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Abstract

An investigation of the upper tropospheric state of the storm is conducted using space-
borne high spectral resolution infrared remote sensing data. This is accomplished through an
approach that synergistically uses an advanced sounder and a high spatial resolution imager,
such as the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging
Spectroradiometer (MODIS), respectively. The cloud-free AIRS footprints are less than 10%
globally, and the MODIS can be utilized to ensure optimal cloud-clearing of AIRS observation.
This greatly improves the likelihood that atmospheric sounding retrievals will be cloud-free or
cloud-corrected if it is partly cloudy. A case study shows that more than 24% of AIRS cloudy
footprints are successfully cloud-cleared, which demonstrates the advantage of applying the
optimal cloud-clearing approach. The successful raté is achieved in greater than 40% of partly

cloudy footprints.

Analyzing the state of upper troposphere (UT) in clear or clear-equivalence footprints
may not represent the UT structure completely. Therefore, the clear and cloudy soundings are
developed and enhanced by synergistically using collocated MODIS clear-sky data as well.
Evaluation of the retrieved profile is performed by comparisons between AIRS soundings,
model analysis fields, and radiosonde observations. The results of these comparisons
demonstrate the advantage of a synergistic use of AIRS and MODIS over using either system

alone.

One month of collocated AIRS and MODIS data, along with hourly precipitation record,

are analyzed using the enhanced synergistic retrieval procedure. It is found that a pre-existing
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low UT stability is highly correlated with the subsequent mesoscale convection 6- to 12-hr later.
Also a relatively low UT stability in the storm area, compared to the ambient area, shows no
statistically significant change over time. Stronger mesoscale storm activities, in terms of more
intense precipitation and greater coverage, are associated with lower UT stability. This may give
a possible explanation for nocturnal convection without well defined boundary-layer forcing.
Furthermore, the use of high spectral resolution observations is a more effective detection
scheme for the troposphere penetrating convection (TPC) compared to using observations from
a broadband imager. The estimated precipitation intensity using collocated imager data within

the identified TPC footprints is in good agreement with past studies.
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Chapter 1 Introduction

Short-range forecasting (< 12-hr) of mesoscale storm systems is one of the most
challenging problems in meteorology. Storms develop quickly and appear throughout the year
over many parts Qf the globe [Barnes 2001]. They cause more than 400 deaths as well as about
two to five billion dollars of economic losses in the United States annually [Moller, 2001;
Riebsame et al., 1986]. Those numbers increase if storm-induced ha‘il, high wind, lightening
and flash flooding statistics are included. The initiation of convective storms by an organized
line of convergence in the boundary layer has been recognized for some time. Geostationary
satellite imagery, ground-based radar observations and surface weather stations have enabled
detailed studies of the role of large scale forcing and surface convergence in convective
initiation of mesoscale storm systems [Purdom, 1976; Purdom, 1982; Wilson and Schreiber,
1986]. The state of upper troposphere (UT) and its relationship with the pre-storm environment
has not received as much attention. This is primarily because of the sparse temporal and spatial
distribution of radiosonde observations and the relatively low UT resolution in numerical
models.

Although the in-situ observations of the UT are mainly conducted by routine launching
of the radiosondes, the utilizing of satellite data and products become an important method to
further explore the UT. Since September 2002, the high-spectral resolution infrared
measurements from the Atmospheric Infrared Sounder (AIRS; http://airs.jpl.nasa.gov/) onboard

National Aeronautics and Space Administration’s (NASA’s) Earth Observation System (EOS)

Aqua satellite cover the 3.7 — 15.4 um spectral region with 2378 spectral channels and a spectral
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2
resolution of v/av =1200, where v is the wavenumber and av is the width of a band. The
AIRS has more than 100 times the resolving power of previous satellite borne IR sounders such
as High Resolution Infrared Sounder (HIRS) and Geostationary Operational Environmental
Satellite (GOES) Sounder [Pagano et al., 2001], thus providing the needed global observations
to retrieve enhanced three-dimensional maps of atmospheric thermodynamic structure and cloud
properties. Therefore, AIRS provides accurate information on the vertical structure of
atmospheric temperature and moisture [Chahine et al., 2006]. With the improvement of
atmospheric profiling algorithms in both clear and cloudy scenes (e.g., Smith et al. [2005];
Weisz el al., [2007a, 2007b], Liu et al. [2008]), we have a new opportunity to study the UT
atmospheric state and its relation to convective storms. In this dissertation, the state of the UT
along with its signatures, in particular associate mesoscale convections, ﬁsing high spectral
resolution measurements are investigated. The goals are to understand the convective storm
environment, identify tropopause penetrating convection (TPC), and estimate precipitation

intensity of these TPCs.

The dissertation is structured as follows. Chapter 2 presents an overview of the
mesoscale convection processes, focusing on the initiation stage. Chapter 3 presents a
description of the instruments used in the inferring of atmospheric thermodynamic profiles.
Chapter 4 introduces the handling of high spectral resolution infrared radiances including the
synergistic use of high spatial resolution imager‘ observations and derived product as part of the
dissertation research. The improved retrieval algorithm is designed specifically with the
inclusion of high spatial resolution imager information in the high spectral resolution

measurements. Inferring atmospheric profiles using high spectral resolution infrared sounder
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measurements alone, and with the inclusion of high spatial resolution imager data for the
sounding enhancement are discussed in Chapter 5. The retrieved atmospheric profiles are then
used to further derive the UT stéte. In Chapter, 6 the synergistic atmospheric retrievals are
applied to AIRS and MODIS measurements over the CONUS. The pre-storm UT state, the
detection of TPCs and the estimation of TPC precipitation intensity are also investigated in this

chapter. Chapter 7 summarizes the dissertation results and discusses future research plans.
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Chapter 2 Background

2.1 Storm Initiation Processes

Convective storms are mesoscale phenomena, and severe storms are accompanied by
tornados, hailstorms, high winds or flash floods events [Johnson and Mapes, 2001]. While the
large-scale flow establishes environmental conditions favorable for severe weather, processes of
initiation and evolution of mesoscale convection are challenging problems in meteorology. A
number of mesoscale processes are involved in severe weather, ranging from environmental
preéonditioning to storm initiation to feedback of convection on the environmental structure.
The range of mesoscale processes associated with convective system is numerous. Therefore, to
provide focus, this dissertation explors the mesoscale processes according to whether they are
conductive generating convection (in terms of preconditioning), and high spectral resolution

infrared spectra signatures for convections which penetrate the tropopause.

Johnson and Mapes [2001] suggested a list of common mesoscale convection
preconditioning processes, which are summarized in Table 2.1. In most instances, these factors
serve to gradually lower the stability in the ambient environment and modify the wind shear
profile, and hence they set the stage for convective storms. They also proposed if the
destabilization occurs within a rapid manner, some of these processes may actually trigger

convection.
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- The mesoscale processes in Table 2.1 have been categorized as local, advective, and
dynamical. Atmospheric boundary layer mixing, the interactions between the atmosphere and
terrain, and differential boundary contrasts due to various surface properties are considered as
local preconditioning processes. Advective processes consist of the transport of air masses.
Advection is an important preconditioning process in the pre-storm environment (e.g., the
convergence of humid air masses). Mesoscale dynamical processes are difficult distinguished
from the response of synoptic-scale circulations as discussed in most studies (e.g., upper-level
jet streaks and low-level jets have long been associated with convective system due to
ageostrophic adjustments) [Uccellini and Johnson, 1979; Bluestein and Thomas, 1984]. These

processes are important in pre-storm environments and inside the convection systems.

Table 2.1 Mesoscale preconditioning processes for convection (After Johnson and Mapes

[2001]).
Local Advective ’ Dynamical
Boundary layer processes Differential advection Secondary circulations
. deepening the mixed layer . creation of capping, inversion . geostrophic adjustment
e deepening the moisture layer e destabilization e jets
e convergence alopgdryline ‘ . fonngtion oneep, dry PBL Gravity currents, waves
e nocturnal inversion, low-level jet (leading to microbursts) P
f ti . . cold pool lifting
. ormation Convergence lines e localized reduction of CIN
Terrain effects *  fronts e modification of vertical shear
. creation of convergence zone . drylines Mesoscale instabilities
e development of slow flows e  sea/land/lake breezes
e modification of hodograph e mountain/valley breezes Boundary' layer processes
Surface effects Moisture advection ° orizonul o e o et
. evaporation, heating . increase CAPE, lower LFC inertial oscillation (low-level jets)
. surface, discontinuities . local cumulus moistening
- soil moisture
- roughness
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2.2 The Remote Sensing of Storms

Over the past several decades, there have been major advances in understanding the
basic mechanisms for severe storms through observational studies and idealized numerical
simulations. Despite this progress, forecasting severe storms remains a major challenge. Many
of the difficulties sterh from mesoscale processes being inadequately observed and not fully
understood. Previous studies were based on dense networks of anemometers, such as Byers and
Braham [1949] who observed surface convergence 30 minutes prior to radar echo appearance
during the Thunderstorm Project. Rapid advances in remote sensing technologies in recent
years — for example, wind profilers, surface and airborne Doppler radars, Réman lidars — have

greatly enhanced our capability to observe the environment of convective storms.

The role of radars, wind profilers and surface weather measurements in observing
preconditioning processes is mainly focused on the boundary convergence lines in initiating
deep convection [e.g., Wilson and Carbone, 1984; Szoke et al., 1985; Schreiber, 1986]. The
state of UT in preconditioning processes does not receive much focus for several reasons. Sparse
spatial distribution and instrumental limitations are two of them. Satellite observations may
provide an opportunity to explore the upper level structure of the pre-storm environment from a

top down perspective.

There are two important satellite instruments for observing and monitoring the weather
and environment: the sounder and the imager. The sounder has better spectral resolution and
more spectral channels for atmospheric sounding with high vertical resolution and accuracy,

while the imager has finer spatial resolution and broader bands. The imager is usually applied to

forest fire, clouds/fog, pollution, volcanic eruption and ice/snow cover research. The primary
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application of the sounder is vertical profiling of the atmospheric soundings. English et al.,
[2000] evaluated sounding products from the TIROS-N Operational Vertical Sounder (TOVS)
[Smith et al., 1979] and the Advanced TIROS Operational Vertical Sounder (ATOVS), and
showed that a 20% and 5% forecast error reduction in Southern Hemisphere and Northern

Hemisphere, respectively, can be achieved.

Satellite imagery, in particular from the geostationary satellite such as the Geostationary
Environmental Satellite (GOES), has shown that cloud arc lines were often generated by
outﬂows from convective storms and other convergent wind phenomena [Purdom, 1976, 1982;
Weaver et‘al. 1994, 2000, 2002; Bikos et al. 2002]. The convergence lines, or arc lines,
observed in the satellite imager often ':triggered intensive convection. Purdom and Marcus
[1982] found that 73% of the afternoon thunderstorms in the south-eastern United States
developed as the result of such interactions. Figure 2.1 shows a GOES imagery example of a_
storm that formed along a dryline and is moving into a region of cloud streets. The overlaid
radar data conform that a well-defined mesoscale circulation is associated with the southernmost
storm in this line [Weaver and Lindsey, 2004]. The remote sensing from both satellite and radar
enables the improvement of convective storm forecasting and nowcasting capability if the

atmosphere exposed in certain criteria such as that listed in Table 2.1.

With the spaceborne high spectral resolution infrared AIRS measurements, which
samples at coarser spatial resolution than an imager, the chance for an AIRS footprint being
completely clear is less than 10% statistically [Huang and Smith, 2004]. However, the UT
signatures of convective storms require an accurate temperature profile from each single field-

of-view under both clear and cloudy skies are desired. Proper handling of the high spectral
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Figure 2.1 GOES visible satellite image from 2202 UTC on 4 May 2003 over northeastern
Oklahoma with Tulsa, OK, WSR-88D radar base reflectivity overlaid. (After Weaver and
Lindsey, [2004]).

resolution measurements is therefore a priority for accurate retrievals of atmospheric soundings

and the inferring of the atmospheric state.
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Chapter 3 Instruments, Radiance Measurement, and Radiative
Transfer Models for Atmospheric Sounding Product

This chapter introduces the most used spaceborne high spectral resolution infrared
sounder and high spatial resolution broadband imager on board the NASA’s Earth Observing
System (EOS) Aqua satellite, the Atmospheric Infrared Sounder (AIRS) and the Moderate
Resolution Imaging Spectroradiometer (MODIS). The third of this chapter summarizes the
community developed radiative transfer models, which are used for forward calculations and

atmospheric sounding iterative retrievals.

3.1 The High Spectral Resolution Sounder — AIRS

The AIRS onboard the NASA’s EOS Aqua satellite is a high spectral resolution infrared
spectrometer/radiometer with 2378 channels. Figure 3.1 shows an example of an AIRS
l;rightness temperature (BT) spectrum. AIRS radiances are in the infrared (IR) wavelength
range between 3.74 pm — 15.4 pm (650 - 2700 cm™) [Aumann et al., 2003], and the spectral
coverage includes, in particular, two strong CO, absorption bands (near 15.5 pm and 4.3 um),
and part of the strong water vapor absorption band centered at 6.3 um. Finite spectral signatures
result from O3, CH4, N,O, CO and SO, absorption regions. Being a grating spectrometer, the

spectral resolution of AIRS is dependent on the wavelength and defined by v/av =1200, where

v is the wavenumber and av is the width of a band. The observed high spectral resolution

infrared radiances enable the retrieval of vertical profiles of atmospheric temperature and water
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10
vapor from earth’s surface to an altitude of 40 km. AIRS scans the earth in the cross-track
direction between +49.5° incident angles with a swath of 1650 km, and a field-of-view (FOV) of
1.1° correlation to a nadir surface footprint of approximately 13.5 km. The Aqua satellite is in

sun synchronous,

09-02-2003, AIRS granule 8, pixel 14/122, latlon -4.36/-174.11
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Figure 3.1 Daytime AIRS brightness temperature spectrum as a function of wavenumber
(granule 8, 02 September 2003, footprint 14, scan-line 122).

near polar orbit at an altitude of 705 km resulting in a period of 99 minutes. The AIRS

instrument specifications are given in Table 3.1. A set of 6 minutes of AIRS data is called a
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granule which comprises 135 scan-lines with 90 footprints per scan-line. There are 240 granules

per day available with a global coverage obtained twice (day and night).

Table 3.1 AIRS instrument specifications

Specification Value

Spectral Range 3.74 pm — 15.4 pm
Spectral Resolution -~ v/av=1200
Field-of-View 1.1° (13 km at nadir)
Swath Width 99°

Calibration 0.2Kat250K
Orbital Period 99 minutes

AIRS uses an array of 17 cooled HgCdTe detectors. Each detector has between 94 — 192
elements. Energy dispersed from the diffraction grading is imaged onto the arrays. There are
two pixels sensed separately per spectra channel (for redundancy purposes), and each spectral
channel has a weighting function that peaks of a region in altitude and is sensitive to a certain
‘height in the atmosphere. The large number of channels and relatively high spectral resolution
provide coverage of the whole atmosphere and enable the retrieval of vertical temperature and
humidity profiles with high vertical resolution as well as cloud-top properties and amounts of
greenhouse gases. AIRS radiometric calibration is well characterized with a relative radiometric
accuracy of 0.2 K at 205 K [Fetzer et al., 2003]. The absolute calibration is 3% for brightness

temperatures between 190 K and 330 K [Fetzer et al., 2003]. Global temperature and humidity
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soundings with high accuracy (~1 K/l km layer for temperature and ~15%/2 km layer for
moisture in the troposphere) as well as surface parameters (surface skin temperature and surface
IR emissivities) have been used for applications in various research activities, climate modeling,
monitoring and numerical weather (NWP) prediction. This study uses the atmospheric profile
retrievals and spectral signatures from AIRS to investigate UT structures, and utilizes the
advantage of high spectral resolution observations to distinguish the convection penetrating the

tropopause as well as the estimated precipitation intensity.

3.2 The High Spatial Resolution Imager - MODIS

MODIS is a key instrument of the EOS Terra and Aqua satellites for conducting global
environmental change research. It is a scanning radiometer and provides global observations of
earth’s land, oceans, and atmosphere in 36 visible, near infrared, and infrared regions of the
spectrum from 0.415 pm — 14.235 pum [King et al., 2003, Platick et al., 2003]. The nadir
spatial resolution is dependent on the spectral channel and ranges between 250 — 1000 meters.
An overview of the MODIS instrument characteristics is given in Table 3.2. Only EOS Aqua
polar orbiting MODIS allows for continuous coincident measurement with AIRS. In this
dissertation, operational MODIS level-1B infrared radiances and Level 2 cloud mask product

are utilized for the enhancement of AIRS retrieval algorithm.

MODIS cloud products include, but are not limited to, the cloud mask, which provides
each MODIS 1 km pixel with cloud indices; cloud phase indices; and cloud top pressure (CTP)

and effective cloud amount (ECA) from MODIS CO, band measurements with a 5 km spatial
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resolution [King et al., 2003; Platnick et al., 2003]. The MODIS cloud mask uses a variety of

spectral tests, using as many as 20 channels, and is discussed in more detail in Ackerman et al.,

Cloud

Cloudy

Clear

Clear

Confident Probably Probably

Figure 3.2 (Left panel) The MODIS cloud mask with 1-km spatial resolution of Hurricane Ike
from 1730 — 1745 UTC on 06 September 2008. (Right panel) The corresponding composited
true color image using Aqua MODIS reflectance bands 1, 4, 3 as red, green, and blue,
respectively. The collocated spatial coverage of AIRS Granule 176 is overlaid using thick blue
lines.

Table 3.2 MODIS instrument specifications

Specification Value
Spectral Range 0.47 ym — 14.24 pm
Number of Channels 36

Spatial Resolution (nadir) 250 m (0.65 pm and 0.86 pm)
500 m (0.47,0.56, 1.24, 1.63, and 2.13 um)
1000 m for the other 29 channels

Swath Width 2330 km
Scan Rate 20.3 rpm
Orbital Period 99 minutes
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[1998], Frey et al., [2008], Ackerman et al., [2008]. Further nighttime polar cloud detection has
been improved by Liu et al., [2004]. The MODIS cloud mask has four classifications confident
clear, probably clear, uncertain/probably cloudy, or cloud. For example, Hurricane Ike (2008)
MODIS cloﬁd mask with 1-km spatial resolution from 1730 — 1745 UTC on 06 September 2008
is shown in the Figure 3.2. This product is designed to be clear sky conservative [Platnick et al.,
2003], meaning that it will determine a pixel clear only if the spectral test indicates a high

probability that clouds are not present.

3.3 Radiative Transfer Models

The radiative transfer model (RTM) is used to simulate the observed radiances on the top-of-
atmosphere (TOA) by an instrument. The current weather conditions are the starting point for
all computer weather prediction models, and satellite observations provide most of the needed
input data. But satellites do not measure weather variables directly. They measure reflected
sunlight and emitted radiation from the earth at different spectral wavelengths. The intensity
and spéctral distribution of this radiation depends on important weather variables, for example,
atmospheri]c temperature, humidity, cloudiness, precipitation, and surface properties. A
radiative transfer model is the glue that connects the remote satellite observations to the weather
conditions. It is a complex numerical model that, given surface and atmospheric conditions,
permits calculation of the radiation, and, given measurements of the radiation, enables extraction
of information on the surface and atmosphere. The radiative transfer model must not only be
accurate but must be computational efficient to enable assimilation of millions of satellite

observations in a matter of minutes. Since the AIRS is a high spectral resolution instrument
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with more than 2300 spectral channels, the RTM costs the most CPU-intensive part of the
operational processing. Therefore, the requirements for the AIRS RTM must be fast, and the

RTM forward calculation accuracy approaches the nominal noise level of the instrument.

Table 3.3 SARTA/PFAAST Pressure Levels

Level Pressure Level Pressure Level Pressure
Number [hPa] Number |hPa] Number [hPa]

1 0.0050 35 47.1882 69 374.7241
2 0.0161 36 51.5278 70 390.8926
3 0.0384 37 56.1260 71 407.4738
4 0.0769 - 38 60.9895 72 424.4698
5 0.1370 39 66.1253 73 441.8819
6 0.2244 40 71.5398 74 459.7118
7 0.3454 41 77.2396 75 477.9607
8 0.5064 42 83.2310 76 496.6298
9 0.7140 43 89.5204 77 515.7200
10 0.9753 44 96.1138 78 535.2322
11 1.2972 45 103.0172 79 555.1669
12 1.6872 46 110.2366 80 575.5248
13 2.1526 47 117.7775 81 596.3062
14 2.7009 48 125.6456 82 617.5112
15 3.3398 49 133.8462 83 639.1398
16 4.0770 50 142.3848 84 661.1920
17 4.9204 51 151.2664 85 683.6673
18 5.8776 52 - 160.4959 86 706.5654
19 6.9567 53 170.0784 87 729.8857
20 8.1655 54 180.0183 88 753.6275
21 95119 55 190.3203 89 777.7897
22 11.0038 56 200.9887 90 802.3714
23 12.6492 57 212.0277 91 827.3713
24 14.4559 58 223.4415 92 852.7880
25 16.4318 59 235.2338 93 878.6201
26 18.5847 60 247.4085 94 904.8659
27 20.9224 61 259.9691 95 931.5236
28 23.4526 62 272.9191 96 958.5911
29 26.1829 63 286.2617 97 986.0666
30 29.1210 64 300.0000 98 1013.9476
31 32.2744 65 314.1369 99 1042.2319
32 35.6505 66 328.6753 100 1070.9170
33 39.2566 67 343.6176 101 1100.0000
34 43,1001 68 358.9665
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The Stand-alone Radiative Transfer Algorithm (SARTA v1.07) [Strow et al., 2003] is
used to simulate the AIRS clear sky radiances. The SARTA RTM is widely used in the
community because of its better consideration of the spectroscopy for atmospheric
transmittances computation, and the quality of the fast RTM transmittance parameterization. It
has 100 pressure-layer (101 pressure levels) vertical coordinates from 0.005 to 1100 hPa (Table
3.3). The calculations take into account the satellite zenith angle, absorption rby well-miked
gases (including nitrogen, oxygen, etc.), water vapor (including the water vapor continuum),

ozone, and carbon dioxide.

Through the joint efforts of the University of Wisconsin-Madison and Texas A&M
University, a fast radiative transfer cloud model for hyperspectral infrared sounder
measurements has been developed [Wei et al., 2004]. The cloudy RTM calculation is simplified
with two cloud phases: ice and liquid water. For ice clouds, the bulk single-scattering properties
of ice crystals are derived by assuming droxtals for small particles (0 — 50 pm), hexagonal
geometries for moderate particles (50 — 300 um), and aggregates for large particles (> 300 um)
[Yang et al., 2000, 2003]. For liquid water clouds, spherical water droplets are assumed, and
their single scattering properties are computed through the classical Lorenz—-Mie theory. In the
model input, the cloud optical thickness is specified in terms of its visible optical thickness at

0.55 um. The infrared cloud optical thickness for each AIRS channel i can be derived through

the following relationship:

o 3.1
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where 7 is the cloud optical thickness and (Qe> is the bulk mean extinction efficiency. Given

the visible cloud optical thickness (7,,) and cloud particle size, the infrared cloud optical

thickness, the single-scattering albedo, and the asymmetry factor can be obtained from a pre-
described parameterization of the bulk radiative properties of ice clouds and water clouds. The
detailed parameterization scheme has been reported in previous work [Wei et al., 2004]. The
cloudy radiance for a given AIRS channel / can be computed by coupling the clear sky op‘gical
thickness and the cloud optical effects. The cloud optical effects are accounted for by using a
pre-computed lookup table of cloud reflectance and transmittance on the basis of fundamental

radiative transfer principles.

The clear radiative transfer calculation of the MODIS spectra band radiances is
performed by using a transmittance model called Pressure-Layer Fast Algorithm for
Atmospheric Transmittance (PFAAST) [Hannon et al., 1996]. PFAAST is based on the line by
line radiative transfer model (LBLRTM) version 8.4 [Clough and Iacono, 1995] and the high-
resolution transmission molecular absorption database-2000 (HITRAN-2000) [Rothman et al.,
1992] with updates (aer_hitran_2000 updat_01.1). This model has 100 pressure-layers (101
pressure levels), identical to the pressure levels as used in SARTA, vertical coordinates from
0.05 to 1100 hPa. The new 101-level PFAAST calculates the radiances with better accuracy and
less model bias then the old 42-level one. The calculations of this model also accounts for the
satellite zenith angle, absorption by well-mixed gases (including nitrogen, oxygen, and carbon

dioxide), water vapor (including the water vapor continuum) and ozone.
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Chapter 4 The Handling of High Spectral Resolution Radiance

Obtaining the correct atmospheric profiles is the foundation for conducting the analyses
of the atmospheric state from satellite measurements. Due to the relatively large spatial
resolution of the sounder, it is very often that a given sounder footprint often includes clouds.
This chapter will address the handling of high spectral resolution spectra, in particular the.
cloudy scene, which includes the optimal use of imager data to derive clear-equivalence

radiance.

4.1 Traditional Cloud-clearing of the Cloud Contaminated Infrared
Radiances ‘

The chance of an AIRS footprint being completely clean is less than 10% statistically
due to the relative poor spatial resolution of 13.5 km at nadir [Huang and Smith, 2004].
Therefore, getting atmospheric temperature and moisture vertical profiles under cloudy skies
becomes very important. Smith et al. [2004] suggested that there are essentially three ways to

deal with cloudy radiances in the sounding process:
(1) Assume opaque cloud conditions and retrieve the profile above the cloud;

(2) Cloud-clear the radiance to obtain the clear-equivalent radiances, and retrieve the

profile following the clear sky procedure using the cloud-cleared radiances; and

(3) Make use of a physically based radiative transfer model in the retrieval.
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To perform cloud-removal or clearing on the AIRS cloudy radiance spectrum is the most
effective among these three approaches, because this procedure does not require modeling the
radiative transfer in cloudy conditions and is, therefore, a computationally cost-effective method

of handling infrared cloudy scenes.

For example, using microwave data for AIRS cloud-clearing is considered very robust
due to the loss of spatial gradient for certain meteorological applications. The cloud-clearing on
an AIRS cloudy footprint is superior for resolving the mesoscale weafher phenomena thanvat the
microwave spatial resolution, and will benefit for numerical weather predication. Smith et al.

[2004] combined MODIS infrared clear radiances and AIRS cloudy radiances for cloud-clearing
using the traditional single-band N " approach, where N’ is determined from MODIS infrared
clear radiance at a single infrared window (11 pm) band. Once N " is determined, the AIRS

cloud-cleared radiances can be obtained by simply applying N " to the cloudy radiances from

two adjacent AIRS footprints.

Traditional single-band cloud-clearing is based on the linear relationship in radiances
between clear and overcast scenes. Given that R, (the principle footprint) and R (the

supplementary footprint) are the AIRS cloudy radiance spectra as a function of wavenumber v

from two adjacent footprints, we assume that these two footprints have:
(1) The same atmospheric temperature and moisture profiles;
(2) The same surface skin temperatures and surface infrared emissivity spectrum; and

(3) The same cloud properties (e.g., cloud top height),
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while the only difference is the effective cloud emissivities, in terms of Ne&_ - the product of the
cloud emissivity (&) and the cloud fraction (N ). The cloudy radiance spectra of the primary

and supplementary footprints can be expressed as

R =(1-N'e] )R\" +N'e, R (4.1)

veo v

R =(1-N’e. )R + N’ R 4.2)

veo v

where subscript ¢ denotes the cloud, and R? and R’ are the clear and overcast column

radiance spectra, respectively. Equations (4.1) and (4.2) can be rewritten as
R, =R =N'g, (R - R") (4.3)
R} ~R' =N’ (R" - R") BN CE)
From equation (4.3) and (4.4), we have

*

1 clr [P
R -R™ Neg, N
R2 _Rc[r - N2 2 T :
14 14 gVC

(4.5)

Equation (4.5) gives the definition of N*, which is made independent of wavenumber by

assuming & =¢’.. If N"is known or estimated, then the AIRS cloud-clear radiances spectrum
R;® can be retrieved by

R -R’N

R = :
1-N

(4.6)
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The key question is how to best determine N”. In order to determine N°, one needs to know
the clear radiance at a certain wavenumber with good accuracy. Smith et al. [2004] used the
MODIS IR window spectral band (11 pm; band 31) clear radiance together with convolved

AIRS cloudy radiances with MODIS 11 pum spectral response function within the two adjacent

footprints to determine N Tie.,

v SRR

T L(RD-RY @D

where f is the SRF for MODIS infrared band i, and RL” is the averaged observed clear

radiance for MODIS infrared spectral band i for the two adjacent AIRS footprints. Once N T is

determined by Equation (4.7), the AIRS clear column radiance spectrum for this footprint then

can be derived by Equation (4.6).

Equation (4.7) is the traditional method to estimate N " using a single infrared window

spectral band. Although the equation provides a straight forward way to calculate N ", and
therefore cloud-cleared radiances using Equation (4.6), it poses a new question of how to

determine the averaged observed clear radiance for MODIS infrared spectral band i for a given

AIRS footprint (R;;").

4.2 Collocation of the Sounder and Imager Observations
Table 4.1 lists the MODIS spectral band specifications, while Figure 4.1 shows the

MODIS spectral response functions (SRFs) overlaid with an AIRS brightness temperature (BT)
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The numbers in this table are cited from

Primary use Band Bandwidth' Spectral radiance’ Required SNR®
Land/Cloud/Aerosols Boundary 1 620-670 21.8 128

2 841-876 247 201
Land/Cloud/Aerosols Properties 3 459-479 353 243

4 545-565 29.0 228

5 1230-1250 5.4 74

6 1628-1652 7.3 275

7 2105-2155 1.0 110
Ocean Color/Phytoplankton/Biogeochemistry 8 405-420 449 880

9 438-448 41.9 838

10 483-493 32.1 802

11 526-536 27.9 754

12 546-556 21.0 750

13 662-672 9.5 910

14 673-683 8.7 1087

15 743-753 10.2 586

16 862-877 6.2 516
Atmospheric Water Vapor 17 890-920 10.0 167

18 931-941 3.6 57

19 915-965 15.0 250
Primary use Band Bandwidth' Spectral radiance’ | Required NEAT*(K)
Surface Temperature 20 3.660-3.840 0.45 (300 K) 0.05

21 3.929-3.989 238 (335K) 2.00

22 3.929-3.989 0.67 (300 K) 0.07

23 4.020-4.080 0.79 300 K) 0.07
Temperature profile 24 4.433-4.498 0.17 250 K) 0.25

25 4.482-4.549 0.79 (300 K) 0.25
Cirrus Clouds/water vapor 26 1.360-1.390 6.00 150 (SNR)

27 6.535-6.895 1.16 (240 K) 0.25
Primary use Band Bandwidth' Spectral radiance’ Required SNR®

28 7.175-7.475 2.18 (250 K) 0.25

29 8.400-8.700 9.58 (300 K) 0.05
Ozone 30 9.580-9.880 3.69 (250K) 0.25
Surface Temperature 31 10.780-11.280 9.55 (300 K) 0.05

32 11.770-12.270 8.94 (300 K) 0.05
Temperature profile 33 13.185-13.485 4.52 (260 K) 0.25

34 13.485-13.785 3.76 (250 K) 0.25

35 13.785-14.085 3.11 (240K) 0.25

36 14.085-14.385 2.08 (220 K) 0.35

"Bands 1 to 19 are in nm, and bands 20 to 36 are in pm; “Spectral radiance values are (W mZsrTpm™); *SNR = Signal-to-noise

ratio; “NEAT = Noise-equivalent temperature difference

spectrum. It shows there is a direct relationship between AIRS and MODIS spectral

observations. From this, we assume that both instruments observe an identical atmospheric

column for a given AIRS footprint collocated with MODIS pixels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

T [K]

1 ] 32 | I31 ]

650 700 750 800 850 900 950 1000 1050 1100 1150
Wavenumber [cm!]
i T T

300 -l T T ]
280 - ‘ .
= A
N 260 N
d
s 240+ -
M 220} -

T T T T
200 1 I , 28 I & i { ] 7
1200 1250 1300 1350 1400 1450 1500 1550 1600 1650

Wavenumber [cm!]

O e
;; { \ / \
F~ 240

220 - j -

200 25 24 ) . 23 , 222 20 =

2200 2300 2400 2500 2600 2700
Wavenumber [cm!]

200 -~ $6 3534 33

300

280 -
—
D 260 -

Figure 4.1 MODIS spectral response functions (red curves) overlaid with an AIRS brightness
temperature spectrum (black curves). The units of the abscissa and ordinate are wavenumber
(cm™) and brightness temperature (K), respectively.

The AIRS spatial distribution is used in the geolocation collocation between the MODIS
and AIRS measurements, which is the first step for the combined use of both instruments.
Several collocation algorithms have been developed that are based on the scanning geometry of
two instruments flown on the same satellite [doki, 1985; Nagle, 1998]. The collocation

designates the instrument with the larger field-of-view (FOV) as the principle instrument, in this
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case the AIRS, and the collocation method then locates all of the secondary inétrument’s FOVs
that fall within each principle FOV. For this application, the instruments are located on the
same platform (NASA’s EOS Aqua satellite), simplifying the inverse navigation needed for the
collocation. Meanwhile, for a set of AIRS earth-located observations, the footprint of each
AIRS observation describes a shape that is circular at nadir, quasi-ellipsoidal at intermediate

scan angles, and ovular at extreme scan angles.

NN
NN secondary

primary

Figure 4.2 The primary (AIRS) and the secondary (MODIS) instruments collocation procedure
is illustrated. The primary field of view is defined as the half angular field of view of the AIRS.
The angle between the secondary instrument (MODIS) geolocation and the center axis of the
AIRS footprint is designated ¢ in this figure. If o is less than the half angular field of view of
the primary footprint, the secondary pixel is considered to be within the field of view of the
AIRS. :

The AIRS and MODIS collocation procedure uses a simplification described in Figure

4.2. The procedure finds all secondary (MODIS) pixels with angle « , measured between the
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secondary pixel geolocation and the center of the principle (AIRS) footpﬁnt, are less than half
the angular width of the principle instrument. The instrument time is used to narrow the search
region for finding collocated secondary pixels, but is not uscd in the actual collocation. The
diameter of the AIRS footprint at nadir is approximately 13.5 km. Depending on the angular
difference between the AIRS and MODIS slant range vectors, a weight (w) is assigned to each
MODIS pixel collocated to AIRS, which is proportional to the inverse of the distance to the
center of principle foorptint: 1 if the MODIS pixel lies at the center of the AIRS oval, and 0 if at
the outer edge. The collocation is modeled correctly if the algorithm provides an accuracy

better than 1 km, provided that the geometry information from both instruments is accurate.

Once the MODIS pixels are collocated with the AIRS footprints, the cloud properties
within the AIRS FOV can be characterized using the result from the MdDIS cloud mask and
cloud phase mask products [King et al., 2003; Platnick et al., 2003]. The AIRS cloud mask, and
cloud phase mask, as well as the cloud-layer information mask, can be generated from MODIS
products with a 1-km spatial resolution [Li et al., 2004]. For each AIRS footprint, a cloud
fraction mask (0 — 1) is created by accounting for the percentage of MODIS pixels without the

confident clear and probably clear indices within the footprints as

clr clr ’
n eh + n ronai
CldFrac =1-[ R ”’YJ (4.8)

1
na

where n, nl i » and niy,.,,, stand for the total number of MODIS 1-km pixels, confident

clear pixels, and probably clear pixels, respectively, within the AIRS footprint. Figure 4.3 is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

example of AIRS cloud fractions derived from MODIS cloud mask with a 1-km spatial

resolution.

Cloud

Cloudy

Clear

Confident Probably Probably
Clear

Figure 4.3 (Left panel) MODIS cloud mask with 1-km spatial resolution superimposed to the
AIRS footprints from a small area approximately 7° north of Puerto Rico (see the 1.5° by 1.5°
red box on the left panel of Figure 3.2). (Right panel) The corresponding AIRS cloud fraction
(see color bar) derived from MODIS 1-km cloud mask product on the left panel.

Only confident clear MODIS pixels within the AIRS footprint are averaged as observed

clear radiahce for a MODIS infrared spectral band i for a given AIRS footprint (R,fz ) as

“ clr,l
2w 4 .
Ry = —r 4.9)

np.

PR

=1
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where R,fl'/’” is the MODIS spectral band i radiance of confident clear pixel /, np is the number
of confident clear pixels within the AIRS footprint, and w, is the weight of pixel / within the

AIRS footprints as described in Chapter 4.1.

4.3 Optimal Cloud-clearing of the Cloud Contaminated Radiances
The cloud-clearing algorithm described in Chapter 4.1 determines N" from a single
MODIS spectral band. Using different MODIS infrared window spectral bands, the result may

yield different cloud-cleared spectra. The results are highly dependent on the quality control for

the single-band N~ cloud-clearing.

To obtain an optimal N* value and make the cloud-clearing result dependent on an
objective .quality control based on all MODIS spectral bands, Li, Liu and co-authors, [2005a]

developed an optimal cloud-clearing methodology. In the optimal AIRS/MODIS cloud-clearing,

Equation (4.5) is adopted for the definition of N *. however, the N* value is determined by
simultaneously minimizing the differences between the MODIS infrared observations and the
convolved AIRS cloud-cleared radiances with SRFs for all nine MODIS infrared spectral band

within primary AIRS footprint.

The cost function for the optimal cloud-clearing is defined as

Iy == [ (R - £RD) ] (4.10)
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Since the cloud-cleared radiances spectrum, R”, is a function of N [see Equation (4.6)],

v 2

Equation (4.10) becomes
I MN' 2
N\ o clr y
J(N)_Z,-:af [(R f( YE )ﬂ (4.11)

where o, is the radiance detector noise (NEdR) for MODIS band i. Given that the spectral

response function f, is a linear operator for MODIS infrared spectral band, Equation (4.11)

i

becomes

2
*N L clr 1 1 N’ 2
J(N )_Zo_iz |:(RM, I—N* i + I—N* f,(Rv )J} . (4.12)

Therefore, the first-order derivation of J(N") with respect to N* can be derived from Equation

(4.12) as

8J(N) 2 1] par N 2
= (1_N>Z Z[R — SR >}[f,(&> f(RD]. (4.13)

We may have the solution for Equation (4.13) by minimization of the cost function J(N') as

aﬂyﬁzo_ | (4.14)
oN

N can be analytically solved from Equation (4.14) in the form of
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1

L 2y
T

2

N =
2

[AR)Y-Ry [ AR~ £,(RD]

(4.15)
(R -RE AR - £RD]

Once N  is determined by Equation (4.15), the cloud-cleared AIRS radiance spectrum,

arbitrarily located at the location of the principal footprint, can be retrieved by applying N " to

Equation (4.6).

In this dissertation, nine MODIS infrared spectral bands (bands 22, 24, 25, 28, 30, 31, 32,
33, and 34) are used. MODIS spectral bands 20, 23, 27, and 29 are not used because the
convolﬁtion error introduced by the spectral gaps in the AIRS measurements (Figure 4.1), while
band 21 is not used because the larger detector noise (Table 4.1). There is spectral response
function calibration error in MODIS infrared spectral bands 35 and 36 [Tobin et al., 2006a],

both bands are not applied in this dissertation, either.

The advantage of Equation (4.15) is that the multiple MODIS spectral bands are
weighted in the N” calculation. There are two weighting factors, the detector noise accounts for
the observation error in the N’ calculation, while the radiance contract between the two

adjacent footprints accounts for the cloud height effect in the N™ calculation. For example, if

the pair contains low clouds, the MODIS middle and upper level bands 33 and 34 will have less

weight due to small value of f,(R!)— f,(R}). However, when the pair contains middle or upper

clouds, bands 33 and 34 will influence the N calculation. Beside the cloud height effect, cloud
fraction is another factor contributing the spectral weighting that maximizes the information

content of the optimal cloud-clearing approach.
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4.4 Application of Optimal Cloud-clearing
AIRS and MODIS Level-1B data and Level-2 products from Hurricane lke (2008) are
used to demonstrate the optimal cloud-clearing study. The AIRS cloud fraction mask is derived
from the MODIS cloud mask product with 1-km spatial resolution. A fractional coverage (0 — 1)
is derived to represent clear ( CldFrac = 0) to cloudy (CldFrac =1) for a given AIRS footprint.
The AIRS footprints or fields-of-view can then be classified as fully cloudy (overcast), partly

cloudy, and clear (Figure 4.4). Only AIRS footprints classified as partly cloudy are used in

75 W 70°W 65" W 60'W 55'W

Full Cloud

Partly Cloud

Clear

Figure 4.4 (Left panel) AIR brightness temperature image of channel 770 (911.235 em’,
approximately 11 um on September 06, 2008). (Right panel) The AIRS coverage of clear,
partly cloudy, and overcast footprints according to the collocated MODIS pixels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

cloud-clearing. The left of Figure 4.4 shows the AIRS brightness temperature image of channel
770 (911.235 cm™) on September 06, 2008 (AIRS granule 176); the presence of clouds is
indicated by the blué (cold) colors. The right panel of Figure 4.4 shows the coverage of clear,
partly cloudy and overcast cloudy footprints derived from the MODIS cloud mask with 1-km
spatial resolution (see left panel of Figure 3.2). Note that the color bars have different

definitions in the two panels.

Figure 4.5 shows the diagram of the principle (center) footprint and its eight surrounding

supplementary footprints. The steps of optimal cloud-clearing are as follows.

(1) For each partly cloudy AIRS footprint (principle footprint /), find its eight nearby

cloudy footprint in any direction (maximum eight nearby cloudy footprints) & (k=1,2,3,...,8).
(2) For each pair (I, k), calculate N'(k), (k=1,2,3,...,8) using Equation (4.15).

(3) Calculate R“(k) (k=1,2,3,...,8) from Equation (4.6).

(4) Calculate RES(k) = Z[L
i \ 9

i

2
][Rz’f—ﬁ(R:%)] ~
(5) Find k, , which makes RES(k,)=min RES(k).

(6) Apply quality control to the selected R;(k,) and calculate

e = (5[ ()7 (1 (7 )] @16
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Figure 4.5 Diagram of the principle footprint and its eight surrounding supplementary footprints
in the optimal cloud-clearing procedure.

where I is the total number if MODIS spectral bands used for quality control, 7,, is the

function that converts the radiances to brightness temperature for MODIS spectral band i. The

optimal cloud-clearing is successful only when 7B,,,, <0.5 K; otherwise, the cloud-clearing for
this principle footprint is rejected. The same nine MODIS infrared bands used for N )
determination [see Equation (4.15)] are also used for the quality control.

The cloud-cleared radiance spectrum R (k,) is the final clear column radiance

spectrum for the cloudy footprint / (the principle footprint). The footprint index / starts from

the first footprint to the last footprint of the AIRS granule. In order to make accurate cloud-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

cleared radiances, quality control must be applied to Rfc(km). If the root mean square

difference between the MODIS infrared clear brightness temperature observations and

convolved AIRS cloud-cleared brightness temperatures (from R;* (km)) with MODIS spectral

response functions within the principle footprints is greater than 0.5 K [as defined in Equation

(4.16)], the cloud-cleared radiance spectrum is rejected.

The optimal cloud-clearing method is applied to all AIRS footprints that are partly
cloudy. Thé optimal cloud-clearing is not performed if the number of the MODIS clear pixels is
less than 10% of the total number of MODIS pixels within this partly cloudy AIRS footprint.
Figure 4.6 shows BT images of MODIS band 28 (7.3 um) convolved from the AIRS clear
footprints (the most left panel); the MODIS clear BT observations with 1-km spatial resolution
(the second panel from the left); the averaged MODIS clear BT observations at collocated AIRS
footprints (the third panel from the left); and the one convolved from AIRS clear plus successful
cloud-cleared footprints (the most right panel). The cloud-cleared footprints fill many areas
where clear AIRS FOVs are not available, especially over northeast and southwest quadrants of
the hurricane, which illustrates that clear and clear-equivalent soundings, or data assimilation
are achieved over certain regions and their nearby oceanic areas from AIRS cloudy radiance
measurements with help from high sbatial resolution of MODIS. In addition, the cloud-cleared
radiances are also available over land areas within Venezuela and Guyana. Figure 4.7 shows the
percentage of clear AIRS footprints, AIRS footprints with successful optimal cloud-clearing that
also pass the quality control (CC-Successful), AIRS footprints with optimal cloud-clearing fail

(CC-Fail), and overcast AIRS (cloud-clearing not performed). It can be seen that 4.6% of AIRS
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footprints (each AIRS granule contains 135 scan lines, each scan lines has 90 footprints) are
successfully clear, while 20.4% of AIRS cloudy footprints are successfully cloud-cleared. Since
only partly cloudy footprints are used for cloud-clearing attempts, the success rate is more than

40% in this particular case.

Overcast (45.4%)

Clear (4.6%)

CC-Successful (20.4%)

Figure 4.7 The percentage of clear AIRS footprints (Clear), AIRS footprints with optimal
cloud-clearing successful (CC-Successful), AIRS footprints with optimal cloud-clearing fail
(CC-Fail), and the overcast AIRS footprints (Overcast).

The traditional single-band N cloud-clearing method is also applied to this example;
MODIS spectral 31 (11 um) is used for N* determination while the nine MODIS infrared
spectral bands 22, 24 25, 28, 30, 31, 32, 33, and 34 are used for quality control and similar
successful rate of optimal cloud-clearing is achieved. Figure 4.8 shows the bias and standard

deviation between the MODIS clear BT observations and convolved AIRS cloud-cleared BTs
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Figure 4.8 Bias and standard deviation between the MODIS clear brightness temperature
observations and convolved AIRS cloud-clearing brightness temperatures from all footprints °

with both the optimal cloud-clearing and the single-band N~ cloud-clearing successful.

from all footprints with cloud-clearing successfully performed. Results from traditional single-

band N* cloud-clearing approach and optimal cloud-clearing method are shown in the figure.
For optimal cloud-clearing method, the cloud-clearing bias for MODIS bands 22, 23, 25 and 30
through 34 are small (less than 0.25 K); the bias for bands 24 and 28 are slightly larger but still
less than 0.5 K. However, bias for bands 20, 27, 35, and 36 are relative large (greater than 1.0 K)

due to the convolution bias [Tobin et al., 2006a]. The AIRS popping channels and/or the AIRS
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channel gap in the spectral region cause the convolution bias. MODIS bands 35 and 36 might
also have a spectral response function calibration bias. Those biases are removable provided
that the reliable estimates are available. The standard deviation is very small (less than 0.5 K)
for almost all the MODIS infrared spectral bands (only band 27 is slightly laréer than 0.5 K),
which indicates the good agreement between the MODIS clear BT obseryations and AIRS
cloud-cleared BTs. For traditional single-band N* cloud-clearing approach, the bias between
the MODIS clear BT observations and AIRS cloud-cleared BTs is similar to that from the
optimal cloud-cleared method; however, the standard deviations for MODIS shortwave bands
20 through 23 are worse than that of the optimal cloud-clearing method. Traditional single-band
N approach is better in longwave infrared window region (11 um) than the optimal cloud-
clearing method because it uses MODIS 11-um spectral band for N’ calculation. The two
methods have similar performance for the other middle- and longwave spectral bands expect for
bands 22 and 23 where the optimal approach performs better. Although the success rate of
cloud-clearing is similar between the two methods, optimal cloud-clearing results are much
closer to the MODIS clear observations for MODIS shortwave spectral bands. This is because
only band 31 (11 um) is used for _N* calculation in the traditional single-band N* cloud-

clearing method, and the infrared shortwave spectral effects might not be fully accounted for
N’ estimation. With the optimal cloud-clearing method, nine MODIS infrared spectral bands

are used simultaneously to balance the N* spectrally, therefore, cloud-clearing results should be

optimal when compared with the MODIS clear observations.

Figure 4.9 is a scatterplot between the MODIS infrared clear BT observations and the

convolved AIRS cloud-cleared BTs with the traditional single-band N* cloud-clearing approach
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and the optimal cloud-clearing method for MODIS spectral band 22 (leff panel), 27 (middle
panel), and 32 (right panel). Approximately 2400 AIRS partly cloudy footprints are included in
the analysis. The optimal clear-clearing method creates less scatter and has a larger correlation

with MODIS infrared clear observations for MODIS infrared spectral band 22 (3.95 pm).

Comparing the AIRS cloud-cleared BT spectrum with a nearby clear footprint BT
spectrum also helps to evaluate the performance of cloud-clearing [Huang and Smith, 2004; Li
et al., 2005b]. The unper panel of Figure 4.10 shows the standard deviation between the AIRS
cloud-cleared BT spectra and their nearby clear footprint BT spectra over water where the
atmosphere and surface are assumed homogenous between the two clear adjacent footprints.
The standard deviation of AIRS cloud-cleared BTs is less than 1 K for most spectral regions.
Part of the standard deviation is due to the atmospheric non-homogeneity difference between the
two adjacent footprints. The lower panel of Figure 4.10 shows the root mean square difference
(RMSD) between the two-adjacent clear AIRS footprint pairs over water of the entire granule.
The BT difference can be 1 K in the shortwave spectral region due to the non-uniformity of the
atmospheric and surface between the two adjacent clear AIRS footprints. Therefore, the actual
standard deviation of the AIRS cloud-cleared BT should be much smaller than that shown in the

upper panel of Figure 4.10.

This chapter focused on improving the cloud-clearing algorithm using the

imager/sounder data. The results have demonstrated the advantage of optimal cloud-clearing

over the traditional single-band N~ cloud-clearing. Comparisons between imager/sounder

cloud-clearing and microwave/infrared sounder for cloud-clearing are beyond the scope of this

dissertation. Huang and Smith [2004] have compared the traditional single-band N " cloud-
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Figure 4.10 (Upper panel) Standard deviation between the AIRS cloud-cleared brightness
temperature spectra and their nearby clear brightness temperature spectra along with the root
mean square difference between the two-adjacent clear AIRS footprint pairs over the water of
the granule (lower panel).

clearihg approach with the operational Advanced Microwave Sounding Unit (AMSU)/AIRS
cloud-clearing products. They found that MODIS is also very useful for the quality control of
the operational AMSU/AIRS cloud-cleared brightness temperature spectrum. The
imager/sounder cloud-clearing approach has the advantage that the infrared surface spectral
information is implicitly being added to the calculation. If MODIS clear detection fails then the

microwave approach has the advantage of not being susceptible to low uniform clouds.

Unlike using AMSU in AIRS cloud-clearing, the imager and sounder measure radiances

at the same infrared spectral regions (Figure 4.1). There exists a direct relationship between an
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imager infrared radiance, and a sounder infrared radiance spectrum for a given imager spectral
band provides unique advantages for imager/sounder cloud-clearing. The advantages of

imager/sounder cloud-clearing are:

(1) It is easier to find clear pixels in the smaller FOV of the imager within the sounder

footprint, which is critical for the N’ calculation and the quality control on cloud-cleared

radiances;

(2) Cloud-clearing can be achieved on a single-footprint basis (hence maintaining the

spatial gradient information); and

(3) Imager infrared clear radiances provide tropospheric atmospheric information that

enhances the effectiveness of cloud-clearing for infrared sounder cloudy radiances.

However, there are also limitations: (1) the cloud-clearing can only be done with partly

cloudy footprints; (2) N has to be constant for the whole infrared spectrum; and (3) the surface

and the atmospheric profile must be homogeneous within the pair of two adjacent footprints.

The cloud-clearing might fail when one of the above assumptions fails. For example, in
the presence of ice clouds, the cloud-clearing might give spectrally inconsistent results due to
N’ not being constant in the IR spectral region. In addition, when the radiance contrasts in the
IR window region is too small, N tends to be 1 and the cloud-clearing can amplify noise rather
than remove the cloud effects on the measurements. However, all these failures will be filtered
by the quality control procedure [see Equation (4.16)]. The quality control is very important to

assure that the final cloud-cleared radiances representing the clear part of the principal footprint
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fit the MODIS infrared clear radiance observations in all infrared spectral regions

simultaneously.

The cloud-clearing results a dependent on several factors. The operational MODIS
cloud mask with 1-km spatial resolution used for determining the MODIS clear infrared
radiances within the principal AIRS footprint is critical for the success of the cloud-clearing
algorithm. Only confident clear MODIS pixels should be selected to determine the MODIS
infrared clear-sky radiances. The daytime MODIS cloud mask is more éccurate than the
nighttime mask because of the use of visible and near-infrared bands [Ackerman et al., 2008].
MODIS/AIRS collocation is also very important to assure the success of the cloud-clearing;
mis-collocated MODIS clear pixels with the AIRS footprint may result in additional cloud-
clearing errors. A reliable algorithm is necessary to provide good imager/sounder collocation.
The time difference between the imager and sounder is another factor in cloud-clearing. Since
MODIS and AIRS are in the same spacecraft, the time difference between MODIS and AIRS
for a given AIRS footprint is small enough to assure the same clouds and atmospheric
measurements are observed. The convolution error due to the AIRS spectral gaps or bad
| channels that are excluded in the calculation is another error source for MODIS/AIRS cloud-
clearing. Tobin et al. [2006a, 2006b] characterized the bias due to the AIRS spectral gaps or
bad channels; they found that window region bands 22, 31, and 32 have less bias, longwave CO;
bands 33 through 36 have mean biases increasing to 1 K for band 36, and water vapor bands 28
and 27 have mean biases of 0.48 and 1.05 K, respectively. Those biases have not been taken
into account yet when applying MODIS spectral response functions. The spectral response

function and gap issues could be mitigated if a forward model for both instruments is used
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| [Tobin et al., 2006b]. MODIS and AIRS calibration errors are the final factor to be considered

when interpolating and using the MODIS/AIRS cloud-cleared radiances.

4.5 Summary

In this chapter, optimal cloud-clearing for sounder cloudy radiances using imager
infrared clear radiances has been successfully demonstrated the advantages using collocated
AIRS and MODIS observations. The necessary geolocation collocation of both sounder and
imager are described, as well as the derivation of cloud fraction in the AIRS footprint using
MODIS cloud product. About 20% of AIRS cloudy footprints (or‘40% of the partly cloudy
footprints) are successfully cloud-cleared with the help of MODIS high spatial resolution data.
In the optimal imager/sounder cloud-clearing, the imager provides a cloud mask for sounder

footprints while the multispectral imager infrared provides clear radiance observations to

synergistically determine N~ and to be used as quality control. The conclusions of the handling

cloudy high spectral radiances are as following:

(1) MODIS infrared spectral bands 22, 24, 25, 28, and 30 through 34 are used to

determine N and quality control; more than 24% cloudy footprints are successfully cloud-

cleared with the help of MODIS. The success rate is greater than 40%.

(2) The convoluted AIRS cloud-cleared radiances are compared with MODIS infrared
clear radiance observations. The bias is less than 0.25 K for most MODIS infrared spectral

bands, while the standard deviation is less than 0.5 K for almost all the MODIS infrared spectral
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band. These numbers may be smaller when the statistics are performed with calibrated MODIS

observations.

(3) Cloud-cleared radiances are compared with their nearby clear AIRS radiances. The
standard deviation is within 1 K for most AIRS channels. Part of the standard deviation is due

to the natural (atmospheric and surface) variability of the two clear adjacent footprints.

There are several further applications when the cloud effects in spectra are removed. For
example, the clear-equivalent radiances can be used to retrieve atmospheric profiles following
clear-sky procedure, or to be assimilated into the advanced numerical weather simulations.
However, as mentioned above, the possible of noise amplification, and various quality control
procedures applied on same cloudy spectrum may result in different cloud-cleared rédiances. It
is the best procedure to obtain the atmospheric profiles from both clear and cloudy radiances,

and will be discussed in the followed chapter.
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Chapter 5 The Inferring of Atmospheric Profiles from High
Spectral Resolution Radiances

Atmospheric sounding from high spectral resolution radiances enables a study of the UT
in pre-convective environments. The retrieval processes can be developed from a regression-
based principle component analysis (PCA) scheme. The advantages of choosing regression
PCA are a thinning of the high dimensional data, quality control, and appropriate noise filtering
and estimation. This chapter establishes a clear radiance PCA algorithm, which is the
foundation for cloudy retrieval in the second section. The third section focuses on the sounding
enhancement by incorporating imager data. The inter-comparison between the retrieved profiles
and model analysis fields as well as preliminary validation with co-located radiosonde

observations (RAOB) are shown in the fourth section.

5.1 Atmospheric Profiling Scheme (I) — Clear Scene

The clear-sky sounding in this dissertation is based on the procedure of the International
MODIS and AIRS Processing Package (IMAPP) [Huang et al., 2004; Weisz et al., 2007a] with
refinements. The IMAPP is developed at Cooperative Institute for Meteorological Satellite
Studies (CIMSS), University of Wisconsin-Madison, is a Direct Broadcast (DB) algorithm for
efficiently processing raw data to Level-1B (calibrated radiances) and to Level-2 (retrieval)
products in real-time. This processing software package was first released in 2000, and it is

been used for a variety of application, including environmental monitoring, weather forecasting,
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resources management, and education. The IMAPP AIRS retrieval process is based on a
principle component regression (PCR) scheme, in which a set of regression coefficients are
obtained through the principle component analyzed radiances and the atmospheric state. The

desired parameters are retrieved by applying these coefficients to any AIRS radiance spectrum.

The retrieved parameters consist of atmospheric temperature, water vapor mixing ratio,
and ozone mixing ratio profiles at 101 pressure levels from 0.005 to 1100 hPa listed in Table 3.3.
In addition to the atmospheric profiles, the surface properties (e.g., surface skin temperature, and
surface emissivity) are also included in the retrieval outputs. All these parameters are retrieved
at AIRS single field-of-view (FOV) spatial resolution, which is 13.5 km at nadir. Since this
retrieval process is designed to be performed for a clear-sky scene, it assumes that the AIRS
footprint is clear if the derived cloud fraction (CldFrac) is less than 0.01. For those AIRS
footprints with the CldFrac between 0.01 and 1 (overcast), a cloudy retrieval procedure will be
applied, as introduced in Chapter 5.2. It should be noted that the collocated MODIS 1-km
spatial resolution cloud mask product (MYD35) is used to derive the cloud fraction for each

AIRS footprints (see Chapter 4.2).

A statistical eigenvéctor regression retrieval is used to obtain a fast and accurate first
estimation of the atmospheric state in the clear sky. The complicated non-linear relationship
between radiances and atmospheric parameters is described by the radiative transfer equation. If
scattering by the atmosphere is neglected the infrared spectral region in clear skies, the true clear

radiance R, exiting the earth-atmosphere system for a given AIRS infrared wavenumber, v, is

estimated by
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Py Py
R, =¢,,B,7,, - [ Bdr,(0,p)+(-5,,)[ Bdr, +R, : (5.1)
0 0

where ¢ is the surface emissivity, B is the Planck radiance, which is dependent on temperature

and wavenumber v, 7(0, p) is the total transmittance from the top of the atmosphere to the
atmospheric pressure p, the subscript s denotes the surface, T =1’ /r is the downwelling

transmittance, and R, represents the contribution of reflected radiation. Note that the

transmittance is a function of the absorption coefficient, which in turn depends on the
atmospheric temperature, pressure, and absorber amount. When the distribution of one
atmospheric constituent is constant and well known (e.g., CO,), one can solve Equation (5.1) for
the temperature profile, and the remaining gas amounts can be estimated in a similar way. This

is an ill-posed problem, which can usually be solved by a regression method.

To simplify the problem, it is assumed that a linear relationship between the atmospheric

state vector [ X (nl,ns), deviation from the mean value X ] and the measurements [ Y (ns,nd),

deviation from the mean value Y ]:
X=cy’ , (5.2)

where C(nl,nd) is the matrix of the regression coefficients, n/ stands for the number of levels,

ns stands for the number of samples in the training datasets, and nd is the dimension of the
measurements (i.e., the number of high spectral resolution channels used for retrieval).

According to the method of least-squares the best fitting solution is the one minimizes the sum

of the squared deviations from the data, i.e., Z(X -CY T)Z , and minimization yields
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C=XY(Y"Y)"'. Here, the superscript T stands for the transpose of a matrix, and the

superscript —1 stands for the matrix inversion.

In this study, the retrieval methodology utilized a principal component regression
algorithm, i.e., an eigenvector regression algorithm [Smith and Woolf, 1976; Huang and
Antonelli, 2001; Goldberg et al., 2003; Weisz et al., 2007a, 2007b]. This principal component

statistical regression is used the following relationship instead:

X=c4 , (5.3)
where the dimension of C is now (n/,npc) and

A=YU N (5.4)

The A(ns,npc) stands for the matrix of compressed measurements, which are commonly called
projection coefficients or principal component score, npc is the number of eigenvectors of the

measurements, and U(nd,npc) is the matrix containing the first few (npc) eigenvectors of the

. . - . 2
covariance matrix of Y. In the least squares solution, the minimization of Z(X —CAT)

results in the regression coefficients C:

C=X,4,(44,)" . (5:5)

where subscript #r refers to training data. Then the atmospheric parameters ( X ,,, ) are retrieved

retr

- according to

X =X+CcA’

retr obs b

(5.6)
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where A, is the matrix of the compressed observation from high spectral resolution

measurements.

In this study, the input and output vectors for ¥ and X, in Equations (5.2) and (5.6) as

8

predicators and predictands, respectively, consist of 1444 and 304 elements, which are listed in
Table 5.1. Note the retrieval algorithm does not use the full set of AIRS channels, which has
2378 channels. The selection of subset channels is based on some instrument technical issues,

which will be described later in this section.

Table 5.1 The predictors and predictands in the clear AIRS retrievals. Units are specified in the

table.
Element No. Predictors
1-1443 Used AIRS radiances [mW/mz/cm"/ster] for PCR
1444 Surface pressure [hPa]
Element No. Predictands
1-101 Temperature [K]
102 - 202 Moisture mixing ratio [g/kg]
203 - 303 Ozone mixing ratio [ppmv]
304 Surface skin temperature [K]

The key component in the principle component regression algorithm is obtaining the
regression coefficients C, which are computed from compressed radiances. The eigenvector, or
principle components (PCs), are obtained from the covariance matrix of simulated radiances,
which are computed from the training profiles. For training the regression purpose, the SeeBor
database [Borbas et al., 2005] is used in the AIRS clear scene retrieval algorithm. The SeeBor

database contains more than 15000 global profiles of temperature, moisture and ozone from
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Figure 5.1 The spatial distributions of the SeeBor training database. The total number of the
sample is 15704.

National Oceanic and Atmospheric Administration (NOAA)-88, ECMWF, the Thermodynamic
Initial Guess Retrieval (TIGR)-3, ozonesondes and desert radiosondes, and a characterization of
the elevation, ecosystem International Geosphere-Biosphere Programme (IGBP) classifications,
and surface skin temperature. The surface emissivity at ten wavelengths (3.7, 4.3, 5.0, 5.8, 7.6,
8.3, 9.3, 10.8, 12.1, and 14.3 pum) are also included in this database by matching MODIS
(MOD11) surface emissivities with laboratory measurements. Surface skin temperature over
land has been assigned to each pixel in the training set using the established relationships

between solar and azimuth angles at nadir and their surface air temperature. The ocean surface
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skin temperature has been defined randomly as a function of sea surface temperature with zero
mean and a standard deviation of 4 K. This database is wildly used at CIMSS for various
instruments clear-sky regression retrievals for skin temperature, surface emissivities, and
atmospheric profiles, when there is no real match-up data. The spatial distributions of the
SeeBor database are shown in Figure 5.1, while the histograms of the months spread in both
hemispheres are in Figure 5.2. It suggests the retrievals are globally applicable throughout the

year.
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Figure 5.2 The histograms of the months of Northern and Southern hemispheres in Seebor
database. The total numbers of the Northern and Southern hemispheres are 10142 and 5562,
respectively.
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There are several ways to determine the number of principle components to be retained.

The most common way is to examine the eigenvalues, which are proportional to the amount of
variance in the data, and retain only the leading factors (e.g., those with eigenvalues > 1)
[Goldberg et al., 2003]. The number of the leading factors is often referred to as the number of
independent pieces of information. In the experiments (simulated and non-simulated), it was
found that the first eigenvalue accounts for 70% to 95% of the variability and all of the variance
is explained by the first ten or so eigenvectors. However, ten eigenvalues are insufficient to
reconstruct the radiances within the instrument noise level. Goldberg et al. [2003] commented
that more than ten eigenvectors (but less than 100) are needed to properly reconstruct the

measurements within the instrument noise level.

To exam the number of principle components can be optimized for both the
reconstructed radiances within the instrument noise level and retrieval performance, a
simulation forv exploring these has been conducted. Because AIRS detectors may not work
properly or consistently (e.g., a detector is not responding, or has high noise), those associated
bdad channels should not include in the retrieval. The individual channel properties of each
AIRS channel can be archived online at
http://disc.sci.gsfc.nasa.gov/AIRS/documentation/documentation.shtml. A set of 1688 NOAA
National Environmental Satellite Data and Information Services (NESDIS) pre-selected
channels is used in the simulations and retrieval process. AIRS Algorithm Theoretical Basis
Document (ATBD) provides Noise Equivalent delta Temperature (NEdT) at a reference
temperature 250 K for each channel. Because AIRS detectors have the channels with NEdT < 1

K with Gaussian noise characteristics, the channel with NEdT > 1 is considered a bad channel
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and is not used in the retrieval. Those channels with wavenumber above 2400 cm™ (i.e.,
wavelength less than 4.1667 um) are not used due to the uncertainties caused by the reflected
solar radiance during daytime. These result in a total of 1443 AIRS channels in the simulations

and retrievals.

The surface pressure from the National Centers for Environmental Prediction (NCEP)
Global Data Assimilation System (GDAS) is also used as a predicator. Thréugh SeeBor
database and the simulated radiances from forward model calculation of SARTA (see Chapter
3.3) at nadir, these retrieved parameters and radiances are paired and could be used for the

evaluation of the number of PCs and the performance of retrieval results.

Figure 5.3 shows the root mean square error (RMSE) of the retrieved temperature and
moisture vertical profiles versus the number of PCs used to compress the spectrum. The RMSE

of certain variable at given pressure level is calculated as

(5.7)

where q; and ¢ are the value of retrieved parameter and the truth, respectively, and » is
the number of the total samples in the calculation of RMSE. The RMSE of atmospheric
temperature is generally lower than 1 K above 850 hPa beyond 75 PCs [Figure 5.3(a)], while the
RMSE of relative humidity is lower 14% within the atmospheric boundary layer when 100 or
more principle corﬁponents are‘ used [Figure 5.3(b)]. The vertical averaged RMSE for

atmospheric temperature (from surface to 100 hPa) and moisture (from surface to 200 hPa) '
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along with the skin temperature versus the number of PCs used is shown in Figure 5.4(a). It is

obvious that a greater RMSE reduction occurs when the first ten to twenty PCs is applied; the

(a) Temperature RMSE [K]

Pressure [hPa]

Iy

-

125 150 175

#PC

300

400 |
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600 ka5
- 700

850

Pressure [hPa]

1000

10 25 a0 75 100 125 150 175 200 225
# PC

Figure 5.3 The RMSE of retrieved temperature [K] (a) and relative humidity [%] (b) using
different number of principle components in the simulations. The retrievals were performed for

the scanning angel at nadir view.
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RMSE of these three variables do not have significant reduction beyond the using more PCs.
The larger value of vertical averaged RMSE of temperature and moisture (greater than 1 K and
10% generally) are primarily due to the larger values in the lower troposphere (see Figure 5.3),

and scaled relative humidity RMSE is shown in Figure 5.4. To further quantify the RMSE

reduction verses the number of PCs, the RMSE gradient ( RMSE ) is defined as

WS_E:/( — ”RMSEk l|_"RMSEk—I ” , . (58)
npc, —npc,_,

where ||RMSEk ” and |lRMSEk_,|| denote the vertical averaged RMSE for two retrievals which
the total numbers of used PCs are npc, and npc, ,, respectively. The retrieval performance will

consider to be saturated when the RMSE gradient ( RMSE') does not change with the increasing

the total number of PCs.

Figure 5.4(b) indicates the RMSE gradient of temperature, relative humidity and skin
temperature using Equation (5.8). A negative gradient corresponds to a reduction of the vertical
averaged RMSE in Figure 5.4(b), and vice versa. The gradient is close to 0 when more than 60
principle components are used. This infers the use of 60 or more principle components may

have similar retrieval performance in terms of RMSE.

A spectra-based principle component analysis (PCA) for the reconstruction of radiances
is also conducted. A random noise in Gaussian distribution with zero mean and NEdT
(converted to radiance units) as the standard deviation for each AIRS channel has been added to
the simulated AIRS radiances. The normalized radiance using noise can be interpreted as the

signal-to-noise ratio (SNR). When the SNR falls below unity, the noise has larger contribution
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Figure 5.4 (a) The vertical averaged RMSE in Figure 5.3 for temperature [K] (blue curves),
relative humidity [%] (scaled by 10, green curves), and surface skin temperature [K] for the first
140 principle components. The averaged RMSE for temperature and relative humidity are 100
hPa and 200 hPa to the surface, respectively. (b) The RMSE gradients for temperature, relative

humidity and surface skin temperature in (a).

than the signal. An objective reconstruction score is introduced to evaluate how well the

principle components reconstruct the original data. The reconstruction score (RS ) is defined as
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RS=J%§(R,—I§,)2 , (5.9)

i=1

where R, and R, are the noise-scaled radiances and reconstructed noise-scaled radiances for the

AIRS ith channel, respectively, and N is the total number of channels used in the principle
component analysis. A lower RS indicates a better noise filtering, and the unity RS suggests
the full depiction of the noise. The noise reduction rate is simply equal to (1-RS), and can be
understood more intuitively as: 0 is no noise reduction while larger values tend to be more

effective in noise elimination.

Both Figures 5.5(a) and 5.5(b) show the reconstruction score (blue curve) and noise
reduction rate (red curve) between the leading principle component and up to the 1440 principle
components. It is not surprising that the first few leading PCs do exblain the most variance of
original radiances. The noise reduction rate is up to 60% in the leading 200 principle
components. The advantage of using more PCs gradually vanishes. Figure 5.5(b) expresses the
detail of the leading 250 PCs, which is within the target range for this study. The noise
reduction rate has the upper limit about 80% when 40 PCs are used in the simulations. The
noise reduction rate is still above 75% and 70% if 80 and 100 PCs are applied, respectively.
Both the reconstruction scores are considéred at the reasonable levels because they are below

the e-folding scale (i.e., 0.3679).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Noisy
(a) 3 T T T 4 H
25 —— Reconstruction Score
i ~—— Noise Reduction Rate

1 250 500 750 1000 1250 1500
# PCs

(b) . ! 'Noi?y

NI, L O S N A SO
08}

06}
04}
0.2

gt framad : : : : -

S = Reconstruction Score
02FF- et === Noise Reduction Rate [
1 Zb 4IU EIEI BID 160 1él] 1éU 1EI)D 2é0 250

#PCs

Figure 5.5 The reconstruction score (blue curves) and the noise reduction rate (red curves)
between the leading principle component and up to (a) 1440 (b) 250 principle components.

Optimally choosing the number of PCs used should consider several factors, including
the explanation of significant variability, the suppression of random noise, and the accurate

estimation of the retrieved parameters. In this dissertation, 80 PCs is chosen for the eigenvector
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regression retrieval algorithm because it reconstructs a reasonable estimate of the original
radiance spectrum, limits the random noise in the reconstructed radiances (see Figure 5.5), and

retains acceptable accuracy of the retrieved parameters (see Figure 5.4).

As the desired goal of this study is global application, different sets of regression
coefficients for various surface and atmospheric conditions as well as the characteristics of
optical geometry are suitable for resulting better retrievals than a single set of coefficients. The
surface properties are categorized into over land and over water. In each category, the training
dataset of radiances is divided into six classes on the basis of the averaged 11 brightness
temperatures, which are all in the longwave window region and centered at 910 cm™. To reduce
the impact of misclassification, an overlap of 1.5 K in the upper and lower neighboring classes
is incorporated. The thresholds of each class for training the regressions are listed in the second
column of Table 5.2. The regression coefficients are computed separately in these six classes,
and further applied to the corresponding class of window brightness temperatures in the third

column of Table 5.2.

Table 5.2 The classifications of brightness temperature (BT) for training the regressions and
retrievals. The BT is the mean of eleven window channels centered at 910 cm", and has the unit
in Kelvin [K].

Class Training Retrieval
1 BT <256.5 BT <255
2 253.5<BT <£266.5 255 <BT <265
3 263.5 <BT <£276.5 265 <BT <275
4 273.5 <BT <£286.5 275 <BT <285
5 283.5<BT <£296.5 285 <BT <295
6 293.5 <BT 295 <BT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

The AIRS has a scanning angle between —49.5° and +49.5° as described in Chapter 3.1.
It will be a sldnt path for those scanning angles if not equal to zero, whereas the nadir view has a
minimum atmospheric pathlength. The increasing atmospheric pathlength affects the radiance
measurements due to the increased absorption of radiation before it reaches a satellite sensor,
and the effects due to the differential slant paths are various from channel to channel. Therefore,
besides categorized surface properties and classified brightness temperatures in the window
region, classification based on the sensor scanning angle is considered as well. Regression
coefficients are calculated for different scanning angles between 0° and 49.5°. A set of 20

scanning angles, a , which are pre-defined as

sec(a) =1+Ai (5.10)

with A=(sec(49.5°)—sec(0°))/10=0.027 , and i=0,1,2,..,19 are used. The retrieved

parameters (X, and X, ,) are calculated for the upper and the lower neighboring scanning

retr, retr,2

angle ¢, and «,, respectively. The final retrieval (X,,, ) resulting from the actual scanning

angle ¢ is obtained according to

X +BX

retr,2

(5.11)

retr Xrelr,l

where S = (sec(ar) —sec(ar;))/(sec(a,) —sec(a;)) .

To summarize, eigenvector regression or principle component regression with only a few

principle components reduces the dimension of the regression problem, as well as the impact of
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random noise while containing most of the information of the original data. Regression
coefficients have been computed for two different surface properties (over land and over water),
six brightnessiemperature classifications (Table 5.2), and 20 scanning angles. A total of 240
sets of regression coefficients have been gvenerated for refining the outputs and optimizing the
retrieval performance. The advantage due to the brightness temperature classifications has been

given in Weisz et al., [2007a].

Alternatively, a variational retrieval (e.g., Rodgers [2000]) can be included either as a
stand-alone retrieval or used in combination with a statistical retrieval, where the regression
provides the first guess for the variational approach. The Vafiational retrieval implemented is a
simultaneous iterative retrieval seeking the maximum posterior probability solution for the

minimization of a cost function
J=(y)=y")- B (y@-y") +(x-x") B (x-2) (5.12)

where x is the atmospheric state vector as calculated iteratively, x" is the background
atmospheric state, B is the covariance matrix associated with the background, y" is the
measurement vector, y(x) is the forward model operator at a given state x, and E is the \

combined measurement and forward model error covariance. This physical-based retrieval
approach can be sped up using an iterative convergence by introducing the discrepancy principle

algorithm (e.g., Li and Huang, [1999]; Li et al., [2000]).
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5.2 Atmospheric Profiling Scheme (II) — Cloudy Scene

The AIRS measured infrared radiances are typically not used for sounding retrievals
under cloudy-sky scenes because of the strong absorption and emission by clouds. However,
the probability of an AIRS footprints being completely clear is about 10%, due to the relative
poor spatial resolution of 13.5 km at nadir [Huang and Smith, 2004]. To extend the sounding
retrievals from clear to cloudy conditions, cloudy-sky retrieval is developed to explore the
performance of AIRS under both thin and thick cloud conditions. In this section, thin clouds are
defined as the cloud optical thickness (COT) less than 1.5, and all the other cloud cases are

considered as optical thick clouds.

The cloudy retrieval algorithm is based on Weisz et al., [2007b] with refinements, and is
similar to the clear-sky retrieval algorithm as described in Chapter 5.1. It is also a principle
component regression scheme, in which a set of regression coefficients are obtained through the
principle component analyzed cloudy radiances, the atmospheric state, and cloud optical
properties. The desired parameters can be retrieved by applying these coefficients to any

spectrum of AIRS cloudy radiance measurements.

In the training process, the AIRS cloudy infrared radiances are calculated with given
atmospheric profiles of temperature, moisture and ozone, sensor’s scanning angle, surface skin
temperature, surface pressure, cloud top pressure, cloud optical thickness at 0.55 um, effective

cloud particle size using the equation for radiative transfer [Zhou et al., 2007]

c __ * mJ'
RV - RO,VFT,VTIC,V + Rc,vrrc,v + Rv + Rv FR,VTIC,V

(5.13)
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where R is exiting radiance at the top of the atmosphere. R,,, R.,, R,, and R} are

upwelling emission below the cloud, emission from the cloud, upwelling emission from the
atmosphere above the cloud, and downwelling emission from the atmosphere above the cloud,

respectively. F,, and F,, are the cloud transmissive and reflective functions. The subscript v

denotes the given AIRS wavenumber. The upwelling emission R,, includes the surface

emissi(;n, the atmospheric upwelling below the cloud, and the downwelling emissions by the
cloud and the atmosphere (both above and below the cloud), which are reflected back to the

space by the surface.

In the SeeBor training database [Borbas et al., 2005], most profiles are collected and pre-
quality controlled in clear-sky conditions. To establish the cloudy profiles, clouds are added at
selected a pressure level according to their relative humidity between 100 and 900 hPa. This
results in a cloudy-sky fraining dataset of approximately 6200 profiles. Among these profiles,
~2160 profiles are suitable for ice clouds (those cloud top pressure < 500 hPa), while ~4010

profiles are for liquid water clouds (cloud top pressure > 400 hPa).

The ice clouds are assigned with COT values as 0.04, 0.16, 0.36, 0.64, 1.0, 1.44, 1.96,
and 2.56, whereas the liquid water cloud are given COT for 0.06, 0.24, 0.54, 0.96, 1.5, and 2.16.
For ice clouds, Heymsfield et al., [2003] suggested a relationship between the cloud effective
particle size in diameter (CDe):

Ar®
T — Br”

CDe =

(5.14)
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with the empirical constants A4 =18.7652, B=0.32522,and o =1.1905. The 7 stands for the
COT at 0.55 um in Equation (5.14). Li et al. [2005] suggested a 10% random variation is added
to CDe. Therefore, a range of CDe between 10 and 40 pm was obtained for ice clouds. For
liquid water clouds, Li et al. [2005] also recommended the CDe could be randomly assigned
between 5 and 35 um, with a mean of 30 pm and a standard deviation of 10 pm. These
conducts a training dataset with ~17000 and ~24000 profiles for ice and liquid water clouds at

given sensor’s scanning angle.

A set of cloudy radiances can be calculated through the cloudy radiative transfer model
using the cloudy-sky profiles above. The cloud optical thickness at visible 0.55 um is in the
model input, while the infrared COT for each AIRS channel can be derived from the visible
COT. The cvloudy radiance for a given AIRS channel can be computed by coupling the clear-
sky optical thickness and the cloud effect. The clear-sky optical thickness is derived from the
fast radiative transfer model SARTA as outlined in Chapter 3.3. Follow the procedure for
obtaining the clear regression coefficients in Chapter 5.1, the cloudy regression coefficients are
obtained by using Equation (5.5). The six classifications using averaged brightness temperature
in longwave window region (Table 5.2) and scanning angle classifications are still applied.
However, there is no separation in surface prdperties for over land and over water because the
spectrum is more sensitive to the cloud parameters. The coefﬁcient sets are computed instead
for ice and liquid water clouds independently. Note the retrieved parameters (i.e., predictands)
are with additional cloud properties (CTP, COT, and CDe), and are updated in Table 5.3. The
assignment of COT and CDe to a profile is similar to Weisz et al., [2007b] and Zhou et al.,

[2005].
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Table 5.3 The predictors and predictands in the cloudy AIRS retrievals. Units are specified in

the table.
Element No. Predictors
1 -1443 Used AIRS radiances [mW/m?/cm’ /ster] for PCR
1444 Surface pressure [hPa]
Element No. Predictands
1-101 Temperature [K]
102 - 202 Moisture mixing ratio [g/kg]
203 - 303 Ozone mixing ratio [ppmv]
304 Surface skin temperature [K]
305 Cloud top pressure [hPa]
306 Cloud optical thickness at 0.55 pm
307 Effective cloud particle size in diameter [pm]

When a given AIRS radiance spectrum is determined to have a fractional cloud cover of
greater than 0.01 (i.e., CldFrac > 0.01), the cloudy regression coefficients are applied to the
AIRS BT spectrum, and the retrieval is performed as the clear algorithm in Chapter 5.1. In the
cloudy scene, a cloud phase detection methéd based on an infrared technique [Strabala et al.,
1994] is applied to the AIRS BT spectrum for identifying ice cloud, liquid water clouds or
mixed phase clouds. After the cloud phase is determined, the appropriate set of coefficients is
applied for cloudy sounding retrieval. The clouds are treated as ice clouds if the footprint is

" identified as mixed phase. If the retrieved COT is less than 1.5 (i.e., optically thin cloud), the
sounding parameters including temperature, humidity, and ozoﬁe profiles as well as surface skin
temperature in Table 5.2 are output from the top of the atmosphere down to the surface. In all
other cloud cases (i.e., optically thick clouds), the sounding parameters are retrieved down to the

CTP level.

Although the cloud forward model is still undergoing, the cloudy sounding can be

developed from the experience in the clear regression retrievals. The cloudy principle
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component regression algorithm provides a fast estimation of atmospheric profiles, cloud and
surface properties. The preliminary inter-cémparisons have shown good agreement between the
atmospheric profiles from AIRS retrieved result and ECMWF model analysis, and the cloud top
heights from AIRS, MODIS, CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) (e.g., Weisz et al., [2007b, 2007c]). Therefore, the retrieved

products can be used to explore certain meteorological phenomena.

5.3 The Enhancement of Clear and Cloudy Soundings

The operational AIRS sounding product is based on 3 x 3 FOVs [Susskind et al., 2003},
which is useful fof numerical predication and climate studies, but this spatial resolution lacks the
capability to address certain meteorological applications such as preserving spatial gradients for
monitoring and predicting mesoscale features. Since the AIRS footprints may contains not only
a clear scene but also a cloudy one, sounding retrievals using AIRS-alone measurements for all
sky conditions is quite challenging. Although the cloud-clearing algorithm (see Chapter 4) may
increase the footprints with clear-equivalence radiances, the retrieval procedure may encounter

the amplified noise problem.

It is commonly found that MODIS clear observations are within a given AIRS cloudy
footi)rint, as sketched in Figure 5.6. Synergistic use of AIRS cloudy measurement and MODIS
clear observations is an extension of cloud-clearing approach, where MODIS determined clear-
sky pixels provide additional information to the AIRS measurement. The main differences

between the AIRS-alone sounding algorithm [Zhou et al., 2007; Weisz et al., 2007a, 2007b] and
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ClearMODISFOV
CloudyAIRS footprint

Figure 5.6 Sketch diagram for a sample AIRS partly cloudy footprint with clear MODIS
observations within the collocated AIRS FOV. Note: the picture was taken from an aerial view,
and the diagram is not to scale.

AIRS/MODIS synergistic sounding algorithm presented in this section. They are (1) adding
MODIS clear-sky infrared brightness temperature information when the AIRS single FOV is
only partlally cloudy as determined by MODIS cloud mask [Li et al., 2004; Liu et al., 2008], (2)
separate regression coefﬁc1ents for sounding retrlevals based on the cloud propertles or cloud
phases, and (3) assigning the cloud microphysical properties in terms of COT and effective

cloud particle diameter (CDe) to compute a large training dataset of cloudy radiances. High
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spectral resolution infrared alone algorithms (see Chapter 5.1 and 5.2) have been developed for
clear and cloudy sky conditions. Sounding below cloud is less accurate due to limited
information below the cloud base and the uncertainty of cloudy radiative transfer model.
Inclusion of MODIS clear infrared radiances can help in the definition of the cloud parameters
and condition the structure of sounding below the clouds and increase the accuracy of the

solution.

To obtain a fast and accurate first estimate of the atmospheric state, a statistical
eigehvector regression based on AIRS high spectral resolution measurements with high spatial
resolution MODIS observations as additional predicators (i.e., synergistic AIRS and MODIS
retrieval algorithm) was developed. The synergistic algorithm starts with the AIRS stand-aloﬁe
clear and cloudy retrieval software (see Chapters 5.1, and 5.2), which retrieves atmospheric
conditions, surface parameters and cloud-top height. Tile regression training set [Borbas et al.,
2005] consists of 15704 global profiles of temperature, moisture and ozone at 101 vertical levels
from 0.005 to 1100 hPa, as well as the surface skin température and surface emissivity. The
associated clear-sky radiances at AIRS spectra were simulated using Stand-alone Radiative
Transfer Algorithm (SARTA) [Strow et al., 2003], while the cloudy radiances were computed
with a fast high spectral cloudy radiative transfer model developed under the joint efforts of the
University of Wisconsin- Madison and Texas A&M University [Wei et al., 2004]. The clear
radiative transfer calculation of the MODIS spectral band radiances was performed by using a
transmittance model called Pressure-Layer Fast Algorithm for Atmospheric Transmittance
(PFAAST) [Hannon et al., 1996]. All these three radiative models have been introduced in

Chapter 3. |
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To train the cloudy-sky regression, the AIRS cloudy radiances were simulated using a
large number of atmospheric profiles with the following combinations of cloud properties. Each
cloudy profile of the training set is assigned a cloud-top pressure (CTP) between 100 and 900
hPa based on the relative humidity profile; where CTP < 500 hPa are assumed to be ice clouds
and CTP > 400 hPa are assumed to be liquid water clouds. For the cloud properties assignments

of ice and water clouds, they are followed the procedures in Chapter 5.2.

Once the AIRS BTs have been calculated, a regression is generated relating the
brightness temperatures to the profiles. In the synergistic algorithm, besides the AIRS
eigenvectors, eleven clear synthetic MODIS infrared spectral band brightness temperatures and
associated quadratic terms [Seemann et al., 2003] are added as additional predicators. In clear
scenes, the coefficients are calculated for over water and land separately. Due to the spectral
complexity of clouds, the coefficients are done for liquid water and ice cloud phases separately.
In addition these classifications are based on the surface type or cloud phase; the training set is
also classified based on the averaged AIRS brightness temperature in the longwave window
region that has 11 channels centered at 910 cm’, and 20 AIRS sensor scan angles. The surface
pressure from the NCEP GDAS is also used as a predicator. Table 5.4 summarized the

predicators and predictands in the synergistic AIRS and MODIS retrieval algorithm.

The synergistic use of AIRS and MODIS for atmospheric sounding algorithm at AIRS
single FOV spatial resolution is outlined in Figure 5.7. The main input data include AIRS,
MODIS Level-1B (L1B) measurements and MODIS cloud mask product. Following the
procedure as described in Liu et al. [2008], the AIRS clear-sky procedure is applied for those

AIRS FOV with CldFrac =0 because the redundant MODIS clear BTs reduce the retrieval
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accuracy. The AIRS cloudy alone procedures is applied for those AIRS FOVs with
CldFrac > 0.99, because there is very limited or no MODIS clear measurements within the
AIRS FOV. For those AIRS FOVs have 0 <CldFrac <0.01 or 0.01 <CldFrac <0.99, the

synergistic AIRS and MODIS clear procedure or cloudy procedure are used,vrespectively.

Table 5.4 The predictors and predictands in the synergistic use of AIRS and MODIS retrievals.

Units are specified in the table.

Element No. Predictors
1 -1443 Used AIRS radiances [mW/m*/cm ' /ster] for PCR
1444 Surface pressure [hPa]
1445 — 1455 Averaged MODIS clear brightness temperature [K]
1456 — 1466 Quadratic of averaged MODIS clear brightness temperature
Element No. Predictands
1-101 Temperature [K]
102 — 202 Moisture mixing ratio [g/kg]
203 - 303 Ozone mixing ratio [ppmv]
304 Surface skin temperature [K]
305 Cloud top pressure [hPa]
306 Cloud optical thickness at 0.55 pm
307 Effective cloud particle size in diameter [um]

The synergistic use of AIRS and MODIS for atmospheric sounding algorithm at AIRS single
FOV spatial resolution is outlined in Figure 5.7. The main input data include AIRS, MODIS
Level-1B (L1B) measurements and MODIS cloud mask product. Following the procedure as
described in Liu et al. [2008], the AIRS clear-sky procedure is applied for those AIRS FOV with
CldFrac = 0 because the redundant MODIS clear BTs reduce the retrieval accuracy. The AIRS
cloudy alone procedures is applied for those AIRS FOVs With CldFrac 2 0.99, because there is

very limited or no MODIS clear measurements within the AIRS FOV. For those AIRS FOVs
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have 0<CldFrac <0.01 or 0.01<CldFrac <0.99 , the synergistic AIRS and MODIS clear

procedure or cloudy procedure are used, respectively.

LIB BT MODIS L2
Measurements (MYDO03)
]

Geolocatlon
Collocation
1 MODIS L2
Cloud Mask
(MYD35)
CldFifpc=0 0< CldFac £0.01 0.01< Cldirac <0.99 0.99< ildFrac
\ 4 A\ 4
Surface Surface Cloud Phase Cloud Phase
(Land/Ocean) (Land/QOcean) (Ice/Water) (Ice/Water)
4 \ J v v
Window Window Window Window
BT class BT class BT class BT class
v \ 4 v v
Scanning Scanning Scanning Scanning
Angle Angle Angle Angle
MODIS LIB MODIS LIB
Clear BT Clear BT
(MYDO2) (MYD02)

QC for
Rtvl Output

Figure 5.7 Flowchart of the AIRS/MODIS synergistic atmospheric profile algorithm.
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If the AIRS footprint is clear, then the clear regression coefficients are applied to the
brightness temperature spectrum, and the clear-sky retrieval is obtained. If the footprint is
cloudy, a cloud phase detection method based on an IR‘ technique [Strabala et al., 1994] is
applied to the AIRS brightness temperature spectrum for identifying ice clouds, water clouds or
mixed phase clouds. After the cloud phase is determined, the appropriate set of coefficients is
applied for cloudy sounding retrieval. The clouds are treated as ice clouds if the footprint is
identified as mixed phase. For clear skies, or if the retrieved COT is less than 1.5 (i.e., optically

thin cloud), the sounding parameters, including temperature, humidity and ozone profiles as well

Table 5.5 The MODIS predicators and their uncertainty at reference temperature 285 K used in
the MODIS clear alone, and synergistic AIRS and MODIS regression procedures. BT is
brightness temperature and has the unit in Kelvin [K].

MODIS Predicator Noise / Uncertainty
Band-25-24 0.75K
Band-27 0.75K
Band-28 0.75K
Band-29 0.189 K
Band-30 0.75K
Band-31 0.167K
Band-32 0.192K
Band-33 0.75K
Band-34 0.75K
Band-35 0.75K
Band-36 1.05 K

as surface skin temperature and surface emissivities at 10 infrared wavenumbers, are output
from the top of the atmosphere down to the surface. In all other cloud cases (i.e., optically thick

clouds), the sounding parameters are retrieved down to the CTP level.
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To analyze the information contribution from various predicators to the retrieval, a
simulation study was performed. In the simulation, 90% of the NOAA-88 profile data samples
were used for training, while radiances calculated from the remaining 10% were used for testing
the retrieval algorithm. The noise added in the AIRS simulation is the same as the noise given
in the NESDIS AIRS ATBD (see Chapter 5.1), while the noise included for MODIS clear BT is
from operational algorithm for Aqua (see Table 5.5). Figure 5.8 shows the root-mean-error
(RMSE) of retrieved vertical profiles of atmospheric temperature, moisture and ozone mixing
ratio compared with the actual profiles at 101 pressure levels. The AIRS clear alone algorithm
(black curves) has the lowest RMSE in temperature and moisture retrievals, and this is the
desired purpose from the high spectral resolution sounder. The AIRS cloudy alone algorithm
(blue curves) has larger RMSE than the AIRS cloudy alone algorithm in the simulations due to
the strong absorptions in the clouds. The RMSE for synergistic AIRS and MODIS algorithm
has improvement due to the inclusion of MODIS clear information, and is comparable to that
from AIRS alone clear scheme, where the RMSE is approximately 1 K and increases to 2 K near
the surface. Moisture retrieval accuracy decreases with height from an RMSE maximum 15% at
the lowest levels. The RMSE for the ozone profiles reaches a maximum of 0.775 ppmv at the
highest levels. The impacts due to the addition of the MODIS clear data are mainly below 200
hPa for both temperature and moisture retrievals. The RMSE for MODIS clear alone algorithm
is shown for comparison, and is similar to the work for EOS Terra MODIS by Seemann et al.

[2003].
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Figure 5.8 RMSE of actual profile compared with retrieved profiles using MODIS clear (dashed
black curves), AIRS clear alone (solid black curves), AIRS cloudy alone (blue curves), and
synergistic use of AIRS and MODIS (red curves) algorithms of temperature [K] (a), relative
humidity [%] (b), and ozone [ppmv] (c). Profiles were taken from an independent sample of
10% of the NOAA-88 data and retrieved on radiances computed from each profiles.

5.4 Results and Preliminary Validation

The root-mean-square difference (RMSD) and bias between single FOV sounding
retrievals (from AIRS-alone and synergistic AIRS/MODIS algorithms), and 6-hour ECMWF
analysis are calculated to assess the performance of algorithms. Only AIRS footprints within

one hour of ECMWEF analysis are used for these statistical comparisons. Both Figures 5.9(a)
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and 5.9(b) show the RMSD and bias of temperature and column precipitable water, respectively,
of three atmospheric layers for thin ice cloud over water surface where the atmosphere, surface,
and cloud properties are assumed homogeneous within the AIRS single FOV. The synergistic
algorithm has both lower RMSD and smaller bias than the AIRS-alone method. There is an
increasing trend of RMSD and larger bias when the cloud fraction increases, as the clear-sky
MODIS pixels provide less information about the AIRS single FOV cloudy scene. Increasing
the cloud fraction within AIRS single FOV causes alternations of the weighting functions from
the clear scene values. Synergistic use of MODIS information not only reduces the RMSD but

also minimizes the bias in cloudy sounding, especially in the boundary layer.

Daytime AIRS and MODIS observations on 09 May 2003, which contains a mesoscale
frontal system [Figure 5.10(a)], was chosen to further illustrate the retrieval results. A cross-
section from south to north is examined and evaluated by comparing the MODIS true color
composited image of the scene [Figure 5.10(c)]), with the green line showing the location of the
cross-section of retrieved relative humidity profiles. The soundings are only displayed to the
CTP levels when optically thick clouds are present. Although AIRS-alone method [Figure
5.11(b)] can retrieve a moist layer approximately at 550 hPa between latitudes 34.5° and 35.5°,
the synergistic AIRS and MODIS [Figure 5.11(c)] method retrieves profiles through an area
identified as broken clouds in the MODIS true color image [Figure 5.10(c)] and MODIS cloud

mask [Figure 5.10(b)].
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Figure 5.9 Global statistics of room-mean-square (a) difference (RMSD) and (b) bias between
AIRS alone (blue curves), synergistic (red curves) retrievals (2571 profiles) and 6-hour
ECMWF analysis fields of temperature (left panels) and column precipitable water (right.
panels) on 15 Aug 2007 over the water and thin ice cloud condition with respect to AIRS SFOV
cloud fraction at 0.1 binning of three atmospheric layers. The legends of T1, T2, and T3 (WV1,
WV2, and WV3) are the statistics at atmospheric layers for temperature (column precipitable
water) at 75-200 hPa (300-700 hPa), 200-800 hPa (700-900 hPa), and 800 hPa (900 hPa) to

surface level respectively.
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The retrieved profiles are compared with a radiosonde measurement at 2230 UTC
launched at the Southern Great Plains (SGP) Cloud And Radiation Testbed (CART) site at
Lamont, Oklahoma. For this particular cloudy scene, the retrieved temperature profile is not
significantly affected by adding MODIS clear radiance information when compared with that
from both AIRS cloudy alone and synergistic methods in Figure 5.12(a). However, for water

vapor the synergistic method captures more details in the vertical profile than the AIRS-alone

(a) Lat/Long: 36.37/-87.2 (b)
50 50

T T T T T T T T T T T
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Figure 5.12 The retrieved (a) temperature and (b) moisture sounding profiles (green, blue and
red lines refer to the result from MODIS clear alone, AIRS cloudy alone, and synergistic AIRS
and MODIS retrieval methods, respectively) compared with one co-located SGP CART
radiosonde measurement (black) denoted as the location (black solid lines) in Figure 5.11.
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method [Figure 5.12(b)]. The cloud layer and an upper level moist layer (relative humidity of
approximately 40%) around 200 hPa levels [Figure 5.12(b)] are consistence with the in-situ
radiosonde observations. The combined AIRS/MODIS retrieval also better represents the
relative humidity in the lowest layer. Differences between the retrievals and radiosonde

observations are partly caused by the spatial and temporal differences in the comparisons.
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Figure 5.13 (a) Comparisons between observed AIRS clear-sky neighbor (blue) and calculated
SARTA clear brightness temperatures by using MODIS clear alone (green), AIRS cloudy alone
(red), synergistic AIRS and MODIS (cyan) retrievals. (b) Brightness temperature differences for
the neighboring clear-sky observation and the clear-sky calculations.
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To further investigate the performance of the sounding retrieval algorithms, the
calculated AIRS clear brightness temperature using the retrieved surface parameters and profiles
are compared with nearby clear-sky observations [Figure 5.13]. The calculated top-of-
atmosphere (TOA) BTs, among the three methods are all close to the clear-sky observations, but
the synergistic method has the smallest BT differences (BTDs) in the carbon dioxide (CO,)
absorption, window and ozone spectral regions. The BTDs of the synergistic method are also
close to the atmospheric spectral natural variability (not shown) for any two clear adjacent
FOVs within the granule. Larger BTDs for MODIS alone retrievals in 650-750 cm’ COé and
1000-1100 cm™' ozone channels demonstrate errors in the atmospheric temperature clear-sky
case retrieval [Figure 5.13(b)]. The -2 K BTD in the channels between 1300 to 1600 cm’,
which have high- to mid-levels moisture weighting function peaks, correspond to the upper-

level moist layer (~200 hPa) or the cloud (~550 hPa) altitudes mentioned previously.

5.5 Summary

Synergistic use of AIRS and MODIS measurements, including the MODIS cloud
products improve atmospheric profile estimation. Using MODIS cloud mask to derive the AIRS
SFOV cloud fraction and the collocated MODIS clear pixel radiance measurements as
additional predictors based on an eigenvector regression to retrieve the atmospheric state and
surface parameters, the synergistic AIRS and MODIS method improves in the comparison with

either AIRS or MODIS stand-alone method, especially in atmospheric boundary layer.
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The synergistic retrieval method is developed using sets of regression coefficients from a
dataset containing more than 15000 atmospheric profiles. The retrieval products include
temperature, humidity, and ozone from 0.005 hPa to either the surface in clear skies and cloudy
skies with broken clouds, or to the cloud-top level when optically thick clouds are present.
Comparison with a co-located radiosonde measurement at the SGP CART site is used for
validation of the sounding products. The accuracy and capability of the synergistic algorithm by
comparisons of the retrievals and in-situ observations is promising. In addition, clear-sky
spectra BT calculations using synergistic method retrievals have lower BT differences when
compared with the adjacent clear neighbor AIRS BT measurements, and this suggests the

retrievals are stable for synergistic scheme.

Simulations shows that (1) optimally choosing the used eigenvectors could reduce the
dimension of the regression problem, eliminate the impact due to random noise, and conduct the
best estimation of the retrieved parameters [Figures 5.4 and 5.5]; (2) the RMSE of cloudy high
spectral resolution retrievals could be improved to the accuracy of the clear-sky retrievals when
the method incorporates high spatial resolution imager data (Figure 5.8). These enhancements
are demonstrated through the comparison between the retrieved profiles and model analysis
fields as well as preliminary validation with co-located radiosonde observations (RAOB) in
Chapter 5.4. The UT levels in general have higher retrieval accuracy than in the atmospheric
boundary layer [Figures 5.8 and 5.9]. It may provide an opportunity that the information
embedded in the upper troposphere, in particular during the pre-storm stage, could be revealed

using the atmospheric profiles from high spectral resolution measurements.
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Chapter 6 Application to Short Term Severe Storms

This chapter presents the utilization of retrieved profile information to study the state of

| the upper troposphere (UT). The first section discusses the advantage of using high spectral
resolution infrared measurements to analyze upper tropospheric phenomena. Such advantages

include how the fine vertical resolution and high accuracy of the sounding profiles can be used

to derive the stability of the UT, in particular, of the pre-storm stage. Clouds that penetrate the

tropopause have characteristic spectral signatures which require high spectral resolution

observation to detect; the detection scheme is given in the second section. The third section

concludes with a discussion on the associated rainfall rate estimation and tropopause penetrating

convection (TPC).

6.1 Upper Tropospheric Stability in the Pre-storm Stage

Inferring the high vertical resolution atmospheric profiles is the first step for estimating
the state of the UT. Details on high vertical resolution atmospheric profiling algorithms are
given in Chapter 5. In this study, the retrieved profiles obtained from the synergistic retrieval
algorithm [Chapter 5.3] are used to explore the relationéhip between the state of the UT and
mesoscale weather. The derived buoyancy frequency squared (Brunt-Viisdld frequency
squared; N*) from the retrieved profile and accumulation of hourly rainfall rate will be used as

proxy variables for the state of the UT and mesoscale convective storms, respectively.
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The buoyancy frequency squared ( N*) of the atmosphere at given geometric height z
may therefore be expressed as
Nz(z)=9£(—ai) : 6.1)

Oz

z

where 6, is potential temperature at z, and g is the local acceleration of gravity. Equation (6.1)

may be further derived at pressure level in the form of

“ g (00
Nz(p)=—§p—5§(—fj) : 6.2)
6, T, R\op |

where « is the ratio of the gas constant of air (R ) and the specific heat capacity at a constant

pressure (c,), T is the air temperature, and subscript p stands for the given physical quantity

at pressure level p. By rearrangement of Equation (6.2), the estimation of N ? at pressure

coordinates directly from the retrieved profile while avoiding the complication of the

introduction of uncertain air density o .

A case study is used to study the relationship of the state of the UT to a historical
rainfall/flooding event: the rainfall and flooding of historical proportions that struck parts of the
upper Mississippi River valley on 18" August, continuing through 19" August, 2007. Rainfall
in excess of 250 to 300 mm (10 to 12 inches) fell in some areas with the main swath of heaviest
rain centered along a line from Claremont and Rochester in Minnesota, to La Crosse, Viroqua,
and Muscoda in Wisconsin. The synoptic weather was due to a warm front extended across
northern Iowa and central Illinois on 18™ August, continued to sit there through 20" August,

2007. From this, a very moist and warm air mass rose up and over this area, providing the fuel
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B . s
AIRS 2007.08 17 Granule 195

Figure 6.1 The AIRS longwave window channel brightness temperature images at wavenumber
911 em™ for (a) granule 195 (daytime) 17™ August, 2007, (b) granule 075 (nighttime) 18™
August, 2007, (c) granule 186 (daytime) 18" August, 2007, and (d) granule 082 (nighttime) 19"
August, 2007. The dot in each panel is the location of La Crosse, Wisconsin.

for showers and thunderstorms. The depth of the warm layer as well as the considerable amount
-of moisture set the stage for heavy rainfall. Thus, the strong precipitation developed on 18t
August, eventually orientating into a west-to-east moving line from the northern Plains through
southern Minnesota, and then into southwest Wisconsin at midnight of the same day. However,

this severe precipitation was not fully captured in NCEP 6-hr forecasts.
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There were four of NASA’s EOS Aqua overpasses in the historical rainfall and flooding
region, and the AIRS and MODIS observations provide the detailed UT analysis at different
stages of the event. Figure 6.1 shows the AIRS window channel BT images at 911 cm™ on 17®

August granule 195 (daytime), 18™ August granule 075 (nighttime), 18™ August granule 186
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Figure 6.2 The vertical distribution of the buoyancy frequency squared (N”) [s?] from AIRS

retrieved products (left panels) and NCEP reanalysis field at different stages of the storm as
indicated in the legend for (a) La Crosse, Wisconsin, and (b) Chicago, Illinois.
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(daytime), and 19" August granule 082 (nighttime) as before the storm, pre-storm, storm
developing, and storm mature stages, respectively. Since La Crosse, Wisconsin, is located at the
center of the heavy rainfall, while Chicago, Illinois, is at the edge of the storm system, the states
of the UT from the synergistic retrieval profiles and model forecasts over these two locations at

different storm stages are selected for the comparisons as shown in Figure 6.2. An existing low

stability layer (i.e., smaller N* values) in the upper troposphere (the layer between 250 and 300
hPa) at the pre-storm stage is found above La Crosse, but this is not identified in Chicago at

different storm stages. Due to the relatively low vertical resolution above the atmospheric

boundary layer of model forecasts, the analyzed N* in the right panels of Figure 6.2(a) and
6.2(b) are only for reference. It is assumed that the relative low UT stability may responsible for

the enhancement of the precipitation.

The along-track transects of the retrieved and 6-hr model forecast temperature field at
pre-storm stage are shown in Figure 6.3(a) and 6.3(d). The clear and cloudy soundings are

comparable to the temperature field from the model forecast in UT altitude. However, the
derived buoyancy frequency squared N’ shows the different patterns in Figure 6.3(b) and 6.3(e).

The model has a discrete distribution of N due to coarser vertical resolution, while the N°

value from the retrieved profiles has more detail distribution both vertically and horizontally. It
is commonly accepted that N2 varies from values 1.0x107 s? (near the surface) to 2.0x10™ s
or more (at higher altitudes), with N* ~1.44x10™ s? for average tropospheric conditions, and
increases to values larger than 4%107 s? in the stratosphere [Peixoto and Oort, 1992; Holton,

2004]. A lower value of N’ corresponds to a lower stability, and vice versa. A layer of low
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stability in the upper troposphere (~ 250 to 300 hPa) spanning from 41° N to 44° N may be
responsible for accelerating the lifted moisture air parcels to a higher altitude, as well as
resulting in more condensation and severer precipitation. From 43° N toward to 45° N, the
levels with low stability have slant decreasing altitudes from 300 hPa to approximately 500 hPa.

This is correlated with the frontal lifting mechanism. The above information is embedded
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Figure 6.3 The alone-track vertical transects of (a) AIRS retrieved temperature [K], and (b)
derived buoyancy frequency squared (N?) [s?] from footprint 87 AIRS granule 075 (nighttime)

18™ August, 2007. Panel (c) is the cross-track transect of N from scan-line 76 same granule.
The lower panels (d) through (f) are from NCEP 6-hr forecasts at AIRS footprints for the same

analysis in (a) through (c). Note the N? in panels (b), (c) (d), and (f) is not in a linear scale as
shown in the colorbar on the right. ‘

within the retrieval products and may not be completely identified from the NWP model output.

Similar signatures are also shown in the cross-track transects in Figure 6.3(c). The location of
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La Crosse, Wisconsin, is around 43.8° N and 91.2° W, where the low UT stability in the pre-

storm stage is identified in both Figure 6.3(b) and 6.3(c).

Further study of the relationship between the state of the UT and' storm activities has
been conducted. The hourly precipitation data from NCEP is accumulated for 12- and 6-hr
separately, in correspondence with NASA’s EOS Aqua satellite overpasses, as shown in Figure
6.4. The NCEP hourly precipitation dataset is a synergistic product from radar and rain gauge at

approximately a 4 by 4 km grid spatial resolution over the contiguous United States (CONUS)
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Figure 6.4 Sample 12- and 6-hr precipitation accumulation windows in between satellite
“overpasses. The daytime statistics are the accumulated NCEP hourly precipitation between
07UTC and 19UTC paired with the NASA EOS Aqua satellite 07 UTC descending overpass,
and the nighttime statistics are the accumulated precipitation between 19 UTC and 07 UTC the
following day paired with the 19 UTC satellite ascending overpass. The 6-hr accumulation
window is similar to 12-hr window but does not include the accumulation during the first 6

hours of each 12-hr window.
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[Lin and Mitchell, 2005]. The accumulated precipitation is used as a proxy variable for the
mesoscale convective storms in this study. In general, Aqua satellite has descending 07 UTC
and ascending 19 UTC overpasses across the central, as well as eastern part of CONUS, which
is the region of highest storm frequency, as shown in Figure 6.7. The 12-hr accumulation of
hourly 'precipitation is broken between the two overpasses as shown in Figure 6.4. The 6-hr
accumulation is similar to 12-hr accumulation but only for the last 6-hr within the 12-hr window.
To idenﬁfy major convective storm clusters, ‘a criteria was set for regions with 12-hr
accumulation precipitation greater than 10-mm within a minimum of 50 grid boxes. These
identified precipitation clusters were then paired with the derived stability parameter from
Equation (6.2) using the retrieved profile information from hyperspectral resolution infrared

‘soundings.

The N? is also examined at the UT level from synergistic retrieved products from
combined AIRS and MODIS in both clear and cloudy skies at the AIRS single FOV spatial
resolution, which is about 13.5 km at nadir view. Meanwhile, 12-hr accumulated hourly rainfall
rate in the month of August 2009 over CONUS was performed to identify major convective

storm clusters as well. Figure 6.5 is a scatterplot between 12-hr accumulated precipitation of

identified mesoscale convective storms and the corresponding N at UT 300-hPa level at the
beginning of the 12-hr accumulation window. In terms of mesoscale convective stofrns, it is
apparent from Figure 6.5 that a low stability UT is highly associated with accumulated
precipitation of 30-mm and higher. The scatter pattern of the identical analysis for the 6-hr
accumulation in Figure 6.6 is similar to Figure 6.5, except with a generally larger precipitation

accumulation in the 12-hr statistics. This suggests not only that these storms have the largest
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Figure 6.5 Scatterplot between 300-hPa buoyancy frequency squared N’ [s?] from AIRS
retrieved profile and NCEP 12-hr accumulated precipitation [mm] (471 identified mesoscale
convective clusters in the month of August 2009). Latitudes are shown in the color scale, and
satellite ascending, descending observations are labeled with different symbols, as seen in the

legend. Green dashed line is the average tropospheric conditions N° for comparison.

precipitation intensity in the last half of the 12-hr window, but also the UT low stability state is

favorable for either the development or maintenance of some convective storms. The limited
convective cases associated with a stable UT, i.e., dots with higher values of N’ than the

reference 1.44x10~*s in Figures 6.5 and 6.6, tend to occur in the more northern latitudes of the

region (represented as warm colors in the scatter diagram). This suggests the need to include

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92
other mechanisms for heavy precipitation diagnosis in the analysis, such as atmospheric

baroclinity, which is common in the extratropics.
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Figure 6.6 Same as Figure 6.5 but for 6-hr accumulation precipitation from 6 hours after
satellite overpass.

The central geographical locations and the spatial size of identified convective clusters are
shown in Figure 6.7. The distribution is widely spread between latitudes of 25° and 50°N, with

a concentration in the Midwest and Eastern CONUS. Little or no identified clusters appear in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

the Rocky Mountains and west coast, since few convective systems met our size and
accumulated precipitation criteria in these regions. The spatial distribution of these storms is
similar to Velasco and Fritsch [1987] in Figure 6.8. From the cross-comparisons between the
UT stability with 12-hr precipitation accumulation and storm sizes in Table 6.1, there is a
correlation that a lower stability of the UT is related to larger size and stronger mesoscale storms,
while this relationship is not significant in a synoptic scale precipitation pattern. This yields the

pronounced UT stability on mesoscale convection cluster study.

Table 6.1 Averaged buoyancy frequency squared N’ [x107* s?] of identified storms in Figure
6.7 at 300-hPa level versus 12-hr precipitation accumulation (R ) and storm pixel number (7)
classifications. For storms with #>800 are considered as synoptic scale in this study and
shaded in the most right column. Daytime statistics are in the parentheses.

12-hr precipitation Storm pixel number (#)
accumulation (R) [mm] n<150 150<n<400 400<n<800
R <30 0.7497 (0.7208) 0.6746 (0.5997) 0.5969 ( - )
30<R<60 0.5234 (0.6847) 0.6620 (0.6608) 0.6403 (0.6540)
R>60 - (=) 0.6469 (0.6172) 0.5461 (0.5745)

Further comparisons between the locations of storm clusters and their ambient
environment UT stability at same 300-hPa level have been conducted and are shown in Figure
6.9. Since the majority of scatter dots fall within the lower right panel, it is revealed that a lower
stability over the storm cluster location than the storm ambient environment in the UT level
frequently occurs. This indicates a pre-existing low UT stability may be favorable for storm
development approximately 6- to12-hrs later. This is supported by Figure 6.9 with Figures 6.5,

6.6.
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Figure 6.7 The central geographic locations of those identified mesoscale convective clusters.
The numbers of storm precipitation pixels in the accumulation dataset in the month of August
2009 are shown in color scale. Corresponding satellite ascending, descending observations are
labeled in the same manner as Figure 6.5.

Although AIRS offers new insight into the atmospheric stability of the UT and storms,
there is a limitation to the study that warrants mention. The approximate 1:30 AM/PM
equatorial crossing time of the EOS Aqua satellite indicates that important phases of the diurnal
cycle of the mesoscale convection are not sampled. Different stages of convection. experience
various diurnal phases [Machado et al., 1998}, and this is more significant over land than over
ocean since continental deep convection has a pronounced peak during late afternoon [Soden,

2000; Liu and Zipser, 2005; Luo et al., 2008]. Therefore, the statistics of the storm pixel
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numbers classified in Table 6.1 should be considered tentative and is expected to be altered

when sampling a whole stage of mesoscale convection systems (e.g., Li et al. [2009]).
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Figure 6.8 Geographic and monthly distribution of mesoscale convective complexes (MCCs) in
and around the Americas. Locations are for the MCC cold-cloud shields at the time of
maximum extend. Duration of MCCs over the United States, low-latitudes, and mid-latitude
South America. U.S. sample is from 1978 and 1981; mid-latitude South American population is
for the November-April periods of 1981-1982 and 1982-1983; low-latitude population is from
May 1981 to April 1983. Hurricane symbols indicate an MCC that developed into a tropical
storm (After Velasco and Fritsch, [1987]).
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Figure 6.9 Comparison of storm area with storm ambient buoyancy frequency squared N? [s2]
at 300-hPa level. The black dashed line shows a 1-to-1 correspondence between storm cluster

and ambient N>. Note that the storm ambient is defined as 3° outward from the identified
storm cluster border as the sketch diagram shown in the insert.

Although this sub-sampling could be somewhat improved with additional sensors, such
as [ASI, a hyperspectral resolution infrared sounder in a geostationary orbit, hourly UT state

could be obtained and this limitation will be eliminated [Schmit et al., 2009].

Many past studies have focused on various atmospheric boundary layer convergence
types or surface instabilities [e.g., Wilson and Schreiber, 1986; and several following articles] as
we contribute their distinct work as “known” factors analysié. Limited research has been
conducted for those initiafed convective systems without “known” factors for many reasons, and
the percentage of those initiated convective storms due to “unknown” factor(s), in particular

nocturnal convection systems, is more than 43% in Wilson and Schreiber [1986]. One may
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assume that the 12-hr windows after the satellite ascending and descending passes are
represented by nighttime and daytime precipitation accumulation, respectively. Neither Figure
6.5 nor Figure 6.6 shows statistically significant differences between daytime and nighttime UT
stability with respect to storm activities. The lack of a day/night difference suggests that low
UT stability could be a storm initiation mechanism in storms without a well defined forcing in
the boundary layer, especially in the absence of surface heating, distinct nighttime boundary

convergence, and low instability near the surface.

6.2 The Detection of Troposphere Penetrating Convection (TPC)

| Attempts to determine signatures of severe weather activity from satellite data have been
under investigation for many years. Riehl and Schleusner [1962] first attempted to determine
the appearance of well-defined cloud streets to indicate convective hailstorms. Merritt and
Smith [1969] correlated the size of a convective storm’s cirrus anvil with the severity of the
convective activity. Since the launch of the SMS/GOES series of satellite, extremely cold cloud
tops (11 um BT < 210 K) were first seen in the earliest GOES data, and Reynolds [1980]
identified that there is a correlation of the cloud tops colder than 210 K with extreme storms,
including severe flooding and massive hail as the correlation shown in Figure 6.10.
Troposphere penetrating convections (TPCs) have been identified as localized source of lower-
stratosphere water vapor through cloud-resolving NWP modeling (e.g., Wang [2003]; Chemel et
el. [2008]), and weather satellite observation inferences [Setvak et al., 2008], which have

important implications for both monitoring the area with potential local natural hazards and

earth’s radiative balance and climate.
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Figure 6.10 Time history of minimum cloud top temperature in relation to tropopause
temperature for storm within the National Hail Research Experiment (NHRE; 1976) grid.
Times of major weather events are noted (After Reynolds [1980]).

Fritz and Laszlo [1993] simulated that for cold cloud tops with a higher BT in water
vapor band than the IR window band by High Resolution Infrared Sounder (HIRS) as the result
of stratospheric emission against a cold background of a thick cloud. Ackerman et al. [1996]

identified that occurrences of negative differences (i.e., (81, ,, — BT;,,,) <0) correlate highly

1 am
with expected regions of convection within 50 degrees of the equator using the observation from
HIRS/2 during January 1994 and July 1993. Similarly, Schmetz et al. [1997] monitored deep
convection and convective overshooting with IR window (10.5 — 12.5 um) and the water vapor

absorption band (5.7 — 7.1 pm) from METEOSAT, and revealed that the brightness temperature
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in the water vapor channel can be larger than the IR channel by as much as 6 — 8 K. Meanwhile,
Martin et al. [2008] suggested a BT difference (BTD) less than —1 K is related to the presence of
overshooting in 4-km GOES-12 imagery. Based on the MODIS 1-km imagery study by Bedka
et al. [2010], the BTD method would detect a substantial portion of the anvil in addition to
overshooting pixels, resulting in a larger number if false alarms. A BTD value of -2 K is shown

to be a better threshold for using this high spatial resolution imagery.

In the study by Aumann and Gregorich [2006], large thunderstorms can be identified in

the AIRS data as areas where the brightness temperature of the 1231 em™ (BT,,,,; ~8.12 pm)

atmospheric window channel in non-polar areas is less than 210 K. The study also points out
that about 6000 large thunderstorms are identified by this test each day, almost exclusively
within 30 degrees of the equator. Since the size of the AIRS footprint at nadir is 13.5 km, a
brightness temperature of less than 210 K indicates that the top of the anvil of the thunderstorm
protrudes well into the tropopause if a reversal in weak water lines near 1600 cm’ (~6.25 um)
[Aumann et al., 2009]. This signature requires high resolution observation for identifying the

convection that penetrates the tropopause from high thick clouds.

In this study, the chosen channel to distinguish the tropopause penetrating convection
(TPC) from thunderstorm anvils is the strong water vapor line at 1419 cm” (~7.05 pm). When
presenting a brightness temperature reversal between this water vapor line and the atmospheric

window at 1231 ecm™ (i.e., BT, ~ BT,,,, <0), the AIRS footprint is considered within the

existence of TPC because the air parcel at the cold cloud top is brought to the lower stratosphere

by an updraft overshooting, and the sensitivity of BT, is from the relatively warmer
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stratosphere. Meanwhile, the averaged BT in the longwave window channels, which are eleven
channels centered at 910 cm™, lower than 220 K threshold in the non-polar-latitudes is applied

as well. This test is similar to Aumann et al. [2009], while the TPC cloud tops are within 20 hPa

of the cold point tropopause.

2009/08/08 AIRS Granule183 911.235 cm™ BT X) 2009/08/08 AIRS Granule183 TPC

()

"o

haaf 2 f“@\‘-“‘“ i
~ g{n

.
21}

g eeee e
Y

N[ s

%
R 5 4 2

Brightness Temperature [K]

203 st a L L L L L
700 800 900 1000 100 1200 1300 1400 1500

2008/08/08 192 Rainrate [mmvhi] Wavenumber [cm"']

Flgure 6.11 (a) The AIRS granule 183 longwave w1ndow channel brightness temperature
images at wavenumber 911 cm’ ! for Typhoon Morakot on 8" August, 2009. (b) The identified
TPCs (red) and cold cloud tops (blue) within the same AIRS granule in (a). (c) The hourly
precipitation for 19 UTC on gh August, 2009. (d) Two sample brightness temperature spectra
for TPC (red) and its adjacent cold cloud pixel (black).
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A case shows that cluster of TPCs are highly associated with heavy rainfall. Figure
6.11(a) shows the 911cm™ AIRS granule 183 window channel BT image of Typhoon Morakot
on 8" August 2009, while Figure 6.11(b) indicates the TPC and cold cloud tops from the
detection test in red and blue regions, respectively. Figure 6.11(c) is the image of 19 UTC
hourly rainfall rate, which corresponds to the AIRS observation time. It is apparent that the
major precipitation is in southern Taiwan where the TPC area is collocated in Figure 6.11(b).
Two spectra from the adjacent AIRS observations with identified TPC and cold cloud top are
shown in red and black respectively in Figure 6.11(d). Although the cold cloud top spectra has a
lower longwave window channel BTs, the TPC spectra does re};resent high potential of strong

conviction.

6.3 The Rainfall Rate Estimation of the TPC

Estimation of convective rainfall from visible and window infrared satellite data has
been studied to support a variety of applications. These include climatology, hydrology, flash
flood identification, input to agricultural models, verification of NWP, and the study of
convective systems (e.g., Griffith et al. [1978, 1981]; Scofield and Oliver, [1977]; Stout et al.
[1979); Arkin [1979]; Reynolds and Smith [1979]; Wylie and Laitsch [1983]). Wylie [1979] used
precipitable water differences and one-dimensional cloud model output differences to partially
account for the variation in cloud-rain relationships between a tropical and a mid-latitude region.
Griffith et al. [1981] used a rain parameter calculated from a one-dimensional cloud model to
adjust rain estimates in the United States High Plains made with empirical relations derived in

Florida, while Adler and Nergi [1988] proposed a technique by using GOES IR imager (10.5 —
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12.6 pm) to distinguish between mesoscale convective and stratiform cloud systems as
Convective-Stratiform-Technique (CST) during four days of the second Florida Area Cumulus
Experifnent (FACE), and had a general agreement with radar and rain gauge observed rainfall.
Goldenberg et al. [1990] adopted CST and obtained the rainfall rate ( RR) in associate
convective cloud systems in Winter Monsoon Experiment (WMONEX) (around South China

Sea; 0°—7°N, 108°—-115°E) as

In(RR) =a-(TB,,,,)+b , (6.3)

lum

with empirical constants @ =—0.0157 and 5=4.76. Li et al. [1993] followed similar approach
over East China (28° — 35°N, 105° — 120°E), and had the similar relationship in Equation (6.3)

with the coefficients a = —-0.0257 and b=7.068.

Using high spectral resolution observations for testing whether the footprint is TPC has
been given in Chapter 6.2. The TPC correlated rainfall rate estimation from the collocated high
spectral sounder and high spatial imager observation has been performed in this section. The
AIRS footprints with detected TPC are collocated both temporally and spatially with NCEP
rainfall rate data in the month of August 2009 over CONUS. Figure 6.12 shows the scatterplot
between the hourly rainfall rate in logarithm scale with respect to averaged AIRS window
region BTs. The red line suggests the linear least square y-fit regression in the study and gives
the coefficients a =—1.0521 and b =220.3520. Both constants are deviated and are different
from the results of either Goldenberg et al. [1990] or Li et al. [1993], which are shown as black
solid and dashed lines in Figure 6.12. The result is somewhat an overestimate or underestimate

of the rainfall rate if the observed AIRS window BT is too cold or warm, respectively. It should
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be noted that only TPCs with latitudes between 25° N and 35° N are included in Figure 6.12

because 25° N is approximately the lower limit in the NCEP precipitation rate, while 30° N to

35°N are the latitudes used in the study by Li et al. [1993].
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Figure 6.12 Scatter between the NCEP hourly rainfall rate [mm/hr] and AIRS averaged window
BT [K] center at 910 cm™ ‘of identified TPC AIRS footprints in the month of August 2009.
Only data points with latitudes lower than 35°N (but higher than approximately 25°N due to the
lower boundary coverage in the precipitation data) are shown in the scatterplot. The red line is
the least square regression fit line. The regression fit lines from Goldenberg et al. [1990] and Li
et al. [1993] are overlaid for comparisons as black solid and black dashed lines, respectively.
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Collocated MODIS infrared observations at 1-km spatial resolution (MYDO2), in
particular Band 31 (11 pm), within the identified AIRS TPCs are also studied following the -
same procedure as mention above. There are about 150 or more MODIS pixels within one
collocated AIRS footprint as shown in Figure 4.3. Figure 6.13(a) is the scatterplot between the
rainfall rates and the MODIS Band 31 BTs. It is supposed that the precipitation within the
identified AIRS TPC footprint is not evenly distributed, and large precipitation pixels may be
located at the core center of the storm cluster, while the edge or downstream of the TPC MODIS
pixels may not be represented in the major rain area. For these reasons, those MODIS pixels
with rainfall rate lower than 3 mm/hr are excluded in the statistics. Figure 6.13(b) shows the
normalized frequency of the scatter data points occurrence in Figure 6.13(a). In general, when
having a MODIS 11 um BT greater than 215 K, the rainfall rate is about less than 4 mm/hr,
however, when the BT is less than 210 K, the rainfall rate climbs up to 7 mm/hr.- This is
consistency with past studies by Goldenberg et al. [1990] and Li et al. [1993]. The linear least
square y-fit regression using the 11 pm BT against the rainfall rate using Equation (6.3) gives
the constants a =-0.0337 and b=8.9297 as the red line shows in Figure 6.13(b). Both
constants are close to their results as the black solid and dashed lines depicted in Figure 6.13(b),
while the discrepancy may due to the imager data acquisition are on geostationary orbit with
approximately 5-km spatial resolution. It should be mentioned that MODIS has warmer 11 pm
BT than past studies at the same precipitation intensity. This is primarily because the minimum
BT is chosen within the convection cluster for obtaining the relationship using Equation (6.3) in
the past studies, while the MODIS rainfall rate estimation in this study is executed at each single

pixel within the TPC cluster.
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Figure 6.13 (a) Scatter between the hourly rainfall rate [mm/hr] and the collocated MODIS 1-
km pixels 11 um (Band 31) BT [K] within the identified TPC in Figure 6.12. (b) The
normalized frequency of data points occurrence in 1 K and 1 mm/hr grid box in (a). The least
square regression fit lines are overlaid, and the color and pattern are used as in Figure 6.12.

In summary, the utilization of the AIRS spectral signature can identify TPC through the
BT difference between window and water vapor channels simultaneously. The TPC is
commonly associated with flash floods and other natural hazards due to heavy precipitation.
The estimated rainfall rate from AIRS footprints does show some limitation due to the large
spatial resolution. Nevertheleés, the collocated MODIS observations within those identified
AIRS TPC footprints may give a possibility to estimate the rainfall rate more accurately than the

estimation from AIRS BTs due to the high spatial resolution of MODIS IR measurements.
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Chapter 7 Conclusions and Future Perspectives

The goal of this dissertation was to gain a better understanding of the upper troposphere
by utilizing the high spectral resolution AIRS measurements. Handling high spectral resolution
AIRS data is important because only less than 10% of AIRS footprints have being completed
clear due to its relatively poor spatial resolution which is 13.5 km at nadir view. The new
approach to remove the cloud effect was developed through optimally using the collocated
MODIS Level-1B observation along with Level—i product at 1-km spatial resolution. The
optimal cloud-clearing algorithm on cloudy AIRS spectra can increase the clear-equivalence
footprints, and the cloud-cleared radiances can be utilized in variety applications, such as direct

clear-sky sounding and treat as clear radiances in the numerical weather simulations.

Case study shows the optimal cloud-clearing using multiple imager infrared bands has

advantages over the traditional single-band N" cloud-clearing approach. For example, the
convolved AIRS cloud-cleared radiances have a 0.25 K low bias and 0.5 K small root-mean-
squared difference (RMSD) when compared with collocated clear-sky MODIS infrared radiance
observations. The case also demonstrated that more than 24% cloudy AIRS footprints were
successfully cloud-cleared when applying the optimal cloud-clearing approach. The successful

rate is greater than 40% of party cloudy footprints.

However, analyzing the state of upper troposphere under clear or clear-equivalence
footprints may not represent the signature completely. Therefore, the clear and cloudy

soundings were developed and enhanced in this dissertation as well. Both clear and cloudy high
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spectral resolution infrared retrievals were based on a principle component regression scheme.
The principle component number used in the retrievals has to be chosen optimally from both the
reconstruct radiances and the retrieval performance. The simulations show using more than 40
but less than 100 principle components can substantially reduce the random noise in the
reconstruct radiances. The retrieval performance has significant improvement when the leading
20 principle components were applied, and the improvement of accuracy is about saturated for
over 60 principle components are used This concludes a retrieval scheme using 80 principle

components in this dissertation.

The retrieval method is developed using a set of regression coefficients from a dataset
containing more than 15000 atmospheric profiles. The retrieval products include temperature,
moisture, and ozone from 0.005 hPa to either the surface in clear or optically thin clouds (i.e.,
COT < 1.5), or to cloud-top level when optically thick clouds are present. This AIRS alone
retrieval scheme can be enhanced through the collocated MODIS clear-sky infrared observations
along with the quadric terms as additional predicators. The synergistic use of AIRS and MODIS
algorithm can improve AIRS cloudy-sky sounding to close the acéuracy in AIRS clear-sky
retrievals in the simulation. It shows higher accuracy in the UT levels than in the atmospheric
boundary layer with the inter-comparison between the retrieved profiles and ECMWF model
analysis fields as well as preliminary validation with co-located RAOB. This provides an

opportunity to explore the goal of this dissertation.

One month of collocated AIRS and MODIS data along with hourly precipitation record
were analyzed in an effort to add new insight into the understanding of the mesoscale

convections. Emphasis was placed upon exploiting derived UT stability from high accuracy and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

fine vertical resolution high spectral resolution infrared soundings, in conjunction with heavy
precipitation (both with and without “krnown” initiation factors). The EOS Aqua satellite has
descending 1:30 AM and ascending 1:30 PM local time equatorial crossing passes, which
provides some capability to explore day/night differences, and thus the role of surface heating
during daytime. The following upper tropospheric signatures of storms were observed: 1) The
UT stability analysis indicated that a pre-existing low buoyancy frequency squared is a
prominent feature in association with the initiated convective storms; 2) A relatively low
stability over the storm locations compared to the ambient areas at UT level; 3) Stronger
mesoscale storm activities, in terms of more intensive precipitation and greater coverage, was

associated with lower UT stability. These signatures seem to lack a diurnal difference.

A considerable percentage of storms do not have well deﬁﬁed boundary convergence
initiation mechanisms. This dissertation strives to explore the mesoscale storm with a top down
perspective using enhanced synergistic atmosphéric profiling algorithm from both AIRS and
MODIS measurements. Even though the low UT stability correlates positively and significantly
with mesoscale convective storms, the atmospheric boundary moisture plume provides the
major source of precipitation. A very stable UT may limit and inhibit the growth of convective
systems as studies have shown that large-scale descent can prevent convection even with the
existence of large convective available potential energy (CAPE) and conditionally unstable
environments [Stensrud and Maddox, 1988, Richter and Bosart, 2002]. Regardless of the
storms initiation process, the presence of low UT stability could be favorable for rising parcels
of air to reach the level of free convection (LFC), and responsible for organizing and

intensifying storms.
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For the convection with very strong updrafts, which the overshooting cloud tops may be
higher than the tropopause, is detectable from high spectral resolution observation. These
tropopause penetrating convections (TPCs) can be identified from the reversal of the brightness
temperature between strong water vapor line at 1419 cm” and atmospheric window channel at

1231 em™ ( BT,,,, - BT,,,, <0) in the non-polar latitudes. Case study showed these TPCs were

usually associated with heavy rainfall. The detection of TPC has the advantage of using high
spectral resolution than the imager due to its spectral resolution, which the estimation of the
rainfall rate using sounder has a limitation because of its spatial resolution. This TPC detection
scheme using high spectral resolution sounder is very efficient compared to the detection using
broadband imager which is a time-consuming process to distinguish convections from stratiform
clouds. However, the estimated precipitation intensity using imager observations within the
identified TPC footprints has a good agreement with past studies. This is also the advantage of

synergistic use of multiple instruments.

Future research plans include additional validation bf the retrievals, improvement for
cases that contains mixed phase clouds, and a high spectral emissivity spectrum enhancement
[Li et al., 2007] using an iterative physical retrieval at AIRS SFOV resolution. The
improvement of the retrievals due to the classification of surface and cloud properties, scan
angles has to be quaniified. The estimated precipitation intensity is subject to further validation
using better dataset (e.g., 10-min precipitation, or finer gird with high reliability precipitation
datasets). Several studies have applied the combination use of sounder and imager for cloud
property retrieval [Li et al., 2004, 2005a). It may have the possibility for the detection of low

stability in the upper troposphere from high spectral resolution infrared observations because the
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spectra signature may be different from the stable UT. The long-term approach is to apply the
methodology to other instrument like IASI, AVHRR onboard LEO satellite and also to support
the development of synergistic algorithm for GEO ABI (Advanced Baseline Imager) [Schmit et

al., 2005] and LEO high-spectral IR sounders.

One may suggest that the utilization of space-borne microwave measurements and
products for the state of upper troposphere study. Currently, there are very limited microwave
sounder channels that have the weighting function in peaks in upper tropospheric levels. The
results shown in this dissertation is based on AIRS spatial resolution, while A NASA’s EOS
Aqua AMSU observation covers about 3 by 3 AIRS footprints. The error will be introduced
when remap AMSU data on AIRS spatial resolution. The utilization of microwave alone and

synergistic use of infrared and microwave data should be studied in the future research.

One of the challenges of completing this dissertation was collecting, storing, and
processing the AIRS granules. Currently, an AIRS Level-1B radiances data is about 60MB per
granule. An AIRS granules usually needs up three MODIS granules for geolocation collocation
process. A MODIS Level 1-B radiances (MYDO02), Level-2 geolocation information (MYDO3),
and Level-2 cloud mask products (MYD35) are approximately 160 MB (daytime), 30 MB, and
3 MB per granule, respectively. There are more‘ than 25 AIRS granules to cover CONUS per
day. It takes about 2GB and 5GB computer storage per day for AIRS and MODIS data in this
dissertation, respectively. If using the physical-based AIRS retrieval scheme, 4 to 8 hours
processing time is needed for an AIRS granule. It will be a time-consuming process for

conducting this study if the physical-based scheme was followed. Study shows significant

difference for the upper troposphere N’ analysis is not found when using physical-based
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iteration scheme or the regression retrievals because the calculation of N is based on the

relative gradient for temperatures on two pressure levels. The future perspective should include

the upper tropospheric N° analysis using profiles from physical-based retrievals, especially

under cloudy footprints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

References

Ackerman, S. A. (1996), Global satellite observations of negative brightness temperature
differences between 11 and 6.7 mm. J. Atmos. Sci., 53, 2803-2812.

Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley
(1998), Discriminating clear-sky from clouds with MODIS, J. Geophys. Res., 103, 32,141-
32,157.

Ackerman, S. A., R. E. Holz, R. Frey, E. W. Eloranta, B. Maddux, and M. McGill (2008), Cloud
detection with MODIS. Part II: Validation, J. Atmos. Oceanic Technol., 25, 1073— 1086.

Adler, R. F., and A. J. Negri (1988), A Satellite Infrared Technique to Estimate Tropical
Convective and Stratiform Rainfall, J. Appl. Meteor., 27, 30-51.

Aoki, T. (1985), A method for matching the HIRS/2 and AVHRR pictures of TIROS-N
satellites, paper presented at the 2nd International TOVS Study Conference, Coop. Inst. for
Meteorol. Satell. Study, Igls, Austria.

Arkin, P. A. (1979), The relationship between fractional coverage of high cloud and rainfall
accumulations during GATE over B-scale array, Mon. Wea. Rev., 107, 1382-1387.

Aumann, H.H., M.T. Chahine, C. Gautier, M. Goldberg, E. Kalnay, L. McMillin, H. Revercomb,
P.W. Rosenkranz, W. L. Smith, D. H. Staelin, L. Strow and J. Susskind (2003),
AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products and
Processing Systems, IEEE Transactions on Geoscience and Remote Sensing, Vol.41.2.
pp.253-264

Aumann, H. H., and D. Gregorich (2006), AIRS observations of deep convective clouds, Proc.
SPIE, 6301, 63010J, doi: 10.1117/12.681201.

Aumaﬁn, H. H., A. Ruzmaikin, and Sergio M. DeSouza-Machado (2009), Clusters of
Tropopause Penetrating Convective Systems and the Correlation with Hurricanes and
Typhoons, submitted to J. Climate.

Barnes, G. (2001), Severe Local Storms in the Tropics, Severe Convective Storms, C. A.
Doswell 111, Ed., American Meteorological Society, Boston, MA, 359 — 431.

Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald (2010), Objective
Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness
Temperature Gradients. J. Appl. Meteor. Climatol., 49, 181-202.

Bikos, D. E., J. F. Weaver, and B. C. Motta, 2002: A satellite perspective of the 3 May 1999
Great Plains Tornado Outbreak within Oklahoma. Wea. Forecasting, 17, 635-646.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

Borbas, E., S. Seemann, H.-L. Huang, J. Li, and W. P. Menzel (2005), Global profile training
database for satellite regression retrievals with estimates of skin temperature and emissivity,
14th International ATOVS Study Conference, NASA, Beijing.

Bluestein, H. B., and K. W. Thomas (1984), Diagnostic of a jet streak in the vicinity of a severe
weather outbreak in the Texas panhandle, Mon. Wea. Rev., 112, 2449-2520.

Byers, H. R., and R. R. Braham Jr. (1949), The Thunderstorm, U.S. Government Printing Office,
287pp.

Chahine, M. T, et al. (2006), AIRS: Improving weather forecasting and providing new data on
greenhouse gases, Bull. Am. Meteorol. Soc., 87, 911-926.

Chemel, C., M. R. Russo, J. A. Pyle, R. S. Sokhi, and C. Schiller (2008), Quantifying the
imprint of a severe hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content
in the upper troposphere/lower stratosphere. Mon. Wea. Rev., 137, 2493-2514.

English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders,
and J. R. Eyre (2000), A comparison of the impact of TOVS and ATOVS satellite sounding
data on the accuracy of numerical weather forecasts, Quarterly Journal of the Royal
Meteorological Society, Berkshire, England, 126, 569, 2911-2931.

Fetzer, E. J., L. McMillin, D. Tobin, H. H. Aumann, M. R. Gunson, W. W. McMillan, D. E.
Hagan, M. D. Hofstadter, J. Yoe, D. Whiteman, J. Barnes, R. Bennartz, V. Walden, M.
Newchurch, P. Minnett, R. Atlas, F. Schmidlin, E. T. Olsen, M. Goldberg, S. Zhou, H. Ding,
W. Smith, Sr., H Revercomb (2003), AIRS / AMSU / HSB Validation, IEEE Transactions
Geosci. and Remote Sensing, 41, 418-431.

Frey,R. A, S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang (2008),
Cloud detection with MODIS, part I: Improvements in the MODIS cloud mask for collection
5, J. Atmos. Oceanic Technol., 25, 1057-1072.

Fritz, S., and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds
in the tropics. J. Geophys. Res., 98 (D12), 22 959-22 967.

Goldenberg, S. B., R. A. Houze, Jr., and D. D. Churchill (1990), Convective and Stratiform
Components of a Winter Monsoon Cloud Cluster Determined from Geosynchronous Infrared
Satellite Data, J. of the Meteorological Soc. of Japan, 68, 37-63

Goldberg, M. D., Y. Qu, L. M. McMillin, W Wolf, L. Zhou, and M. Divakarla (2003), AIRS
Near-Real-Time Products and Algorithms in Support of Operational Numerical Weather
Prediction, JEEE Transactions on Geoscience and Remote Sensing, 41, 379-389

Griffith, C. G., W. L. Woodley, and P. G. Grube (1978), Rain Estimation from Geosynchronous
Satellite Imagery-—Visible and Infrared Studies, Mon. Wea. Rev., 106, 1153-1171.

Griffith, C. G., J. A. Augustine, and W. L. Woodley (1981), Satellite rain estimation in the U.S.
High Plains, J. Appl. Meteor., 20, 53-66.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

Hannon, S., L. L. Strow, and W. W. McMillan (1996), Atmospheric infrared fast transmittance
models: A comparison of two approaches, Proc. SPIE Int. Soc. Opt. Eng., 2830, 94— 105.

Heymsfield, A. J., S. Matrosov, and B. A. Baum (2003), Ice water path—optical depth
relationships for cirrus and precipitating cloud layers. J. Appl. Meteor., 42:1369-1390.

Holton, J. R. (2004), An Introduction to Dynamic Meteorology, Fourth Edition (The
International Geophysics Series, Vol 88), Elsevier Academic Press, Burlington, MA, 529 pp.

Huang, H.-L., and P. Antonelli (2001), Application of principal component analysis to high-
resolution infrared measurement compression and retrieval. J. Appl. Meteor., 40, 365-388.

Huang, H.-L., and W. L. Smith (2004), Apperception of clouds in AIRS data, paper presented at
the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP,
Reading, U. K. 28 June— 1 July.

Huang, H.-L., L. E. Gumley, K. Strabala, J. Li, E. Weisz, T. Rink, K. C. Baggett, J. E. Davies,
W. L. Smith, and J. C. Dodge (2004), International MODIS and AIRS Processing Package
(IMAPP): a direct broadcast software for the NASA earth observing system, Bull. Amer.
Meteor. Soc., 85, 159-161

Johnson, R. H., and B. E. Mapes (2001), Mesoscale Processes and Severe Convective Weather,
Severe Convective Storms, C. A. Doswell 111, Ed., American Meteorological Society, Boston,
MA, 71-122.

King, M. D., Coauthors (2003), Cloud and aerosol properties, precipitablé water, and profiles of
temperature and water vapor from MODIS. JEEE Trans. Geosci. Remote Sens., 41:442—458.

Li,J., L. Y. Wang, and F. X. Zhou (1993), Convective and stratiform rainfall estimation from
geostationary satellite data. Advances in Atmospheric Sciences, 10, 475 - 480.

Li, J. and H.-L. Huang (1999), Retrieval of atmospheric profiles from satellite sounder
measurements by use of the discrepancy principle, Appl. Opt., 38, 916-923.

Li, J., W. Wolf, W. P. Menzel, W. Zhang, and T. Achtor (2000), Global sounding of the
atmosphere from ATOVS measurements: The Algorithm and validation, J. Appl. Meteorol.,
39, 1248-1268.

Li, J., W. P. Menzel, F. Sun, T. J. Schmit, and J. Gurka (2004), AIRS subpixel cloud
characterization using MODIS cloud products, J. Appl. Meteorol., 43, 1083— 1094.

Li, J., C.-Y. Liu, H.-L. Huang, T. J. Schmit, X. Wu, W. P. Menzel, and J. J. Gurka (2005a),
Optimal cloud-clearing for AIRS radiances using MODIS, IEEE Trans. Geosci. Remote Sens.,
43, 1266— 1278.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

. Li, J., H.-L. Huang, C.-Y. Liu, P. Yang, T. J. Schmit, H. Wei, E. Weisz, L. Guan, and W. P,
Menzel (2005b), Retrieval of cloud microphysical properties from MODIS and AIRS, J. Appl.
Meteorol., 44, 1526— 1543.

Li, J., J. Li, E. Weisz, and D. K. Zhou (2007), Physical retrieval of surface emissivity spectrum
from hyperspectral infrared radiances, Geophys. Res. Lett., 34, L16812,
doi;10.1029/2007GL030543.

Li, Z., J. Li, W. P. Menzel, J. P. Nelson III, T. J. Schmit, E. Weisz, and S. A. Ackerman (2009),
Forecasting and nowcasting improvement in cloudy regions with high temporal GOES
sounder infrared radiance measurements, J. Geophys. Res., 114, D09216,
doi:10.1029/2008JD010596.

Lin, Y., and K. E. Mitchell (2005), The NCEP Stage II/IV hourly precipitation analyses:
development and applications, paper presented at the /9th Conference on Hydrology, San
Diego, CA 9-13 January 2005, American Meteorological Society, and data available online at
http://data.eol.ucar.edu/codiac/dss/id=21.093

Liu, C., and E. J. Zipser (2005), Global distribution of convection penetrating the tropical
tropopause, J. Geophys: Res., 110, D23104, doi;10.1029/2005JD006063.

Liu, C.-Y., J. Li, E. Weisz, T. J. Schmit, S. A. Ackerman, and H.-L.Huang (2008), Synergistic
use of AIRS and MODIS radiance measurements for atmospheric profiling, Geophys. Res.
Lett., 35, 121802, doi:10.1029/2008GL035859.

Liu, Yinghui; Key, Jeffrey R.; Frey, Richard A.; Ackerman, Steven A. and Menzel, W. Paul.
Nighttime polar cloud detection with MODIS. Remote Sensing of Environment, 92, 2004,
181-194.

Luo, Z., G. Y. Liu, and G. L. Stephens (2008), CloudSat adding new insight into tropical
penetrating convection, Geophys. Res. Lett., 35, L.19819, doi:10.1029/2008 GL035330.

Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker (1998), Life cycle
variations of mesoscale convective systems over the Americas, Mon. Weather Rev., 126,
1630- 1654.

Merritt, W. S., and W. P. Smith (1969), Satellite-observed characteristics of severe local storms,
Preprints Sixth Conference Severe Local Storms, Chicago, American Meteorological Soc.,
208-217.

Moller, A. R. (2001), Severe Local Storm Forecasting, Severe Convective Storms, C. A. Doswell
I1I, Ed., American Meteorological Society, Boston, MA, 433— 480.

Nagel, F. W. (1998), The Association of Disparate Satellite Observation, Second Symposium of
Integrated Observing System, Phoenix, AZ, The American Meteorological Society. Jan., 11—
16 1998, pp. 49-52.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

Pagano, T. and co-authors (2001), Operational Readiness for the Atmospheric Infrared Sounder
(AIRS) on the Earth Observing System Aqua spacecraft, paper presented at the SPIE 46th
Annual Meeting, San Diego, CA, and online at http://hdl.handle.net/2014/12879

Peixoto, J. P, and A. H. Oort (1992), Physics of Climate, American Institute of Physics, New
York, 520pp.

Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, and R. A. Frey (2003),
The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci.
Remote Sens., 41:459-473.

Purdom, J.F. (1976), Some Uses of High-Resolution GOES Imagery in the Mesoscale
Forecasting of Convection and Its Behavior, Mon. Weather Rev., 104, 1474— 1483.

Purdom, J.F. (1982), Subjective Interpretation of Geostationary satellite Data for Nowcasting,
Nowcasting, K. Browning, Ed., Academic Press, 149- 166.

Reynolds, D. W., and E. A. Smith (1979), Detailed analysis of composited digital radar and
satellite data, Bull. Amer. Metero. Soc., 60, 1024-1307.

Reynolds, D. W. (1980), Observations of damaging hailstorms from geosynchronous satellite
digital data. Mon. Wea. Rev., 108, 337-348.

Richter, H., and L.F. Bosart (2002), The Suppression of Deep Moist Convection near the
Southern Great Plains Dryline. Mon. Weather Rev., 130, 1665— 1691.

Riebsame, W.E., H.F. Diaz, T. Moses, and M. Price (1986), The Social Burden of Weather and
Climate Hazards. Bull. Amer. Meteor. Soc., 67, 1378— 1388.

Riehl, H., and R. A. Schleusner (1962), On identification of hail-bearing clouds from satellite
photographs, Atmos. Sci. Pap. No. 27, Colorado State University, 7pp.

Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice. World
Scientific, Singapore, 238pp.

Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg (1997), Monitoring deep convection
and convective overshooting with METEOSAT. Adv. Space Res., 19, 433-441.

Schmit, T. J., M. M. Gunshor, W. Paul Menzel, J. Gurka, J. Li, and S. Bachmeier (2005),
Introducing the next-generation advanced baseline imager (ABI) on GOES-R, Bull. Am.
Meteorol. Soc., 86, 1079—1096.

Schmit, T.J., Li, J., S. A. Ackerman, J. J. Gurka (2009), High spectral and high temporal
resolution infrared measurements from geostationary orbit, J. Atmospheric and Oceanic
Technology, 26,2273 - 2292.

Schreiber, W. E. (1986), Case studies of thunderstorms initiated by radar-observed convergence
lines, Mon. Wea. Rev., 114, 2256-2266.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Scofield, R. A., and V. J. Oliver (1977), A Scheme for estimating convective rainfall from
satellite imagery, NOAA Tech. Memo. NESS 86, 47pp.

Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley (2003), Operational retrieval of
atmospheric temperature, moisture, and ozone from MODIS infrared radiances, J. Appl.
Meteorol., 42, 1072-1091.

Setvak, M., D.T.Lindsey, R. M. Rabin, P. K. Wang, and A. Demeterova (2008), Indication of
water vapor transport into the lower stratosphere above midlatitude convective storms:

Meteosat Second Generation satellite observations and radiative transfer model simulations.
Atmos. Res., 89, 170-180.

Smith, W. L., and H. M. Woolf, 1976: The use of eigenvectors of statistical covariance matrices
for interpreting satellite sounding radiometer observations. J. Armos. Sci., 33, 1127-1140.

Smith, W. L., H. M. Woolf, C. M. Hayden, D. C. Wark, and L. M. McMillin (1979), TIROS-N
operational vertical sounder, Bulletin of the American Meteorological Society, 60, 1177-1187.

Smith, W. L., D. K. Zhou, H.-L. Huang, J. Li, X. Liu, and A. M. Larar (2004), Extraction of
profile information from cloud contaminated radiances, paper presented at the ECMWF
Workshop on Assimilation of High Spectral Resolution Sonder in NWP, Reading, U. K., 28
June— 1 July 2004.

Smith,W. L., D. K. Zhou, H.-L. Huang, H. E. Revercomb, A. M. Larar, and C. Barnett (2005),
Ultra high spectral satellite remote sounding—Results from aircraft and satellite
measurements, paper presented at the /4th International TOVS Study Conference, NASA,
Beijing.

Soden, B. J. (2000), The diurnal cycle of convection, clouds, and water vapor in the tropical
upper troposphere, Geophys. Res. Lett., 27, 2173-2176.

Stensrud, D.J., and R.A. Maddox (1988), Opposing mesoscale circulations: A case study. Wea.
Forecasting, 3, 189- 204.

Strabala, K. I., S. A. Ackerman, and W. P. Menzel (1994), Cloud properties inferred from 8 —12
micron data, J. Appl. Meteorol., 33, 212—222.

Strow, L. L., S. E. Hannon, S. De Souza-Machado, H. E. Motteler, and D. Tobin (2003), An
overview of the AIRS radiative transfer model, IEEE Trans. Geosci. Remote Sens., 41, 303—
313.

Stout, J. E., D. W. Martin, and D. N. Sikdar (1979), Estimating GATE rainfall with
geosynchronous satellite image, Mon Wea. Rev., 107, 595-598.

Susskind, J., C. D. Barnet, and J. M. Blaisdell, (2003), Retrieval of atmospheric and surface
parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE Trans. Geosci.
Remote Sensing, 41, 390409

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter (1984), A sub-
synoptic analysis of the Denver tornado of 3 June 1981, Mon. Wea. Rev., 112, 790-808.

Tobin, D. C., et al. (2006a), Radiometric and spectral validation of Atmospheric Infrared
Sounder observations with the aircraft-based Scanning High-Resolution Interferometer
Sounder, J. Geophys. Res., 111, D09S02, doi:10.1029/2005JD006094.

Tobin, D. C., H. E. Revercomb, C. C. Moeller, and T. S. Pagano (2006b), Use of Atmospheric
' Infrared Sounder high—spectral resolution spectra to assess the calibration of Moderate
resolution Imaging Spectroradiometer on EOS Aqua, J. Geophys. Res., 111, D09S03,
doi:10.1029/2005JD006095.

Uccellini, L. W. and D. R. Johnson (1979), The coupling of upper- and lower-tropospheric jet
streak and implications for the development of severe convective storms, Mon. Wea. Rev.,
107, 682-703.

Velasco, 1., and J. Fritsch (1987), Mesoscale Convective Complexes in the Americas, J.
Geophys. Res., 92(D8), 9591-9613.

Wang, P. K. (2003), Moisture plumes above thunderstorm anvils and their contributions to
cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194,
doi:10.1029/2002JD002581

Weaver,J. F. (1982), Subjective interpretation of geostationary satellite data for nowcasting.
Nowcasting, K. A. Browning, Ed., Academic Press, 149-166.

Weaver, J. F. W. Purdom, and E. J. Szoke (1994), Some mesoscale aspects of the 6 June 1990
I.imon, Colorado, tornado case. Wea. Forecasting, 9, 45-61

Weaver, J. F. Dostalek, B. C. Motta, and J. F. W. Purdom (2000), Severe thunderstorms on 31
May 1996: A satellite training case. Natl. Wea. Dig., 23, 3-19.

Weaver, J. A. Knaff, D. E. Bikos, G. Wade, and J. M. Daniels (2002), Satellite observations of a
severe supercell thunderstorm on 24 July 2000 made during the GOES-11 science test. Wea.
Forecasting, 17, 124-138.

Weaver, J.F., and D. Lindsey (2004), Some Frequently Overlooked Severe Thunderstorm
Characteristics Observed on GOES Imagery: A Topic for Future Research. Mon. Wea. Rev.,
132, 1529-1533.

Wei, H., P. Yang, J. Li, B. B. Baum, H.-L. Huang, S. Platnick, Y. Hu, and L. Strow (2004),
Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder
(AIRS) measurements, [EEE Trans. Geosci. Remote Sens., 42, 2254— 2267.

Wilson, J. W., and R. Carbone (1984), Nowcasting with Doppler radar: The forecaster-computer
relationship. Nowcasting II, K. Browning, Ed., European Space Agency, 177-186.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Wilson, J.W., and W.E. Schreiber (1986), Initiation of Convective Storms at Radar-Observed
Boundary-Layer Convergence Lines, Mon. Weather Rev., 114, 2516—2536.

Weisz, E., H.-L. Huang, J. Li, E. E. Borbas, K. Baggett, P. Thapliyal and G. Li (2007a),
International MODIS/AIRS Processing Package: AIRS Applications and Products, Journal of
Applied Remote Sensing, 1, 1 —23.

Weisz, E., J. Li, J. Li, D. K. Zhou, H.-L. Huang, M. D. Goldberg, and P. Yang (2007b), Cloudy
sounding and cloud-top height retrieval from AIRS alone single field-of-view radiance
measurements, Geophys. Res. Lett., 34, 112802, doi:10.1029/2007GL030219.

Weisz, E., J. Li, P. Menzel, A. Heidinger, B. H. Kahn, and C.-Y. Liu (2007¢c), Comparison of
AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals, Geophys. Res. Lett., 34,
1.17811, doi:10.1029/2007GL030676.

Wylie, D. P. (1979), An application of a geostationary satellite rain estimation technique to an
extratropical area, J. Appl. Meteor., 18, 1640-1648.

Wylie, D. P., and D. Laitsch (1983), The impacts of different satellite data on rain estimation
schemes, J. Climate Appl. Meteor, 22, 1270-1281.

Yang, P., K. N. Liou, K. Wyser, and D. Mitchell (2000), Parameterization of the scattering and
absorption properties of individual ice crystals. J. Geophys. Res., 105:4699-4718.

Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H-L. Huang, S-C. Tsay, and S. Ackerman,
(2003), Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79-
80:1159-1180. '

Zhou, D. K., W. L. Smith, X. Liu, A. M. Larar, S. A. Mango, and H.-L. Huang (2007),
Physically retrieving cloud and thermodynamic parameters from ultraspectral IR
measurements, J. Atmos. Sci., 64, 969— 982.

WMO (1953), World Distribution of Thunderstorm Days, WMO No. 21, TP. 6 and supplement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



