOD is minimal but particles are concentrated near the surface. This is partly
because concentration of aerosol near the surface depends much more on the height
of the boundary layer (Zhang et al., 2009; Quan et al., 2013; Qu et al., 2016; Lee
et al., 2013). The dry mass concentration of particulate matter having an aerody-
namic diameter less than 2.5 microns (PM2.5) at the surface has become a standard
measurement for determining risk to public health (Harrison and Yin, 2000). The
danger is sometimes sufficient to warrant emergency measures such as free public
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transport in Seoul in January 2018 (Coffey, 2018). For this reason, continuous
in-situ aerosol measurements of PM2.5 are common in large cities.

Common Limitations

Interactions between aerosols and clouds are difficult to measure, in-part due to
the inability of most remote sensing instruments to observe cloudy scenes. The
challenge with observing cloudy scenes with passive instrumentation is not only
the obvious obscuration, but also the 3D radiative effects of scattering near the
cloud, which foils passive retrievals typically used for aerosol properties (Várnai
and Marshak, 2009). This is not a worry for an active instrument like the UW-
Madison HSRL or CALIOP, which makes these instruments important supplements
to passive instrumentation. Confusion between clouds and thick haze aerosol is
another problem that afflicts both passive and active aerosol measurement in East
Asia (Shi et al., 2014). There is also the possibility of that thin cirrus, undetected by
cloud screening, can contaminate aerosol retrievals.

As a result of aerosol remote sensing being dominated by column-based mea-
surements, data on the vertical distribution of aerosol in the atmospheric column
is limited. The space-based lidar CALIOP is the only global measurement ca-
pable of resolving vertical distribution, but it is still limited by low SNR and a
sun-synchronous orbit, limiting diurnal sampling. The paucity of information
on vertical structure impacts modeling efforts and the task of estimating surface
concentrations from the available column-only remote sensing data like MODIS or
AERONET (Toth et al., 2019).

KORUS-AQ

In March of 2016, the UW-Madison HSRL was deployed on the campus of Seoul
National University in Seoul, South Korea for the KORUS-AQ field campaign, an
international collaboration between Korea and the US to study air quality in the
region. Aside from the UW-Madison HSRL, airborne measurements from the
NASA DC-8, ground-based in-situ and remote sensing, and satellite measurements
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participated. Despite the intensive operations only lasting approximately one
month, the UW-Madison HSRL remained operational for almost 2 years, until the
laser began experiencing issues in February 2018.

Funded by NASA, the primary objectives of KORUS-AQ relate to identification
of the factors controlling air quality on the Korean Peninsula. Secondary formation
of aerosol and point source emissions were of particular interest. The months
(May-June) for intensive operations were specifically chosen to maximize trans-
port of pollutants and photochemical processes. Weather conditions were mostly
stagnant during the experiment. One exception was the period from May 25-28,
where conditions allowed direct transport from China; this coincided with the most
prominent of the few days where Korean PM2.5 standards were exceeded during
the experiment.

Considering the large influence of weather on air quality and the variability of
weather conditions, such a short experiment cannot be considered automatically
representative. The role of the UW-Madison HSRL is to provide high-quality,
vertically resolved measurements of aerosol above Seoul, as a long-term seasonal
context for the intensive observations conducted in the area.
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2 methods

HSRL Theory

Lidars work by generating a light pulse and recording the scattered light and
time-of-flight, which allows the range associated with the light measurement to be
known. The power of the scattered light follows the inverse-square law, whereby
the signal becomes quadratically smaller with distance. Lidars also have to contend
with non-negligible attenuation by air molecules and aerosol. For the UW-Madison
HSRL design, the combination of these with the power of the laser and the tenuous
scattering material, limit the backscattering to only a few photons per range bin
in the best case. Thus, the detector must be sensitive enough to count individual
photons and many laser pulses must be accumulated before the average becomes sta-
tistically representative. The HSRL used in these analyses uses solid-state avalanche
photodiode detectors which can sample every 50 ns. The laser pulses at 4000 Hz
and the data acquisition system accumulates photon counts every 2.5s. Even after
a great deal of temporal aggregation, the data rate is far superior to every other
instrument included in this thesis.

The HSRL technique is different than a typical backscatter lidar because it is
able to separate the scattering from gas (molecular) and aerosol. This is possible
because the atmospheric Rayleigh scattering is Doppler-broadened much more than
the aerosol scattering. The separation of the two scattering spectra requires a high
spectral-resolution notch filter furnished by an absorption line of gaseous iodine
(Razenkov, 2010; Holz, 2002; Grund and Eloranta, 1991; Piironen and Eloranta,
1994). The definition of backscatter coefficient and depolarization are given in
Equations 2.1 and 2.2, respectively. The detection system and radiative transfer are
represented in Equations 2.3-2.5, one equation for each detector.

ν = βs
P(cosπ)

4π (2.1)
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δ =
ν⊥

ν‖
(2.2)

δS
‖
c

δt
=
N0cA

2r2 G(r)e−2τ(r)
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‖
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‖
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‖
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]
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‖
bc (2.3)
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‖
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=
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‖
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‖
bm) − η

‖
am(

δS
‖
c

δt
− S

‖
bc)

ν‖m = S‖rν
‖
m (2.6)

νm = αbackρ (2.7)

In Equation 2.6, parallel aerosol backscatter coefficient (ν‖a) is solved in terms
of parallel molecular backscatter coefficient (ν‖m). Note that the solution is inde-
pendent of optical depth, overlap function, laser power, range, and telescope size.
The molecular backscatter has a constant depolarization ratio and the molecular
backscatter coefficient depends only on the gas density (Equation 2.7), which can
be calculated using an atmospheric profile (Razenkov 2010). The main effect of the
iodine filter is to make η‖am � η

‖
ac by filtering most aerosol backscatter from the

molecular channel and thus make the scattering ratio (Sr) computation (Equation
2.6) well-conditioned.

Including the solution for aerosol and molecular backscatter, aerosol depolar-
ization in Equation 2.5 can be solved for in a similar manner by dividing Equation
2.5 by Equation 2.3.

τ(r) =

∫ r
0
βe(r

′)dr ′ (2.8)
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Table 2.1: Description of symbols

Symbol(s)
Description

r range
ν
‖
a,ν⊥a parallel and perpendicular aerosol backscatter coeffi-

cient
τ optical depth
δa aerosol particle depolarization
N0 number of transmitted photons
A area of telescope receiver
c speed of light
G(r) geometric overlap function
δS

‖
c

δt
, δS

‖
m

δt
, δS

⊥
c

δt
detected photon count rate: combined parallel, molec-
ular parallel, combined perpendicular

S
‖
bc, S

‖
bm, S⊥bc detected background photon count rate

ηac, ηam, ηmm,
ηmc

calibration parameters

βs, βe, βe,a,
βe,m

scattering coefficient, extinction coefficient, aerosol ex-
tinction coefficient, and molecular extinction coefficient

αback mass backscattering coefficient

βe(r) =
1
2
∂

∂r
logG(r)

N0cA
2r2 (η

‖
amν

‖
a(r) + η

‖
mmν

‖
m(r))

δS
‖
m

δt
− S

‖
bm

(2.9)

Extinction can also be derived as shown in Equation 2.9. However, the range-
dependent overlap function (G) must be supplied. Co-axial backscatter lidars
often have unity overlap above ~0.5 km (Takeuchi and Sato, 1987; Vande Hey
et al., 2011; Mao et al., 2012). However, the UW-Madison HSRL uses a much
narrower field-of-view telescope which raises the unity overlap level to over 5km;
the values of the overlap function below this are highly uncertain without additional
information. Estimation of the overlap function is possible with a second molecular
channel having a wide field-of-view (WFOV) (Eloranta, 2014). More details on the
estimation process are provided in the HSRL molecular extinction methodology
section.
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HSRL Calibration Challenges

A practical implementation of the HSRL requires estimating all of the calibration
parameters (ηij) in equations 2.3-2.5. For example, the spectra of molecular return
changes with pressure and temperature of the scattering gas; so, the fraction of
molecular spectra which are filtered (η‖mm) changes with the range-dependent
pressure and temperature. Proper estimation of this parameter is done by measur-
ing the iodine absorption line and finding the transmission of simulated spectra.
But, this is made more difficult by the solar background filter which modifies the
transmission of the wider molecular spectra by varying amounts depending on
the density of the gas in the etalon chamber. Additional complications involving
nonlinear and range-dependent detector response (not in equations) can also affect
measurements (Razenkov, 2010).

Aerosol Extinction vs. Aerosol Backscatter Coefficient

There are significant advantages to an optical depth and extinction retrieval over
(or in addition to) the traditional backscatter retrieval. A majority of non-lidar
aerosol measurements are passive, and all passive aerosol measurements measure
optical depth or extinction, directly or indirectly (e.g. AERONET, MODIS, MISR,
visibility). Accordingly, most aerosol models diagnose extinction for assimilation
and evaluation (Lynch et al., 2016; Liu et al., 2011; da Silva, 2011). So, comparison
with non-lidar measurements or models often must be done in extinction space.
Aerosol extinction is also of greater scientific interest than aerosol backscatter
coefficient. Only extinction can be used to derive direct aerosol radiative effect,
which is needed in climate analyses. Extinction is also better correlated with aerosol
particulate properties like total cross-sectional area and scattering coefficient than
backscatter. It is also more appropriate when analyzing hygroscopicity. Comparing
extinction-to-backscatter ratios (lidar ratio) has also been used for aerosol typing
because it depends on aerosol shape, size, and composition, but not concentration.

Although the UW-Madison HSRL can measure backscatter very accurately, the
current science objectives demand calibrated measurements of extinction for either
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direct application or derivation of extinction-to-backscatter ratio (lidar ratio).

Aerosol Lidar ratio

The ratio of aerosol extinction (βe,a) to aerosol backscatter coefficient, usually
referred to as the aerosol lidar ratio (Sa), is known to vary between about 20 to 80
sr for bulk aerosol mixtures, though the true range may be larger. It reflects the
shape, size, and composition of individual aerosol particles, independent of the
number concentration. For example, isotropic non-absorbing scatterers will have a
lidar ratio of 4π (12.6) sr.

The lidar ratio of a column of atmosphere may be computed as either the
arithmetic mean of the lidar ratio of infinitesimal layers (Equation 2.10) or as a bulk
value (Equation 2.11). The bulk lidar ratio approximation of mean lidar introduces
uncertainties by differently weighing volumes based on extensive optical properties.
However, empirical comparison of the two will show that bulk lidar ratio is a good
approximation of the mean boundary-layer lidar ratio.

Sa =
1
ztop

∫ztop
0

βe,a(z)

νa(z)
dz (2.10)

Sa,bulk =

∫ztop
0 βe,a(z)dz∫ztop
0 νa(z)dz

(2.11)

Aerosols usually exist as a complex mixture of shapes, sizes, and compositions.
Because nearly all scattering occurs within the Mie resonance regime, the phase
function and backscattering efficiencies of spherical particles of a single size oscil-
late over a wide range as size changes. Non-spherical particles like mineral dust
introduce even more difficulty. Dust shape has been found to reduce backscatter
by ~2.5x as compared to a spherical particle, but extinction is not as significantly
affected (Barnaba and Gobbi, 2001; Mishchenko et al., 1997; Yu et al., 2010). As
a result, any given lidar ratio is difficult to predict heuristically or interpret with-
out additional information. Inorganic aerosols are often assumed to have a single
scatter albedo near one, which should result in moderate lidar ratios with most
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variation occurring due to shape and size. On the other hand, black carbon has a
single-scattering albedo less than 0.25, meaning that the lidar ratio is about 4 times
larger, phase function being equal. As it ages, black carbon can accumulate an
organic carbon shell and this internal mixture may result in lensing which further
increases the absorption efficiency and therefore the lidar ratio (Zhang et al., 2018).

Relative humidity is also a consideration with lidar ratio. Particles that uptake
water could change in both size, shape, and index of refraction and therefore lidar
ratio. However, it is not obvious whether the effect is monotonic or uniform be-
tween particle types. The consensus of several theoretical studies is that humidified
aerosols increase lidar ratio. Ackermann (1998) and Su et al. (2008) analytically
showed a large increase in continental aerosol lidar ratio (± 20 sr) with greater rel-
ative humidity. However, clouds generally have lower lidar ratios than continental
aerosol at any RH (Ansmann et al., 1992; Pinnick et al., 1983; Kuehn et al., 2016).
Clearly, any monotonic relationship between RH and lidar ratio breaks down once
particles reach droplet size (diameter >10 µm).

Observations of aerosol lidar ratios using a Raman lidar in Gwangju, Korea
found the average lidar ratio at 532 nm in the spring to be 56 ± 9 sr and 63.1 ± 12.8
sr in the autumn. Asian dust had lower values of 51 ± 6 sr, and smoke had higher
values 65 ± 8 sr (Noh et al., 2008). In Seoul, the mean lidar ratio was measured
to be 56 ± 18 in winter, 57 ± 16 in spring, 62 ± 15 in summer, and 61 ± 16 in fall
(Nishizawa et al., 2017). A separate study in Seoul found an annual mean of 60.44
± 23.17 sr (Kim et al., 2015). In summary, the intra-seasonal variation in lidar ratio
is far greater than seasonal variation, but the seasonal peak is expected to be near
the end of summer when there is less dust, the fraction of carbonaceous to inorganic
aerosol is the greatest, and relative humidity is greatest.

HSRL measurements of the Lidar Ratio

The bulk lidar ratio for the column can be well characterized when the total aerosol
extinction is known, often through independent measurement by nearby sun-
photometer. A constant lidar ratio with this value is often assumed for standard
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backscatter lidars to complete a simultaneous retrieval of backscatter and extinction
(Fernald et al., 1972). However, this is not a good assumption, as there is no reason
to expect a constant lidar ratio with altitude and any deviation from the average
lidar ratio will result in systematically inaccurate retrievals. Indeed, measurement
of lidar ratio is possible, though difficult, using the molecular channel of the HSRL,
and results will show systematic vertical gradients in lidar ratio. Direct extinction
measurement notwithstanding, assuming a lidar-ratio on HSRL data is still an
improvement. Because the HSRL technique measures aerosol backscatter indepen-
dently, incorrect lidar ratio assumptions do not accumulate down-range like they
would with a standard backscatter lidar. In summary, extinction can be retrieved
with the HSRL using either the molecular signal or a lidar ratio assumption to
convert from aerosol backscatter to aerosol extinction coefficient.

HSRL sensitivity to aerosol

All of the UW-Madison HSRL measurements presented in this thesis are at 532 nm
wavelength. At this wavelength, particles with size parameter of 1 are about 150
nm in diameter which marks the approximate lower limit of sensitivity for aerosol
backscatter coefficient. The aerosol backscatter coefficient is also dependent on
the complex index of refraction of the particles. For most particulate matter the
imaginary component is nearly zero and the particles are non-absorbing at 532 nm.
An exception is black carbon, which is strongly absorbing.

Hygroscopic growth is another factor to consider, as this changes both the
index of refraction and optical size. The hygroscopicity of different aerosols varies
greatly, where water-soluble inorganic ions like sulfate will readily absorb water
but the crustal material that constitutes dust is hydrophobic. Little can be done to
predict hygroscopic growth of complex mixtures of aerosol components prior to
measurement and these effects will be apparent in the optical data analyzed. On
the other hand, PM2.5 samples are desiccated prior to measurement.

Regarding particle size distribution, remote-sensing measurements will be most
sensitive to changes in cross-sectional area per volume. But, this area (proportional
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to surface area for spheres) will either overrepresent small particles per their mass
or underrepresent small particles per their number. Mass is more important in
applications like emission inventories, air quality, chemistry, and forecasting. Num-
ber is more important in applications related to aerosol-cloud interactions. These
differences need to be considered when applying remote-sensing observations
across domains, as in this thesis, and when changing particle size distributions are
a possibility.

Observations other than aerosol backscatter coefficient are available from the
UW-Madison HSRL in Seoul. The UW-Madison HSRL transmits a linearly polarized
beam and has a 532nm cross-polarization channel from which average particle linear
depolarization ratio is measured. Particle linear depolarization ratio is defined
as the ratio of perpendicular-polarized aerosol backscatter to parallel-polarized
aerosol backscatter of a single particle, and this records the general sphericity of
the specimen. For example, crystallized sea-salt is known to have a higher particle
linear depolarization ratio than spherical deliquesced sea-salt droplets (Sakai et al.,
2010).

The optical properties of dust are high depolarization and relatively small
Angstrom exponent. These properties can identify dust with high contrast in lidar
data; however, because of similarities with cirrus, additional parameters such as
texture and morphology must be considered when cloud-screening. The particle
linear depolarization ratio of Asian dust published in the literature tends toward
35% (Sugimoto et al., 2003; Shimizu et al., 2004). On the other hand, the lidar-
observable optical properties of anthropogenic aerosol like organic carbon, sulfate,
nitrate, and biomass burning smoke are similar. All have low depolarization and
high Angstrom exponent.

Aerosol Modeling

The Navy Aerosol Analysis Prediction System (NAAPS) model is a semi-Lagrangian
aerosol model designed to assimilate AOD measurements made by MODIS, among
other observations. There is a single size bin for each of the four aerosol species. The
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bulk approximation used for converting between mass concentrations and optical
extinction is relatively simple (Lynch et al., 2016). The meteorology is supplied by
another Navy model, the Navy Global Environmental Model (NAVGEM). In this
thesis, reanalysis output is every 6 hours and is subset to 2016-05-01 to 2017-04-30,
the same time period as the HSRL dataset.

For analysis of the UW-Madison HSRL data, relative humidity needs to be esti-
mated. This meteorology data is sourced from the ECMWF ERA5 hourly reanalysis,
linearly interpolated to the UW-Madison HSRL location and times (C3S, 2017).

AERONET

The AERONET sun-photometer network has been one of the most impactful ob-
serving systems on aerosol research. There is an operational AERONET instrument
located on the SNU campus, the same campus as the UW-Madison HSRL. The high
quality of the colocated AERONET data encourages comparison. The new version
3 of the AERONET level 2.0 product and SDA retrieval are used.

University of Wisconsin HSRL

The UW-Madison Arctic HSRL was operational in Seoul from March 7, 2016 to
February 24, 2018; data is available at http://hsrl.ssec.wisc.edu/by_site/26/
all/2018/02/24/. Only a single annual cycle can be fully represented, so a subset
from May 1, 2016 to Apr 30, 2017 is used for this thesis. The UW-Madison HSRL in
Seoul was located 104 m above mean sea-level. In a cloudless scene the usable data
ceiling is over 15 km AMSL. This ceiling is far beyond the range containing a vast
majority of aerosols that are radiatively significant or relevant to air quality. Instead,
only observations below 10 km are considered relevant in this thesis. During HSRL
data processing, vertical averaging of photon counts is not performed beyond the
raw acquisition limits of 7.5 m. Temporal averaging is required to reduce photon
counting noise, but is limited to 1 minute such that boundary layer eddies, which
often enhance aerosol backscatter and extinction, are preserved. A near-surface

http://hsrl.ssec.wisc.edu/by_site/26/all/2018/02/24/
http://hsrl.ssec.wisc.edu/by_site/26/all/2018/02/24/
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aerosol backscatter coefficient is computed by averaging between 150 m and 300 m
AMSL.

HSRL molecular extinction

Measurement of extinction is possible with the HSRL as shown in the Equation 2.9.
But, an overlap function must be supplied. For this dataset, the overlap is estimated
hourly using the WFOV molecular channel. First, all the HSRL data is denoised
by averaging temporally for 2 hours. From the denoised molecular WFOV profile,
extinction is estimated as in Equation 2.9, but the overlap function (G) is known to
be unity above ~0.5 km. With knowledge of the extinction and optical depth (τ(r)),
Equation 2.4 can be solved for the overlap function (G). This process is repeated for
every hour having no clouds below 10km for at least 2 hours. The resulting overlap
was observed to have strong diurnal oscillations. For times when clouds prevent
the overlap from being computed, the overlap is imputed by forward filling the
previous overlap function for that hour of the day. Below 500 m the overlap cannot
be corrected, so the additional AOD is estimated by integrating backscatter to 500
m and multiplying by the same interpolated bulk lidar ratio as the rest of the AOD
estimates.

HSRL-based AOD

For compatibility with AERONET, there needs to be a vertical integrated AOD
derived from UW-Madison HSRL data. The most desirable AOD would be derived
from the HSRL molecular scattering, which will be referred to as the molecular
AOD. As explained before, at this time the molecular AOD has high systematic
uncertainties due to the uncertain overlap, so it will be supplemented by AOD
estimates where column-integrated aerosol backscatter coefficient will be converted
to AOD by assuming a bulk lidar ratio. The AERONET AOD will be used to
determine the true bulk lidar ratio whenever AERONET observations are available.
This instantaneous estimate is noisy and instead the mean value of every month is
linearly interpolated. This interpolation can be extended to the entire UW-Madison
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HSRL dataset. Of course, the direct matchup cannot be systematically biased, but
cases where AERONET observations are impossible, like at night or under high
cloud cover, could have a consistently different lidar ratio. Accepting this possibility,
a range of UW-Madison HSRL AOD subsets with differing sampling are provided.
The aim is to tradeoff uncertainty in lidar ratio for more complete coverage.

The most certain UW-Madison HSRL AOD subset is directly matched one-for-
one with AERONET. Figures 2.1 and 2.2 validate the molecular AOD and lidar-ratio
estimated AOD with AERONET ground truth. The results show that the lidar-ratio
estimated AOD agrees the best with AERONET, but the molecular AOD also has a
median absolute error less than 0.05 across all seasons. The lidar-ratio estimated
AOD performs much better than molecular AOD during low AOD conditions (Fig.
2.1) because the small attenuation of the molecular signal is harder to detect than
the backscatter signal, which is easily detected. In high AOD conditions (Fig. 2.2),
both seem to perform similarly. Recall that the lidar-ratio-estimated AOD was fit to
AERONET, but only once per month. The lower error variance clearly demonstrates
skill not attributable to just being unbiased. To conclude, the central concern
regarding the estimation of AOD using aerosol backscatter coefficient is bias during
scenes underrepresented or unobserved by AERONET, but performance otherwise
is excellent. With the molecular AOD, higher variance and systematic bias related
to the instrument overlap is the main source of error.

The next most constrained retrieval uses all UW-Madison HSRL scenes without
clouds below 10km. All scenes containing water clouds and cirrus below 10 km will
be filtered out, but unlike the AERONET matchup subset many more observations
between AERONET observations (at a maximum rate of 1/min) and at night will
be included. The next tier only integrates clear scenes up to 5km, which allows
cirrus but may reduce AOD a little by excluding very high aerosols.

Manual HSRL Cloud Masking

Clouds, while technically aerosols, are generally regarded to be separate phenomena
and must be masked out prior to analysis. Precipitation also must be masked.
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Figure 2.1: Two methods of estimating column AOD are validated using AERONET
as ground-truth. The first method in blue (Mol. AOD) uses the geometrically-
corrected HSRL molecular signal to determine optical depth and is independent of
AERONET. The second method in orange (Sa AOD) is computed by integrating
aerosol backscatter and fitting a lidar ratio to AERONET for each month and linearly
interpolating these to the actual time resolution. This figure shows the low-AOD
range and the Fig. 2.2 shows the high-AOD range. Median absolute difference
(MAD), including data for larger AOD, is shown in the legend as a performance
metric.
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Figure 2.2: Similar to Fig. 2.1, but scale shows high-AOD range.

Automatic masking is difficult because aerosol, cloud, and precipitation sometimes
have similar optical properties. The author elected to manually cloud-clear the
dataset. This was accomplished using the tools provided by Zooniverse to draw
rectangular boxes to cover clouds and precipitation on RGB images of the dataset.
An example of both is shown in Figure 2.3. The dataset was divided into 5 km
altitude and 8 hour duration segments to enhance control and resolution during
the manual clearing. Clouds are highly scattering and optically thick, therefore
they may overly-attenuate the beam. Therefore, any measurements made above a
cloud or virga are questionable and masked regardless of existing quality control
flags.
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Figure 2.3: An example day of cloud-masking HSRL data with altitude on the y-axis
and time on the x-axis. The image is an RGB combination of aerosol backscatter
coefficient, aerosol depolarization ratio, and color ratio. Water clouds and precip-
itation are colored orange and ice clouds are green. In this example, automated
cloud-masking misses the precipitation and cloud edges. The color band near the
surface is caused by the limitations of the near-surface 1064 nm channel.

Separating dust from smoke/pollution using linear
depolarization

The contribution of dust to aerosol backscatter coefficient (νd) can be estimated by
leveraging the assumed particle linear depolarization ratios of dust (δd) and non-
dust (δnd) (Tesche et al., 2009). Equation 2.12 is the definition of depolarization
ratio in terms of dust and non-dust backscatter coefficients. Equation 2.12 solved for
dust backscatter coefficient is shown in Equation 2.13 and non-dust is the remainder
(Equation 2.14). Here, based on previous studies of Asian dust, the assumed particle
linear depolarization of dust is 35% (Sugimoto et al., 2003; Shimizu et al., 2004).
The particle depolarization of non-dust varies depending on study, hygroscopicity,
and composition. Most studies conclude that non-dust depolarization is small but
nonzero (<5%). Here, it is assumed to be negligible. Deviations of dust from the
assumed depolarization (35%) are likely and represent a more significant source
of error. In any case, the performance will be validated in the results section using
the AERONET SDA retrieval of coarse-mode AOD.
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3 results and discussion

Lidar Ratio

By matching up AERONET AOD and UW-Madison HSRL’s integrated aerosol
backscatter coefficient, a bulk lidar ratio for the column can be derived. Figure 3.1
shows the aggregation of the ratio by month (not weighted by backscatter). Both
AERONET and the UW-Madison HSRL can be used to determine the AOD. The
UW-Madison HSRL and AERONET combination should be regarded as the best
estimate, but the UW-Madison HSRL alone captures the same trends.

As discussed previously, explaining the variation in lidar ratio is difficult due
to the complex interpretability of lidar ratio and the many possible factors which
are known to vary by season. We find that during spring time the median value of
the bulk lidar ratio is at a minimum likely representing the increased frequency of
Asian dust. However, the lidar ratio is also lower during the winter months with
values consistent with dust, yet there must still be a significant non-dust component
in the winter. Relative humidity is another possible cause of lidar ratio changes,
involved when hygroscopic growth changes particulate size and refractive index.
Season is a confounding variable between RH and other possible explanations, like
different emission sources, actinic flux, transport, or composition. Therefore, to
show that RH is influencing lidar ratio, care must be taken to control for season.
Figure 3.2 shows a weak relationship between backscatter-weighted column RH
and bulk lidar ratio. The slope of the best fit is robust between seasons, except
for JJA, when lidar ratio is even more sensitive to changes in RH. At these short
timescales the coefficient of determination is small, suggesting that RH is by no
means the only source of variation. Nevertheless, the inter-seasonal changes in
bulk lidar ratio are modest enough ( ± 8 sr) that even this weak relationship with
RH can explain almost all of the seasonal variation in bulk lidar ratio.

To proceed with analysis in later parts, some time-varying lidar ratio must be
selected. All estimation of AOD or extinction in this thesis (including Figures 2.1 &
2.2), unless otherwise specified, used a lidar ratio interpolated from these monthly
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Figure 3.1: Time-series of monthly bulk lidar ratio. The bulk lidar ratio is com-
puted using both the AERONET and HSRL-derived AOD (the numerator). In
dark blue is the AERONET-based mean and a fill indicating 1 standard deviation.
In light blue is the mean based on the geometrically-corrected HSRL molecular
signal, which includes a both day and night retrievals compared to the day-only
AERONET. For comparison, two average relative humidities from ERA5 are also
plotted. One is a simple column average, the other is vertically-weighted by HSRL
aerosol backscatter.
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Figure 3.2: The AERONET-based lidar ratio and backscatter-weighted relative hu-
midity averaged every 20min are plotted for each season. A linear fit was computed
for each season and for the entire year. The monthly-mean values are also plotted
in red.

mean lidar ratios.

Seasonal Cycle

Using lidar ratio, we have several estimations of the monthly-mean AOD from the
UW-Madison HSRL aerosol backscatter coefficient, all of which roughly match
the priors (details in review section) of high AOD in the summer and low AOD
in the winter. The differences between identically-sampled HSRL AOD (Fig. 3.3a
blue line) and AERONET AOD (black line) have been removed (green dots) by
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adjusting the lidar ratio.
Figure 3.3b expands the sampling to nighttime and cloudy scenes. Note that

these differences in AOD are all only due to changing sampling behavior. The HSRL
mean of AOD in scenes without clouds in the first 10km is labeled “Cloudless”.
“Cloudless” includes nighttime observations, cases with high cirrus, and has a much
greater observation rate than the AERONET matchup. The HSRL AOD derived
from the corrected molecular channel does not assume a lidar ratio, but it has
uncertainty from the overlap function, which is known to be highly dependent
on time of day if uncorrected. It is sampled the same as (and agrees very well
with) “Cloudless”. Because most of the variation is expected to occur within the
boundary layer, the lowest 5km (“Cloudless 5km”) should sufficiently represent
most variation and also include cases with just cirrus or high water clouds. It
excludes some high-altitude aerosol and therefore has a low bias.

The most extreme disagreement between AERONET and HSRL AOD occurred in
September, where the AERONET median significantly underestimated the median
AOD when sampling behavior is changed. This is because the transition from
the high summer optical depths to low winter optical depths occurs in September
and the distribution of AOD is somewhat bimodal. The AERONET median finds
the lower mode while the UW-Madison HSRL median finds the high mode. So,
despite the difference in median values, the AERONET and UW-Madison HSRL
interquartile ranges agree. A potential future experiment would be to compare
multiple AERONET sites and lidar data to determine whether this difference is
systematic or peculiar to 2016.

As will be shown in the diurnal results (Fig. 3.4), AODs are generally smaller at
night than during the day. Therefore, AERONET AOD was expected to be higher
than the HSRL AODs, which include nighttime; but, there is no significant bias even
in the summer. One possible reason is that mean daytime AOD is not significantly
higher than mean nighttime AOD, although the peak AOD occurs during the day.
Another reason is that that higher cloud amounts during the day are selecting
for cloudless scenes having lower AERONET AODs. This cancels the high bias of
daytime-only observations.
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Figure 3.3: Various estimates of monthly-median aerosol optical depth (AOD) in
Seoul. Top: All data sampled as AERONET and the effect of lidar ratio is demon-
strated by comparing the constant lidar ratio assumption (blue) and interpolated
mean lidar ratio (green). Bottom: AERONET AOD and HSRL estimates of AOD.
"Cloudless" is defined as having no clouds or virga below the top of integration
at 10km. "Cloudless 5km" only integrates to 5km and includes scenes with clouds
between 5km and 10km. "Mol. AOD" is the molecular-derived AOD and is sampled
the same as "cloudless". All HSRL estimates except "Mol. AOD" assume a bulk
lidar ratio interpolated from AERONET-derived monthly means.
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In conclusion, AERONET daytime AOD is in good seasonal agreement with
all-day AOD from the HSRL. The lack of nighttime observations should cause
a high bias in AERONET observations, especially during summer, but does not.
Other sources of error include differences in viewing geometry and departures from
horizontal homogeneity that could induce disagreement between the AERONET
and UW-Madison HSRL.

Diurnal Cycle

In a similar manner to the seasonal cycle, we investigate the diurnal cycle of AOD.
Analysis of AERONET-derived AOD as a function of time of day is problematic due
to the strong diurnal cycle of cloudiness (AERONET requires clear sky) and AOD.

Figure 3.4 shows the dirunal cycle, as measured by both the HSRL and AERONET.
The greatest processing uncertainty originates from the estimation of bulk lidar
ratio using AERONET. Only the linearly-interpolated monthly mean lidar ratio is
used, so a systematic diurnal cycle in bulk lidar ratio will bias the AOD diurnal
cycle. A direct matchup between AERONET and (seasonally-corrected lidar ratio)
UW-Madison HSRL AOD (Fig. 3.4 black and green lines) shows very good agree-
ment. The bias is small enough that analysis can continue under the assumption
that bulk lidar ratio does not exhibit a significant mean diurnal cycle that might
undermine the benefit of superior sampling.

Observed AOD variation during the day is far smaller than seasonal variation,
except in summer. There was a significant cycle in the summer months, which
has implications for AOD products such as MODIS or CALIOP, which would be
observing the near-peak AOD at 1:30pm local time. Figure 3.5 shows just the
deviation from daily mean. The mean amplitude is about 0.15 optical depth. This
cycle is not completely captured by AERONET due to the reduced sampling, likely
a result of cloud cover. Winter also showed a cycle, the amplitude is smaller (~.05),
but relative to the mean AOD is about the same. In springtime, the daytime AOD
was slightly higher than night (~.05), but the peak occurred earlier than summer
or winter, and the amplitude, relative to the mean value, was small in comparison.
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Figure 3.4: AERONET and HSRL AOD estimates aggregated by season and hour-
of-day. Descriptions of HSRL various estimates are given in Fig. 3.3. Aggregation
excludes hours without adequate representation in each month of the season to
prevent some leakage from seasonal AOD trends when sunrise and sunset times
co-vary. The seasonal-mean (all inclusive) is plotted as a dotted horizontal line.

In conclusion, the diurnal cycle is negligible in spring and fall, the winter cy-
cle might be important, and the summer cycle is certainly significant. Another
conclusion is that the effect of morning rush hour, which has been proposed by
others, may be detectable, but is small. Rather than intra-diurnally, the largest
variations in AOD remain at the inter-diurnal and seasonal scales. Intuitively, the
most significant causal factors of AOD must also fluctuate at these time scales.
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Figure 3.5: Diurnal deviation of AERONET and HSRL AOD estimates aggregated
by season and hour-of-day. Similar to Fig 3.4. but daily mean is subtracted.

Weekly cycle

One method to isolate emission effects is to control for the day-of-the-week; the
rationale being that day-of-week influences the type of anthropogenic activity
independent of meteorological conditions. Several surface studies have documented
a weekend effect, which predict elevated concentrations during weekday rush hours.
The strength of the effect was found to be quite small for surface PM10 concentration
in eastern China, only a few µgm−3 (Gong et al., 2007). However, a study of AOD
in Seoul showed a very large weekend effect, with AODs decreasing by 32% during
the weekend (Xia et al., 2008). These were able to be reproduced for the time
period (not shown). However, analysis of the recent UW-Madison HSRL time
period (Fig. 3.6) shows that if there is a weekend effect, it is very small or does
not produce differences observable by the UW-Madison HSRL (e.g. only changes
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Figure 3.6: Daily mean deviation from weekly mean grouped by day-of-week.
Integrated aerosol backscatter coefficient is used for all but one (Molecular AOD)
of the HSRL estimates. Interquartile range (IQR) is also plotted to show variance.

chemical apportionment). There may be a slight increasing trend throughout the
week, but overall effect is smaller than 10%. The range of deviation on same day
between weeks is far larger. Surprisingly, the maximum is reached on Sunday rather
than Friday as reported in Xia et al. (2008). The reason for the discrepancy in effect
strengths is potentially the decrease in anthropogenic contribution to AOD linked
to emissions reductions in the past decade. A long-term downward trend in AOD
was noted before in the review, and the studies showing the largest anthropogenic
effects were conducted using observations over 10 years old at the time of this
analysis. Perhaps the maximum is delayed because now the primary source is
foreign and must be transported. Even so, the null hypothesis that the Sunday
mean is the same as Monday cannot be rejected with either HSRL or AERONET.

The lack of a large weekend effect is consistent with the lack of a detectable rush
hour in the diurnal cycle (Fig. 3.5), as the weekend effect is supposedly mediated
by traffic. A vast majority of AOD is anthropogenic and climatological means are
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clearly dependent on emissions, but anthropogenic cycles are not manifesting at
these timescales. This suggests that either emissions do not fluctuate with great
amplitude and/or the responsivity of AOD to emissions is more indirect than
expected and non-anthropogenic factors are controlling the most variation. High
quality emission inventories could determine the amplitude of fluctuations, but
most such inventories do not include weekly cycle information and the formation
of particles from gaseous emissions is still uncertain. In the authors opinion, the
more plausible hypothesis is that the AOD response to anthropogenic activity
is too stochastic to be detected without longer measurement, during which the
anthropogenic activity itself may change.

Dust and polarization

As discussed in the review section, dust is detectable by the UW-Madison HSRL
because the returns from the irregular-shaped dust particles have high levels of
depolarization. The column-integrated HSRL aerosol backscatter coefficient may
then be separated into parallel and perpendicular components. Roughly, the per-
pendicular components isolate some fraction of the backscatter of mineral dust, but
very little of organic or secondary inorganic matter.

A dust backscatter retrieval is developed based on this principle and detailed in
the methods section. Figure 3.7 validates this retrieval by comparing the integrated
dust backscatter coefficient to the coarse-mode optical depth of AERONET, which is
often regarded as a proxy for the relatively large dust particles. Figure 3.8 confirms
the correlation at the shortest timescales and introduces the seasonal variation in
the dust lidar ratio.

The correlation in JJA is much worse than the other seasons, even though the
monthly-mean trend is roughly reproduced. Figure 3.9 shows monthly values
of dust lidar ratio compared to non-dust and total lidar ratio. The derived dust
lidar ratio is a function of assumed dust depolarization and the true dust lidar
ratio, and therefore variations indicate changes in one or both. Large variation is
somewhat surprising because both lidar ratio and depolarization are expected to
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Figure 3.7: Time-series of coarse-mode and dust column optical properties. The
black line is monthly-median AERONET coarse-mode AOD. The green line is
monthly-median matched dust backscatter integrated up to 10 km. Interquartile
range (IQR) is plotted to show variance.

be stable in dust. Coarse-mode non-dust is expected to increase in the summer as
the aerosol size-distribution changes. But, this would result in higher coarse-mode
AOD as compared to a polarization-based retrieval, not lower as observed. Another
possibility is that a greater fraction of dust backscatter is fine mode in the summer,
thus it is unaccounted in the AERONET coarse-mode AOD. An alternative source
of error is a seasonal bias in the coarse-mode AOD from AERONET.
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Figure 3.8: Seasonal comparison of coarse-mode AOD and integrated dust backscat-
ter coefficient. Blue dots represent individual matchups between AERONET and
HSRL. Red dots show the monthly means for each season. The slope (m) and
coefficient of determination (r2) from linear regression are shown in the legend.

3.1 Vertical Profiles of Backscatter
In analysis involving vertical profiles, the calibrated aerosol backscatter coefficient
will be used instead of extinction. Assumption of the lidar ratio profile could allow
conversion, but this introduces uncertainty. It could also be estimated by computing
the derivative of the logarithmic ratio of the expected and measured molecular
signal. However, this process is inherently less sensitive than directly measuring
aerosol backscatter, has uncertainty associated with the geometric overlap func-
tion, and behaves poorly (sometimes negative or extremely large). Therefore, for
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Figure 3.9: Time-series of decomposed bulk lidar ratio. The black line repeats the
monthly bulk lidar ratio from Fig. 3.1 (using median instead of mean has little
effect). The green line shows the dust bulk lidar ratio (defined as coarse-mode
AERONET AOD divided by integrated HSRL dust backscatter). The blue line
shows the non-dust bulk lidar ratio (defined as fine-mode AERONET AOD divided
by integrated HSRL non-dust backscatter).

questions of aerosol loading it is prudent to first analyze the most defensible proxy
measurement, calibrated aerosol backscatter coefficient.

Seasonal Profiles

It has long been known that the average distribution of aerosol mass decreases
exponentially with altitude until levelling off above some altitude (Seinfeld and
Pandis, 1998). Figure 3.10 shows the vertical distribution of aerosol backscatter
coefficient measured by the UW-Madison HSRL in Seoul. Expectations are vali-
dated, except within the boundary layer. Below typical boundary layer heights
the backscatter profile is not exponential. Especially in the summer median, the
curvature is convex near the surface and the decrease with height is slower. This is
probably because of higher boundary layers and convective transport of aerosol in
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Figure 3.10: Vertical profile of aerosol backscatter coefficient below 4km. The
median value and inter-quartile range (IQR) for each season is displayed.

the summer. Another feature is relatively high backscatter in spring above 3 km.
Figure 3.11 presents the backscatter above 4 km with the spring profile being most
unique. The interquartile range above 4 km is very large and the median value
is also high. A likely explanation is lofted dust, which is known to occur during
spring.

When showing aggregated profiles, it should be noted that the instantaneous
measured backscatter virtually never matches the mean value nor a scaled version
of the mean. Usually the appearance is more piecewise, with abundant inversions
or plumes at various heights. These non-smooth distributions are not a result of
noise or random perturbations as they are temporally coherent on scales of at least
hours. The mean distribution only emerges once many days of vertical profiles



39

Figure 3.11: Vertical profile of aerosol backscatter coefficient between 4km and
10km. Similar to Fig. 3.10 but at higher altitude and smaller y-scale.

are averaged together. The observed instantaneous distribution is intuitive when
the spatial heterogeneity of aerosol sources is considered in combination with
vertical shear. Still, to the author’s knowledge, little rigorous explanation has been
given in the literature about the origin and characteristics of such high entropy
vertical profiles. Global or regional aerosol models probably could not produce
such diversity in vertical distribution. Large eddy simulations (LES) would likely
need to be conducted to answer these questions.

Dust and Polarization

The presence of dust can be detected quite accurately with the UW-Madison HSRL
using the polarization of the backscattered returns. An explanation and further
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details of dust optical properties were discussed in the review section. Evidence
of good performance was shown in the dust section and Figure 3.8. The assumed
correspondence between coarse-mode AOD and integrated dust backscatter coeffi-
cient can be expanded into the vertical dimension. It is not necessarily true that the
lidar ratio will remain constant in the vertical, but because dust is hydrophobic and
naturally emitted, the size, shape, and composition is expected to be more stable
than other particulates. Figure 3.12 shows the median vertical distribution of dust
backscatter coefficient alongside the total aerosol backscatter coefficient for each
season.

Increasing aerosol depolarization with altitude was typical in this dataset; how-
ever, there are many possible explanations for such a tendency. By decomposing
backscatter into dust and non-dust (as in Fig. 3.12), the gradient in depolarization
can be attributed to differing vertical distributions of these components. Note that
both components decrease with altitude; the majority of backscatter is still located
near the surface in each case. However, a persistent difference between the dust
and non-dust vertical distribution is a slower decrease in median dust backscatter
with altitude. This can be quantified by comparing the fraction of total backscatter
attributable to dust, as is done by the green dashed line in Figure 3.12. Near the sur-
face, dust comprises a small fraction of total backscatter, but in the free troposphere
it is responsible for about half. One possible explanation is that the backscatter of
hygroscopic non-dust is enhanced at low altitudes preferentially to the hygrophobic
dust. This can be corrected in non-dust using the hygroscopicity relationship from
Figure 3.16, yet the feature remains (green line). Approaching the tropopause, the
dust fraction decreases once again. Though, the cross-polarized signal at such high
altitudes may be approaching the detection floor of the current averaging scheme,
which is a source of error.

Figure 3.13 shows that the NAAPS aerosol model also contains this feature
when comparing the vertical distribution of dust extinction, and this increases
confidence that dust is indeed responsible and not another type of particle. As
far as the author knows, this has not been documented before in the literature. It
should be noted that these mean vertical distributions are not at all representative
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Figure 3.12: Seasonal-mean vertical profiles of dust and non-dust backscatter coef-
ficient and dust fraction at 7.5m vertical resolution. The dashed black line shows
seasonal-mean non-dust backscatter coefficient (νnd). The solid black line has been
corrected for hygroscopic growth. The blue line shows dust backscatter coefficient
(νd). The dashed green line shows the ratio of median dust to median aerosol
backscatter coefficient ( νd

νnd+νd
). The solid green line is the same ratio, but using

the corrected non-dust backscatter coefficient (dashed black line).
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Figure 3.13: Seasonal-mean vertical profiles of dust and non-dust mass concen-
tration from NAAPS aerosol model. The black line shows the non-dust mass
concentration. The blue line shows dust mass concentration. The dashed gray line
shows the median dust fraction of median total mass concentration.

of a likely instantaneous observation. The mean value is instead averaging across
coherent plumes, which complicates the analysis.

Typical dust source regions in the Tarim Basin and Gobi Desert are several days
of atmospheric transport away from the UW-Madison HSRL in Seoul, whereas the
anthropogenic non-dust species is likely less than a day old before it is advected
away. So, one possibile explanation is that additional transport time modifies verti-
cal distribution through either vertical transport or preferential removal. Another
possibility is that dust from the high-altitude deserts is injected higher into the
atmosphere, on average than non-dust, and this raises the center-of-mass. The
cause might be best understood through modeling studies since it appears that
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this feature is already represented. A potential source of error is that the mean
depolarization of the dust is changing in the vertical, specifically in the upper
troposphere.

3.2 Vertical Profile of Lidar Ratio
There is great interest in lidar ratio vertical profiles because they can help aerosol
type identification and they are needed to retrieve both backscatter and extinction
for single-channel lidars (e.g. CALIOP). Figure 3.14 shows profiles of median lidar
ratio from the corrected-molecular UW-Madison HSRL and the NASA HSRL2 that
was deployed on a DC-8 aircraft during KORUS-AQ (May 2016). The airborne
HSRL2 is able to observe much of the atmosphere from a significant distance,
which permits more accurate extinction retrievals because the geometric overlap
function is better defined. However, the DC-8 was often very far from Seoul which
raises questions about how representative the median value might be. Also, the
DC-8 flights were only conducted for a relatively short amount of time within
a single season. The median lidar ratios from the UW-Madison HSRL are also
uncertain because of the uncertain geometric overlap. Corrections were performed
as described in methods.

Both lidars agree that lidar ratio is generally higher at the surface and decreases
quite dramatically in the transition region from the boundary layer to the free
troposphere. Within the free troposphere, the NASA HSRL2 observed nearly
constant lidar ratio (~30 sr) with altitude. The UW-Madison shows more variation
and an even lower lidar ratio (~15 sr). Both values are below the typical ranges
associated with dust or continental aerosol. The lidar ratios below 30 sr measured
by the UW-Madison HSRL are likely in error because of the uncertainty in the
geometric overlap function is insufficiently corrected. Nevertheless, the general
consensus trend does seem plausible. As demonstrated in Figure 3.2, the higher
relative humidity in the boundary layer could cause the higher lidar ratios. Another
reason might be the aerosol species; dust typically has a lower lidar ratio than
anthropogenic aerosol (also demonstrated in Fig. 3.9), and is a greater fraction of
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total scattering and mass in the free troposphere than within the boundary layer
(see Fig. 3.12 and 3.13).

The altitude-resolved lidar ratio is also compared to the bulk lidar ratio. The
mean bulk lidar ratio is quite close to the boundary layer values, which is to be
expected. The bulk lidar ratio inherently weights the aerosol near the surface more
because both extinctions and aerosol backscatter coefficients are generally larger.
Thin aerosol contributes less to the bulk lidar ratio. Therefore, the variations in
bulk lidar ratio are likely to be caused predominantly by changes in boundary layer
aerosol properties.

3.3 Surface

Correlation with Backscatter

Figure 3.15 compares the near-surface aerosol backscatter coefficient to surface
PM2.5 mass concentration. There are several reasons for disagreement. Most impor-
tantly, the UW-Madison HSRL will be sensitive to particles larger than 2.5 microns.
Secondly, PM2.5 is a dry concentration, any hygroscopic growth or water uptake
will increase the backscatter relative to the dry concentration. Finally, backscatter
is only an optical property. It is proportional to the cross-section, not the volume,
and cannot represent variations in density. Differences in aerosol backscatter ef-
ficiency caused by material composition will also cause disagreement. That said,
the agreement between the two is sufficient to make surface backscatter an accept-
able proxy. The bulk approximation is shown in Equation 3.1. where f(RH) is the
hygroscopic growth factor and αback is the mass scattering in units [m2/(gsr)].
Notably, mass scattering is related by the lidar ratio to mass extinction, which is
required in aerosol models for AOD assimilation and radiative transfer. The ratio
of PM2.5 to backscatter changes seasonally as expected, either due to hygroscopic
growth or changes to mass backscattering coefficient. The section on lidar ratio
established that monthly to seasonal variation in bulk lidar ratio is relatively small,
compared to internal variation. Therefore, the most probable explanation is hygro-
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Figure 3.14: Vertical profile of median lidar ratio. In orange, KORUS-AQ data from
airborne NASA HSRL2 included for comparison. The UW-Madison HSRL mean
for the entire year is shown in dashed blue. The UW-Madison HSRL mean from
the same time period as the NASA HSRL2 is also displayed as a solid blue line. The
minimum, maximum, and mean monthly-mean bulk lidar ratio (time-series in Fig.
3.1) is also plotted as a black line and filled interval.
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Figure 3.15: Seasonal comparison of near-surface aerosol backscatter coefficient
and PM2.5. Blue dots are matchups between hourly PM2.5 and the backscatter
observation that is nearest in time. Red dots are monthly averages of PM2.5 and
backscatter. Linear regression results (line slope and coefficient of determination)
are displayed in legend.

scopic growth. This logic is quantified by a model including near-surface relative
humidity from reanalysis data or surface data. The relationship between relative
humidity and mass scattering is shown in Figure 3.16. Backscattering efficiency
increases nonlinearly with relative humidity as expected. The range of relative hu-
midity in each season clearly determines the mean mass backscattering coefficient.
The seasonal linear coefficients of lidar ratio from that figure are also included to
show an estimation of mass extinction. Because lidar ratio is thought to increase
with relative humidity, aerosol backscatter is actually less sensitive to hygroscopic
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Figure 3.16: Seasonal comparison of surface relative-humidity (RH) and ratio of
non-dust backscatter coefficient to PM2.5. Blue dots represent matchups between
hourly PM2.5 observations and the HSRL backscatter nearest in time. Seasonal
means binned by RH are computed and displayed in red. The annual mean binned
by RH is repeated in each season as a solid black line. The ratio of 85% and 45%
is computed and shown in legend and horizontal dashed black lines highlight
the values used. Estimated extinction ratio (σs,nd/PM2.5) is displayed in orange
to show that the probable dependence of lidar ratio on relative humidity would
strengthen the effect.
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growth than extinction. Unexpectedly, we see little difference between the overall
and seasonal hygroscopicity, the curve for each season is close to the annual mean.
Known compositional differences between seasons were expected to create large
biases. That said, some disagreement (perhaps spurious) occurs at the ends of the
relative humidity scale where data is sparse for most seasons. An extinction-based
hygroscopicity of ~3 between 45% and 85% relative humidity can be calculated
using this method. This is quite high; Anderson et al. (2003) found a fine-mode
value of about 1.6 for 40%-80% during ACE-Asia.

νnd = αbackcf(RH) (3.1)

Sources of error include: influence from particles larger than 2.5 microns, com-
positional differences, and errors in reanalysis relative humidity.

In summary, PM2.5 can be approximated using UW-Madison HSRL aerosol
backscatter coefficient as long as hygroscopic growth can be corrected. The pri-
mary implication is that using backscatter as a PM2.5 proxy may be appropriate
aloft because it is acceptable at the surface. Figure 3.17 shows the monthly PM2.5

estimated by the RH-corrected UW-Madison HSRL backscatter. The correction
uses the annual mean backscatter hygroscopicity curve from Figure 3.16 which
removes most of the seasonal bias. The residual error is quite good (6 6µgm−3)
considering that size filtering does not occur in the lidar estimate as it does in the
PM2.5 observation.

Column aerosol mass

The backscatter-derived PM2.5 approximation can be extended into the vertical so
long as relative humidity can be accurately tracked and the bulk approximation
holds aloft as at the surface. Fortunately, the usually dryer profiles of clear sky
scenes are within the low error regime of the hygroscopicity curve derived previ-
ously. Also, it was shown earlier that aerosol backscatter coefficient is less sensitive
to hygroscopic growth than extinction because lidar ratio increases with relative
humidity, so it should compensate for some inaccuracy in relative humidity. After
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Figure 3.17: Seasonal comparison of HSRL-estimated PM2.5 and observed PM2.5.
Blue dots represent matchups between hourly observed PM2.5 and HSRL backscat-
ter nearest in time. Red dots show the monthly mean in each season. The median
absolute error (MAE) is computed and displayed in the legend of each season.

the mass profile is estimated, the profile can be integrated to compute the total
aerosol mass of a column. The purpose is to determine another column measure of
aerosol loading like AOD but more decoupled from meteorology, independent of
hygroscopic growth effects.

Figure 3.18 compares the UW-Madison HSRL-derived column dry mass and the
column dry mass from the NAAPS aerosol model. The seasonality is different from
both the AOD and PM2.5 seasonality shown before, but the model and observations
roughly agree in both magnitude and seasonality. The main influences on column
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Figure 3.18: Time-series of median column dry fine-mode mass (integrated PM2.5).
The green line is NAAPS aerosol model fine-mode integrated mass concentration
which outputs at 6-hour time resolution. The blue line is the HSRL-derived column
fine-mode mass up to 10km from the cloudless subset. The purple line is the
HSRL-derived column fine-mode mass (up to 5km) from the "cloudless 5km"
subset. Interquartile range (IQR) is plotted to show variance. Derivation of mass is
detailed in methods. The median HSRL-derived AOD from "cloudless" subset is
plotted as a dashed line for comparison.

mass are advection and divergence related to sources and and sinks of aerosol in the
volume of atmosphere above Seoul. During the southwest monsoon rainy season,
it is clear that PM mass decreases in July and August, contrary to AOD seasonality.
A rebound occurs in September. In late fall and winter, mean PM column mass is
smallest and remains mostly constant. The highest mean mass occurs in June and
March. The observations and model agree on these features.

Changes in the size distribution unrelated to hygroscopic growth could con-
ceivably cause biases through changing the mass backscattering coefficient, which
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is not included in our retrieval model. The NAAPS model only has a single size
bin for each species and assimilates MODIS AODs, so it could also include these
identical biases (Lynch et al., 2016). Comparison with a simulation that models
size distribution is left as potential future work.

Dust and Polarization

Asian dust is primarily coarse-mode (Anderson et al., 2003). Therefore, PM2.5 is
not sensitive to dust and elucidation of its hygroscopic properties is more difficult
than the previously-treated dominant fine-mode. Figure 3.19 shows a strong nega-
tive correlation between near-surface dust fraction and surface relative humidity.
The analysis is limited to the surface for two reasons. First, it has already been
demonstrated that dust-fraction increases with altitude. It can be assumed that
the relative humidity also decreases with altitude as the air becomes more rarified;
this means there is already a non-causal correlation. The second reason is that
the surface should have the most accurate relative humidity from the reanalysis.
At the surface, the decrease in dust fraction with increases in relative humidity
can be explained by hygroscopic growth of spherical low-depolarization particles,
meanwhile hydrophobic high-depolarization dust does not grow. This must be
true to justify the treatment of dust as hydrophobic in the creation of Figure 3.12.

To strengthen this theory, the non-dust backscatter (Fig. 3.20) shows that the
range of aerosol backscatter coefficient itself increases with relative humidity, as
expected. This was already demonstrated somewhat with Figure 3.16, but the mass
concentration could be controlled for. Figure 3.20 shows that non-dust backscatter
coefficient tends to increase at high relative humidity even when marginalizing
concentration, which is captured by the figure as variance is more extreme there.
The dust backscatter coefficient in Figure 3.21 is submitted as the final evidence
needed. As expected, the correlation with relative humidity disappears, owing to
the fact that the dominant scatterer is hydrophobic dust. All of these relationships
are seasonally robust.
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Figure 3.19: Seasonal comparison of near-surface aerosol backscatter coefficient
dust fraction and surface relative humidity. Blue dots show hourly relative humidity
from ERA5 and the matched HSRL aerosol backscatter coefficient dust fraction
nearest in time. Both are sampled near the surface. Coefficient of determination
(r2) from linear regression is shown in the legend.
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Figure 3.20: Seasonal comparison of near-surface non-dust backscatter coefficient
and surface relative humidity. Figure details similar to Fig. 3.19.
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Figure 3.21: Seasonal comparison of near-surface dust backscatter coefficient and
surface relative humidity. Figure details similar to Fig. 3.19.
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4 conclusion

In this thesis, one year of data from the UW-Madison HSRL located in Seoul during
the KORUS-AQ field campaign was processed and analyzed. Rather than choosing
a single topic to scrutinize in-depth, these analyses broadly covered a number
of different science questions. For each thread, the process was similar. First,
an existing measurement was identified. Next, a process was designed to make
the UW-Madison HSRL data comparable, and the transformation was validated.
Finally, the unique advantages of the HSRL were exploited to extend this process
to previously unobserved territory. This procedure was repeated for AERONET
AOD, AERONET SDA, and surface PM2.5.

The AOD from AERONET is widely-used and is generally well-regarded. Us-
ing the UW-Madison HSRL, two fundamentally different methods were used to
successfully estimate aerosol optical depth. Then, the superior sampling of the
UW-Madison HSRL was used to characterize seasonal, diurnal, and weekly cy-
cle. These results improved on the original AERONET results tremendously with
fewer spurious variations and more complete coverage. The effect is enough to
qualitatively change the diurnal cycle in some cases.

The AERONET SDA allows AOD to be decomposed into coarse and fine-mode
components. Considering the established properties of aerosol in East Asia, coarse-
mode was assumed to be dominated by dust. A decomposition of backscatter into
dust and non-dust components was designed for lidar data and validated against
the coarse-mode AOD. Then, the decomposition could be extended to vertically
disaggregated lidar data. The resulting vertical profiles of dust and non-dust help
explain the phenomenon of increasing aerosol depolarization with altitude.

Finally, surface measurements of PM2.5 were estimated using the near-surface
backscatter measurements from the UW-Madison HSRL. A PM2.5 retrieval, with
correction for hygroscopic growth, was designed and validated. Then, the retrieval
was applied along an atmospheric column to produce the column mass. The
column mass is interpreted to be similar to AOD, with the advantage of having
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less dependence on the hygroscopic growth. Comparison of column mass and
AOD seasonality were shown to have qualitative differences, likely due to large
influences of meteorology on AOD.

A key result of this thesis is the strong influence of meteorology, particularly
relative humidity, on the optical properties of aerosols in Seoul. This finding is likely
to generalize to other locations, and therefore it is important to secure accurate and
high resolution relative humidity information for the troposphere. Calculation of
monthly column mass can only be defended because reanalysis relative humidity
is assumed unbiased and the implicit correlation between PM and RH is also
assumed to be unbiased. For higher resolution or vertical profiles, the reanalysis is
untrustworthy and assimilated radiosonde launches lack the temporal resolution
needed. Instead, retrieved moisture profiles from colocated infrared or microwave
remote sensing instruments would be ideal.
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