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i  

Abstract 

Hyperspectral sounder measurements from instruments such as the Atmospheric 

Infrared Sounder (AIRS) aboard the EOS-Aqua satellite, the Cross-track Infrared Sounder 

(CrIS) aboard the Suomi-NPP satellite, and the Infrared Atmospheric Sounding 

Interferometer (IASI) aboard the MetOp-A and MetOp-B satellites, are capable of retrieving 

temperature and humidity profiles at high vertical resolution.  With the use of these polar-

orbiting sensors, this study focuses on the most extreme of severe pyroconvection events, 

called Pyrocumulonimbus (PyroCb), in which the plumes can grow within hours to impact 

the upper troposphere and lower stratosphere.  The impacts of such events are of relevance to 

stratospheric chemistry, aviation, and the global climate.  The atmospheric environment 

preceding these short-lived PyroCb events can be observed and diagnosed through the use of 

hyperspectral retrievals with greater spatial and temporal precision than available from the 

routine observation network.  This study aims to analyze the state of the atmosphere 

throughout the lifecycle of a PyroCb event in order to better understand the evolution and 

structure of PyroCb clouds.  

Hyperspectral sounder temperature and moisture retrievals are used in this study to 

investigate PyroCb development during the Yarnell Hill Wildfire in Yarnell, Arizona during 

June 2013 and the Fort McMurray Wildfire in Fort McMurray, Alberta during May 2016. We 

aim to demonstrate the potential use of these hyperspectral sounder measurements and 

retrievals in the characterization and analysis of PyroCb events, as well as for real-time 

environmental monitoring and forecasting purposes. 
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1 Introduction 

1.1 Satellite Remote Sensing 

Satellite data has had an increasingly profound effect on the earth science community 

for the last five decades.  Weather prediction and forecasting is a particular facet of the earth 

sciences that has benefited immensely from such data, with analysis and forecast 

improvement advancing in conjunction with the technological advancement of new satellites 

and as techniques are developed to derive and assimilate an ever-wider spectrum of 

meteorological observations from satellite platforms.  Satellites sense outgoing 

electromagnetic radiation from the earth’s atmosphere; this radiation leaving the earth’s 

atmosphere varies with wavelength, and satellites fundamentally measure this radiation 

across the electromagnetic spectrum, most specifically within the microwave and infrared 

bands.  These radiation measurements prove incredibly useful as various atmospheric 

parameters can be inferred from them, including atmospheric gas concentrations, brightness 

temperatures, surface emissivity, and cloud optical depth. 

The earliest satellites launched in the 1960’s were polar-orbiting satellites, orbiting in 

a sun-synchronous pattern and therefore passing almost all locations on the planet twice per 

day. These satellites produced visible imagery and infrared radiometry, giving scientists the 

first global picture of the earth’s surface in 1964.  The implementation of geostationary 

orbiting satellites a short decade later advanced satellite meteorological capabilities further 

with their ability to produce observations at much smaller time increments. Shortly 

thereafter, technologies improved and emphasis shifted to include measurements of the 

vertical temperature and moisture structure of the atmosphere.  King (1958) and Kaplan 
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(1959) conducted research that suggested the possibility of inferring from infrared 

radiometry atmospheric temperature as a function of the associated atmospheric pressure 

level, leading to the first satellite-derived temperature profile retrievals in 1969. These 

atmospheric vertical profiles, specifically of temperature and moisture, have since become 

valuable analytical and diagnostic tools useful to weather prediction and forecasting.   

Modern meteorological satellites carry a suite of onboard instruments, including 

imagers, sounders, radiometers, and various gas and aerosol monitors, among others.  

Hyperspectral sounders are remote sensing instruments that measure the earth’s upwelling 

radiation in thousands of narrow bandwidth channels.  The high spectral resolution of these 

measurements allows for the retrieval of high vertical resolution at atmospheric profiles.  

Hyperspectral sounder radiance can be inverted into vertical profiles of temperature, 

moisture, and ozone, as well as various surface and cloud parameters.  Their placement 

aboard polar-orbiting satellites provides extensive global coverage with twice-daily 

overpasses, thus providing measurements over regions where traditional in-situ observation 

networks (e.g., radiosondes, aircraft observations, surface observations) are sparse.  Four 

hyperspectral sounders are currently in orbit, each collecting observations over the same 

location within hours of one another, and using data from each of these instruments allows 

for studies of time tendency of various atmospheric phenomena.  

 

1.2 Pyrocumulonimbus Events 

Pyrocumulonimbus (PyroCb) activity is a primary focus of this study. PyroCb are 

intense, fire-initiated thunderstorms that are capable of injecting large amounts of smoke and 

ash into the upper-troposphere/lower-stratosphere (UTLS) (Fromm, 2010). They are extreme 
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forms of deep pyroconvection, and widely observed in remote regions of the western United 

States and Canada, as well as in parts of Russia and western Australia. Much work has been 

done by Dr. Michael Fromm and Dr. David Peterson of the Naval Research Laboratory 

(NRL) to detect, analyze, and characterize these PyroCb events over the last decade.  

Nevertheless, these PyroCb events are widely understudied. As a consequence, 

investigating and describing the antecedent environmental conditions for these events using 

hyperspectral sounder data serves as the focus for this study. The goals of this study are to: 1) 

demonstrate the extent and capability of the hyperspectral sounder dataset; 2) describe the 

atmospheric environment before, during, and after PyroCb development; and 3) compare and 

contrast hyperspectral retrieved profiles with other existing data sources and model output. 

Section 2 provides an introduction to radiative transfer and details how radiance 

measurements are used to calculate brightness temperatures. Also described in this section 

are the three hyperspectral sounders that are currently in orbit, as well as a brief literature 

review of PyroCb activity. Section 3 gives a broad overview of both linear regression and 

physical optimal estimation before describing in detail the three retrieval algorithms used in 

this study. The WRF model is also introduced and summarized in this section. Section 4 

presents in detail two separate case studies conducted in this research: the first is a wildfire in 

Yarnell, Arizona during June 2013, and the second is a wildfire in Fort McMurray, Alberta 

during May 2016. Section 5 serves as a summary of the research presented and draws 

conclusions thereafter.  
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2 Background and Motivation 

2.1 Radiative Transfer 

 A solid understanding of how radiation is measured as it leaves the earth-atmosphere 

system is an essential foundation to the study of hyperspectral retrievals.  Radiation is 

defined as the process by which energy is transferred across space without the necessity of a 

transfer medium (Menzel, 2006).  Meteorological remote sensing is the passive detection of 

this radiation leaving the earth system by satellites (Petty, 2006). Radiation upwelled from 

the earth system varies with wavelength across the electromagnetic spectrum.  It is estimated 

that 99% of the radiation leaving the atmosphere is found in the thermal infrared band from 

4-100 µm (Petty, 2006).  Figure 1 is an example of the observed terrestrial radiance 

spectrum, with the maximum radiance values occurring between 10 – 12.5 µm (800 to 1000 

cm-1).  Vertical profiles are derived near bands where atmospheric gases are absorbed. 

Measurements taken at the center of an absorption band represent radiation from the upper 

atmosphere (as radiation from lower levels has been absorbed by these gases), and 

measurements taken away from the center of an absorption band represents radiation from 

lower levels of the atmosphere (Menzel, 2006). These parts of the electromagnetic spectrum 

with high transparency, where no absorption occurs, are referred to as “window regions,” as 

measurements from these regions represent a full vertical sampling of the atmosphere.  
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2.1.1 Planck Function and Wien’s Displacement Law 

In addition to absorption by various gases within the atmosphere, variations in 

radiation by wavelength are described by the Planck function dependence on wavelength 

(Menzel, 2006).  An object with a given absolute temperature emits radiation at all possible 

wavelengths, and it is important to understand that there is a “hard upper bound on the 

amount of radiation” at any given wavelength (Petty, 2006).  Thus, the Planck function 

describes this upper limit as a function of temperature and wavelength.  It is given as follows:  

Bλ (T ) =
2hc2

λ 5(exp( hc
kBλT

)−1)
          (2.1) 

where h = 6.626 x 10–34 J s is Planck’s constant, c = 2.998 x 108 m s–1 is the speed of light, 

and kB = 1.381 x 10–23 J K–1 is Boltzmann’s constant.  The units for Bλ(T) are that of intensity 

per unit solid angle, most commonly seen as W m–2 µm–1 sr–1. 

The Planck function is formally defined as the intensity of radiation emitted by a 

blackbody at a given wavelength (Petty, 2006).  A blackbody is an object that absorbs 

radiation perfectly, and serves as a reasonable approximation for thermal emission.  There is 

an inverse relationship between an object’s temperature and the wavelength at which the 

Planck function peaks, i.e. a cool object’s peak thermal emission will occur at a much longer 

wavelength than a warm object.  This relationship is described by Wien’s Displacement Law: 

λmax =
kw
T               (2.2) 

where kw = 2897 µm K.  This law is most informative for identifying where peak emission 

falls in the electromagnetic spectrum for objects of a given temperature. For instance, 
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standard atmospheric temperatures ranging from 200 K – 300 K bear peak emission between 

9.6 µm and 14.4 µm, in the thermal infrared band.  Additionally, standard solar temperatures 

near 6000K bear peak emission near 0.5 µm, in the visible band (Petty, 2006).  

 

2.1.2 The Radiative Transfer Equation (RTE) 

 In the field of remote sensing, the Planck function is used most commonly in 

describing upwelling radiation from the earth system.  This radiation can be described as the 

sum of two parts: the first being the contribution of radiation emitted from the surface of the 

earth, and the second being the contribution of radiation from each level of the atmosphere. 

The surface of the earth is assumed to be a blackbody.  Upwelling radiation leaving the 

atmosphere that can be sensed by satellite-borne instruments is described by the following 

equation: 

             I↑(∞) = Bλ (TS )t *+ (Bλ[T (z)]0

∞

∫ )(W↑(z))dz          (2.3)  

The first term on the right-hand side of this equation, Bλ(Ts)t*, represents the surface 

contribution of radiation, using the Planck function with surface temperature, Ts, and the total 

transmittance, t*, which is defined as the ratio of effectiveness of transmitting radiant energy 

from the surface to the top of the atmosphere (Petty, 2006).  The second term on the right-

hand side (2.3) represents the radiation from each level of the atmosphere between the 

surface and the space-borne instrument, thus incorporating the indefinite integral from the 

surface to infinity.  The first term inside this integral, Bλ[T(z)], uses the Planck function to 

measure intensity of radiation at every level z, represented by T(z).  The second term is called 

the emission weighting function, which is defined as the following:  
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  W
↑(z) = dt(z,∞)

dz
=
βa (z)
µ

t(z,∞)             (2.4) 

where βa  represents the absorption coefficient and µ = | cos 𝜃 | represents the path length 

determined by the solar angle.  This function, the derivative of transmittance with respect to 

height, physically characterizes the relative contribution of each atmospheric layer on the 

total amount of radiation emitted to space.  Thus, a weighting function can be calculated at 

each wavelength on a given spectrum, providing insight into which atmospheric layer the 

radiation at that wavelength originated. In remote sensing, a satellite sensor capable of 

measuring radiant intensities, Iλ, over closely spaced wavelengths, λi, on the edge of an 

absorption band will have each channel measure radiation from a specific atmospheric layer 

(Petty, 2006). Recall that measurements taken directly at the center of an absorption band 

represent radiation from the upper atmosphere, and measurements taken away from the 

center represent radiation from lower levels.  Thus, gathering measurements from both 

regions of an absorption band will yield a full vertical profile of the atmosphere at various 

levels.  The weighting functions of each instrument channel are of great importance to this 

study, as the information these functions contain will guide the process of retrieval for 

vertical temperature and moisture profiles.  An in depth description of this process is 

presented in Chapter 3.  It is important to note that equations 2.3 and 2.4 represent upwelling 

radiation measured by a space-borne instrument.  A separate set of equations governs the 

measurement of downward radiation by a surface-based instrument. 
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2.1.3 Brightness Temperature 

 The relationship between intensity and blackbody temperature as described by the 

Planck function allows for the conversion of intensity into brightness temperature, TB: 

TB ≡ Bλ
−1(Iλ )            (2.5) 

where Bλ–1 is the inverse of the Planck function applied to the observed radiance.  Brightness 

temperature is formally defined as the equivalent blackbody temperature of a given intensity, 

and is used as a reliable substitute for physical temperature in radiative transfer calculations 

(Petty, 2006).  Because dense cloud layers and land and water surfaces have high emissivity 

in the thermal infrared band, brightness temperatures calculated for these surfaces compare 

very closely to actual, physical temperatures of these surfaces.  However, where emissivity is 

low, such as over glacial ice observed in the microwave band, brightness temperatures do not 

compare well with the actual temperature.  Figure 2 shows observed brightness temperatures 

across a range of wavenumbers observed by the IASI instrument, with maximum values 

occurring in the transparent window region between wavenumbers of 800 and 1000 cm-1.  

Similarly, Fig. 3 shows brightness temperatures observed by IASI at one selected 

wavenumber across varying landscapes and cloud features noted on the map of western 

Canada.  The full spectra at selected locations are shown as well.  Brightness temperatures 

are much colder across the entire spectrum for the case of a high, cold cloud like ‘B’, 

whereas they are much warmer for the case of a cloud-free surface observation like ‘A’.   

 The importance of radiative transfer to remote sensing and satellite applications 

cannot be overstated, as the presented material lays a foundation for the use of hyperspectral 

sounder retrievals in the analysis of Pyrocumulonimbus events.  However, the subject of  
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Figure 3: Brightness temperature observations at 10.9 µm from Metop-A 
IASI, 03 May 2016, across western Canada (above); brightness temperature 
spectra at selected locations across western Canada (below). 

A 

B 
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radiative transfer as a whole, with its associated equations, derivations, and explanations, is 

far too expansive to successfully address here.  This brief and general overview of how 

radiative transfer is used in this study shall suffice for the scope of this research. 

 

2.2 Hyperspectral Sounders 

A sounder is an instrument that acquires multispectral measurements from which 

vertical profiles of atmospheric temperature and humidity can be derived1. These instruments 

measure from space the radiation leaving the earth system.  Measurements of radiation from 

these instruments are referred to as “Level 1” data products.  These instruments operate most 

commonly in the microwave and infrared bands of the electromagnetic spectrum, and they 

are not exclusive to polar-orbiting satellites. Geostationary orbiting sounders play an 

important role in modern remote sensing (Menzel, 2006). Examples of traditional (i.e. non-

hyperspectral) sounders include the Advanced Microwave Sounding Unit (AMSU-A) aboard 

the NOAA Aqua satellite, which features fifteen channels, and the Visible Infrared Imaging 

Radiometer Suite (VIIRS) aboard the Suomi-NPP satellite, featuring 21 channels.  

In contrast, hyperspectral sounders are instruments that measure top-of-atmosphere 

(TOA) radiation in thousands of narrow bandwidth channels, most frequently in the infrared 

band1.  This increase in spectral resolution by nearly two orders of magnitude makes 

hyperspectral sounder measurements an extremely valuable dataset.  High spectral resolution 

translates to increased sensitivity to changes in the vertical atmospheric column, making the 

vertical profiles of hyperspectral sounders much more detailed than that of traditional 

                                                
1 American Meteorological Society, cited 2017. Glossary of Meteorology. 
http://glossary.ametsoc.org. 
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sounders.  A total of three different hyperspectral sounders are currently in orbit aboard 

polar-orbiting satellites, providing the potential for vertical temperature and moisture profiles 

at any location on the planet twice per day.  The three hyperspectral sounders currently in 

orbit are the instruments of focus for this research, and are described in detail in the 

following sections, and also summarized in Table 1.  

 

2.2.1 Atmospheric Infrared Sounder (AIRS) 

The Atmospheric Infrared Sounder (AIRS) was first launched into orbit on 4 May  

2002 aboard NASA’s EOS Aqua satellite.  AIRS is one of six different instruments aboard 

Aqua, and is often used in conjunction with the microwave sounder AMSU-A to obtain 

measurements from the same time and location in the microwave and infrared.  This cross-

track scanning instrument is a grating spectrometer, which features a scan mirror that scans 

in a path perpendicular to the flight path of the satellite and directs upwelling radiation from 

the earth system into the instrument2.  The mirror creates a swath of roughly 800 km on each 

side of nadir, and operates at an altitude approximately 700 km above earth.  The instrument 

has a scan period of 2.667 seconds.   

Additionally, AIRS features 2378 channels, which gives the instrument its 

hyperspectral sounder classification.  It features a spectral resolution of 0.5 – 2.0 cm–1, and a 

spectral range of 650 – 2670 cm–1 (15.4 µm – 3.7 µm).  At nadir, the instrument has a spatial 

resolution of approximately 13.5 km, sometimes referred to as the instantaneous field-of-

view (IFOV) which is circular in shape.  It is important to note that AIRS Physical Standard 

                                                
2 The AIRS Instrument Suite, 2013. NASA Jet Propulsion Laboratory. 
http://airs.jpl.nasa.gov. 
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Retrievals, or Level 2 products, use a 3x3 field-of-view (FOV) array that extends the spatial 

resolution to 40.5 km, three times that of the IFOV. This use of a 3x3 FOV array will be 

addressed more thoroughly in Chapter 3. More information on the AIRS instrument can be 

found at http://airs.jpl.nasa.gov.   

 

2.2.2 Infrared Atmospheric Sounding Interferometer (IASI) 

 The first launch of the Infrared Atmospheric Sounding Interferometer (IASI) was on 

19 October 2006 aboard EUMETSAT’s Metop-A satellite.  A second IASI instrument with 

identical characteristics was launched into orbit on 17 September 2012 aboard 

EUMETSAT’s Metop-B satellite.  Thus, the two IASI instruments will be referred to 

hereafter as IASI-A and IASI-B, in relation to their respective satellites.  A third IASI 

instrument is scheduled for launch in 2018. 

 IASI is a Michelson Interferometer, as opposed to a grating spectrometer used in 

AIRS, and has a cross-track scanning system that moves in a direction perpendicular to that 

of the flight path of the satellite.  The instrument creates a swath of roughly 1100 km on each 

side of nadir and is situated roughly 820 km above the earth3.  The scan period is 

approximately 8 seconds.  IASI features an incredible 8461 channels, nearly four times that 

of AIRS.  It has a spectral resolution of 0.25 cm–1 and a spectral range of 645 – 2760 cm–1 

(15.5 µm – 3.62 µm).  At nadir, the instrument has a spatial resolution, or IFOV, of 12 km. 

More information on the IASI instruments can be found at http://www.eumetsat.int. 

 

                                                
3 IASI. EUMETSAT. http://www.eumetsat.int/ 
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2.2.3 Cross-track Infrared Sounder (CrIS) 

 The Cross-track Infrared Sounder (CrIS) was launched into orbit on 28 October 2011 

aboard NOAA’s Suomi-NPP satellite.  CrIS is one of five instruments aboard Suomi-NPP, 

and complements the microwave radiometer ATMS.  The instrument is a Michelson 

Interferometer, similar to IASI, with a cross-track scanning system that moves in a direction 

perpendicular to the flight path of the satellite4.  As it scans, CrIS creates a swath roughly 

1100 km on each side of nadir, and has an altitude of approximately 825 km. 

 Additionally, CrIS features 1305 channels, just over half of the channels on AIRS and 

nearly one seventh of the channels on IASI.  It has a spectral resolution of 0.625 cm–1 for 

long-, 1.25 cm–1 for mid-, and 2.5 cm–1 for shortwave radiation, and a spectral range of 650 – 

2550 cm–1 (15.5 µm – 3.62 µm).  At nadir, the instrument features a spatial resolution, or 

IFOV, of roughly 14 km.  It is worth noting that the algorithms presented in Chapter 3 will 

describe this IFOV differently than other instruments’ IFOV, with one using a 3x3 FOV 

array to give a 42 km resolution, and the other keeping the 14 km IFOV for its spatial 

resolution.  This process will be addressed more thoroughly in Chapter 3. More information 

on the CrIS instrument can be found at http://www.jpss.noaa.gov/cris.html. 

 Additionally, the technical specifications of each instrument are listed on Table 1. 

  

                                                
4 Cross-track Infrared Sounder (CrIS). NOAA Joint Polar Satellite System. 

http://www.jpss.noaa.gov. 
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Instrument AIRS IASI CrIS 

Satellite 
(Agency) 

EOS Aqua 
(NASA) 

Metop-A, Metop-
B (EUMETSAT) 

Suomi-NPP 
(NOAA) 

Instrument 
Type 

Grating 
Spectrometer 

Michelson 
Interferometer 

Michelson 
Interferometer 

Launched May 2002 Oct. 2006, Sept. 
2012 Oct. 2011 

No. of 
Channels 2378 8461 1305 

Spectral 
Resolution 0.5 – 2.0 cm–1 0.25 cm–1 2.5 cm–1 

Spectral 
Range 

650 – 2670 cm-1          
(15.4 – 3.7 µm) 

645 – 2760 cm–1               

(15.4 – 3.9 µm) 
650 – 2550 cm–1               

(15.5–3.62 µm) 

Spatial 
Resolution           
(at nadir) 

13.5 km 14 km 12 km 

Table 1: Specifications of hyperspectral sounders AIRS, IASI, and CrIS. 
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2.3 Pyrocumulonimbus (PyroCb) Events 

 Pyrocumulonimbus (PyroCb) events were chosen as the focus of study for several 

reasons. First, they are largely understudied, with fewer than 10 publications as of 2010. 

Second, they occur most commonly in remote regions, where traditional in-situ observations 

are sparse.  Third, PyroCb events have the ability to inject large quantities of smoke and 

aerosols into the upper troposphere/lower stratosphere (UTLS) with implications for climate. 

And lastly, while several case studies on severe weather outbreaks (e.g., Weisz, 2015a; 

Weisz et al., 2013; Weisz, 2015b) had previously been conducted at the Cooperative Institute 

for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison, there 

are no extant studies of PyroCb activity using hyperspectral sounder data.    

 PyroCb events are extreme, fire-initiated thunderstorms that have enough vertical 

extent to involve ice formation, lightning, and a resultant plume in the UTLS (Fromm, 2012).  

These storms are extreme forms of pyroconvection, characterized by distinctive cloud 

microphysics when compared with traditional convection (Peterson, 2017a).  Latent heat 

release within the atmospheric column enables the convection within a PyroCb to reach the 

upper troposphere, and the large aerosol content yields extremely small cloud droplets.  

These small droplets “delay the onset of precipitation and evaporative cooling, potentially 

allowing an updraft to persist for a longer period of time than traditional convection” 

(Peterson, 2015).  Fromm (2010) found that the robust updraft within the PyroCb is likely the 

most efficient method of vertical transport for recently emitted smoke particles to enter the 

UTLS.  Fromm (2010) also found that in addition to a favorable Haines index (a fire-weather 

index derived from moisture and stability of the lower atmosphere intended to measure the 

intensification potential of a wildfire1), PyroCb development needs an initiation trigger; in 
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some cases, the heat and moisture from the fire itself is sufficient, but “occasionally the 

midlevel stability is too great for parcels to reach their level of free convection.”  Thus, he 

notes that the passage of a cold front may help to enhance convection in these cases.  

Additionally, a study of the 2013 Rim Fire by Peterson (2015) showed a lack of PyroCb 

development within a dry atmospheric column, but strong PyroCb development in “an 

environment favorable for midlevel moisture entrainment and upper-level instability,” 

concluding that ambient midlevel moisture likely has an important role in PyroCb 

development. 

The connection between stratospheric smoke layers and PyroCb activity was first 

identified in the early 2000s (Fromm, 2010); thus, these events have only begun being 

studied recently, unlike other atmospheric phenomena.  These storms have a typical lifetime 

of approximately one hour, and reach their peak development and intensity in the late 

afternoon, likely due to trends in diurnal heating.  PyroCb are also typically observed in 

remote regions, most prominently over the mid- to high-latitude forests of North America, 

Australia, and Asia.  Due to their occurrence in these isolated areas, traditional in-situ 

observations are typically not available, and as a consequence, spaceborne observations are 

crucial to their study, detection, and investigation.  

Much of the existing work on PyroCb activity has been conducted by a research 

group at the Naval Research Laboratory in Monterey, California, most prominently by Dr. 

Michael Fromm and Dr. David Peterson.  The NRL team has focused the majority of their 

work thus far on wildfires in North America throughout the late 2000s and early 2010s.  

Through his research on these cases, Dr. Fromm has seen two recurring themes 

emerge: first, that some “puzzling stratospheric aerosol-layer observations and other layers 
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reported as volcanic aerosol can now be explained in terms of pyroconvection”; and second, 

that PyroCb events occur surprisingly frequently and are likely a relevant aspect of several 

historic wildfires (Fromm, 2010). Peterson (2015) noted that the meteorological conditions 

driving large PyroCb events are still uncertain, and an automated, regional PyroCb detection 

system has still not been developed.  Additionally, Peterson (2017a) again notes that PyroCb 

events “have not been studied over large spatiotemporal scales,” stating that the goal of his 

most recent studies has been “to improve systematic detection and characterization of these 

events through the development of an automated algorithm in western North America.”  

Thus, the additional study of these events is needed.  Currently, a team of researchers at 

CIMSS maintains a blog-style database5 of PyroCb activity as they are detected.  

 

2.3.1 Peterson Classifications 

 In an attempt to characterize the antecedent environments to PyroCb events, Peterson 

(2017b) created a conceptual model for development of intense PyroCb in western North 

America.  Through his work, he analyzed 26 PyroCb events that occured in North America 

during 2013, and identified three distinct classifications for the synoptic patterns during these 

PyroCb events: (1) the monsoonal anticyclone; (2) the West Coast disturbance; and (3) the 

Canadian ridge breakdown. 

 In the case of the monsoonal anticyclone, Peterson (2017b) notes that the 

southwestern portions of the continental United States (CONUS) “experiences a transition 

from a mid-latitude transient synoptic environment to the summer monsoonal pattern” during 

                                                
5 CIMSS PyroCb blog. Space Science and Engineering Center, University of Wisconsin-
Madison.  http://pyrocb.ssec.wisc.edu.  
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the months of May and June.  An associated increase in surface heating forces a 

“northeastward migration, broadening, and flattening of the subtropical Pacific ridge,” or a 

“monsoonal anticyclone.”  This synoptic pattern can combine with a low-level thermal 

trough, allowing for moisture advection from the tropical eastern Pacific and Gulf of Mexico.  

As the location and strength of this anticyclone varies over the summer season, the direction 

of moisture transport and associated position of convective development fluctuates, as well.  

Peterson (2017b) notes that of the 26 cases observed in 2013, nearly 62% (16 PyroCb events) 

were associated with the synoptic pattern of a monsoonal anticyclone.  

The West Coast disturbance pattern is characterized by the leading edge of an 

approaching cyclone system off the West Coast of the United States.  In this case, this 

“disturbance” near the coast, along with its associated frontal boundary, creates a pathway 

for the advection of subtropical midlevel moisture into central California over fires that are 

already burning downstream of this disturbance.  Especially enhanced by elevated terrain, 

this pattern creates “an environment favorable for high-based convection”, the term “high-

based” alluding to the higher altitude at which convective initiation takes place6 (Peterson, 

2017b).  The aforementioned Peterson (2015) study of the 2013 Rim Fire was placed into this 

synoptic classification.  Of the 26 cases observed in 2013, seven were associated with a West 

Coast disturbance pattern. 

In the case of the Canadian ridge breakdown, Peterson (2017b) characterized a 

synoptic environment similar to the West Coast disturbance pattern, but focused in regions of 

western Canada with less complex topography and closer proximity to the polar jet.  

                                                
6 American Meteorological Society, cited 2017: "High-based thunderstorm”. Glossary of 
Meteorology. http://glossary.ametsoc.org. 
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Typically, the boreal forests of western Canada experience “active fire seasons, periods of 

intense burning, and dry lightning strikes” often in the presence of a 500-hPa anticyclone 

(Peterson, 2017b).  He notes, however, that fires tend to intensify most rapidly as the ridge 

associated with the anticyclone begins to breakdown.  Such a process is commonly followed 

by the arrival of a surface cold front and an upper-tropospheric trough.  Of the 26 cases 

observed across North America in 2013, all three Canadian events were associated with the 

Canadian ridge breakdown pattern. 

In summary of his synoptic classifications, Peterson (2017b) states, “While regional 

variability is expected, all synoptic patterns [above] induce favorable fire weather conditions 

near the surface, [such as extremely warm temperatures and very dry conditions], along with 

mid- and upper-level [disturbances] favorable for convective [development].”  These 

synoptic patterns are addressed again in Chapter 4, as they play a supportive role in 

investigating the atmospheric conditions with hyperspectral sounder data surrounding the two 

PyroCb case studies in this research. 
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3 Data and Models 

 The Level 1 radiances measurements from the aforementioned hyperspectral sounders 

are informative and useful, but a second insightful dataset emerges when these Level 1 

radiances are processed through a retrieval algorithm.  These algorithms contain processes by 

which radiance values are inverted into vertical profiles of temperature and moisture from 

Level 1 radiances.  In addition to vertical profiles, other products that come directly from 

these retrieval algorithms (often referred to as Level 2 data) include surface parameters, like 

skin temperature and surface emissivity; cloud parameters, like cloud-top altitude and 

effective cloud optical depth; and atmospheric concentrations of carbon dioxide and ozone. 

 The retrieval of vertical profiles of temperature and moisture allow for the calculation 

of other useful parameters, as well.  These include dew-point temperature, total precipitable 

water (TPW), and instability values such as convective available potential energy (CAPE) or 

lifted index (LI).  The ability to calculate these variables only expands the potential 

application of the hyperspectral sounder dataset, but these values also rely heavily on 

techniques embedded within these retrieval algorithms.  

 Weisz (2015a) defines a retrieval method as a technique most commonly designed to 

“maximize the signal-to-noise ratio and retrieve the best possible estimate (e.g., statistically 

the most probable solution) of the true atmospheric state,” from a collection of radiance 

observations across a range of channels whose vertical weighting functions penetrate through 

the atmosphere.  Generally, these methods are based on either a linear regression or a 

physical optimal estimation approach.  This chapter aims to clarify and understand such 
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techniques by providing a brief overview of the fundamental mathematics and statistics used 

in each algorithm before introducing the three used in this study. 

 

3.1 Linear Regression 

 Linear regression analysis is defined as the study of linear, additive relationships 

between variables; more colloquially, it is the method used to fit straight lines onto diverse 

patterns of data (Nau, 2014).  Linear regression relies on a number of assumptions: (1) 

linearity, e.g. the expected value of a particular variable is a linear function of the given set of 

independent variables; (2) variations are independent random variables, e.g. unexplained 

variations are not auto-correlated if the variables are in a time series; (3) homoscedasticity, 

e.g. all variables have the same variance; and (4) the variables are normally distributed. 

While assuming the effects of nonlinearity to be negligible can seem like an extreme 

assumption for a regression model, often times nonlinearity does play a small enough role in 

a system for such a model to succeed.  Linear regression is used as an inversion technique of 

satellite radiance measurements, with a long and proven success rate (e.g., Smith et al., 1970; 

Huang and Antonelli, 2001; Zhou et al., 2007; Weisz et al., 2007).  

 In remote sensing applications, linear regression as a statistical method uses pre-

calculated coefficients to invert a radiance measurement into its statistically most probable 

atmospheric state (Weisz, 2015b).  These regression coefficients for a retrieval algorithm are 

“calculated offline by correlating a diverse set of simulated (or measured) radiances with 

their coincident atmospheric profiles.”  These radiances are often times then projected into 

principal components (or eigenvector) space, in order to preserve computational efficiency 

and information.  By doing so, this allows for data compression and noise filtering, because 
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only the leading set of eigenvectors is used to represent the radiance measurement; applying 

these eigenvectors to the radiance spectrum yields so-called compressed radiances.  The 

following equation represents the linear principal component regression model (or the linear 

least squares problem): 

   X = CAT                                    (3.1) 

where X represents the atmospheric variables, C represents the regression coefficients, and 

AT (a non-square matrix) represents the compressed measurements A = YU, where Y and U 

represent the observations (measurements) and the leading set of eigenvectors, respectively.  

The regression coefficients are calculated as: 

     C = X A (ATA)–1                         (3.2) 

In the regression retrieval process, these regression coefficients are calculated for a large 

training set of atmospheric profiles X and associated simulated (with a radiative transfer 

forward model) radiance measurements Y.  To obtain the retrieval estimates, the same 

coefficients are then applied to real radiance measurements according to Eq. 2.1.  

Weisz (2015b) mentions, however, that one potential weakness of a straightforward 

linear regression as a retrieval method is that it does not adequately account for the non-

linear relationship between the measured radiance and the atmospheric state, in particular 

that produced by variable clouds and moisture.  Linear regression serves as the foundational 

mechanism of the Dual Regression (DR) and AIRS retrieval algorithms described in the 

following sections.  
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3.2 Physical Optimal Estimation 

 Optimal estimation is a statistical technique that processes measurements to 

determine a minimum error estimate of the state of a system (Gelb, 1974).  This technique 

does so by “utilizing knowledge of system and measurement dynamics, assumed statistics of 

system noises and measurement errors, and initial condition information.”  Optimal 

estimation is beneficial in that it minimizes the estimation error in a well-defined statistical 

sense and it utilizes all measurement data, plus prior knowledge about the system.  This 

method is largely based on Bayes theorem, which uses probability theory to describe the 

likelihood of an event (Rodgers, 2000).  Rodgers (2000) describes the Bayesian approach to 

an inverse problem as follows:  

“Before we make a measurement we have prior knowledge expressed as a prior 

probability density function (pdf); the measurement process is expressed as a forward 

model which maps the state space into measurement space; Bayes’ theorem provides 

a formalism to invert this mapping and calculate a posterior pdf by updating the prior 

pdf with a measurement pdf.” 

Rodgers (2000) notes that the Bayesian view is general; it is not just an inversion method 

which produces a solution, rather “it encompasses all inverse methods by providing a way of 

characterizing the class of possible solutions, considering all possible states, and assigning a 

probability density to each.”  

 As a retrieval method, physical optimal estimation utilizes location-specific prior 

information, as well as radiative transfer and weighting function calculations for every single 

FOV.  The governing equation for the maximum a posteriori solution is as follows: 
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         𝐱 = xa + Sa KT (K Sa KT + Se)–1 (y–Kxa)          (3.3) 

where xa represents a first-guess (background) estimate, Sa represents the background error 

covariance matrix, Sε represents the measurement error covariance matrix, y represents the 

measurements, and K represents the Jacobian matrix of the forward model6.  The ultimate 

goal of the physical optimal estimation technique is to maximize the pdf and minimize the 

error covariance, thereby minimizing the differences by weighting them with error 

covariance.  The covariance Ŝ is given by: 

     𝐒 = (KT Se
–1 K + Sa

–1)–1            (3.4) 

These techniques of physical optimal estimation are most commonly applied to account for 

the nonlinearity of the retrieval, but are often computationally expensive, especially in the 

case of global or real-time forecasting using hyperspectral sounders (Weisz, 2015a).  

Physical optimal estimation is used in the NOAA Unique Combined Atmospheric Processing 

System (NUCAPS) retrieval algorithm described in the following sections. 

 It is important to note the difficulty in designing and developing a good retrieval 

algorithm.  Weisz (2015a) lists the following challenges in doing so: (1) the inversion 

problem is under-constrained, since a near-continuous vertical profile must be retrieved from 

a finite number of spectral measurements; (2) the weighting functions feature particular 

widths, and often times overlap with one another, indicating a vertical correlation in the 

measurements “that makes exact characterization with high vertical resolution challenging”; 

and (3) the measurements always contain noise, limiting the achievable vertical resolution 

“through the spectral/vertical deconvolution on the radiance measurements.”  These factors 
                                                
6 The forward model produces an estimate of what the observation would be based on the 
background state. 
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largely complicate the inversion of a multitude of measurements into an exact atmospheric 

profile.  Thus, Weisz (2015a) emphasizes the need for these factors to be addressed in the 

retrieval method.  

 
3.3 Specific Retrieval Algorithms 

 The three algorithms used in this research are the Dual Regression (DR) algorithm, 

the NOAA Unique Combined Atmospheric Processing System (NUCAPS) algorithm, and 

the AIRS Level 2 Physical Standard Retrieval (AIRS L2) algorithm.  While various 

algorithms exist, DR and NUCAPS were specifically chosen due to their software being 

freely available to the user community; AIRS L2 was chosen for a third point of comparison.  

Specifications of each algorithm are listed in Table 2.  

 

3.3.1 Dual Regression (DR)  

 The Dual Regression (DR) algorithm was originally developed at the University of 

Wisconsin-Madison Space Science and Engineering Center (SSEC) during the early 1990s as 

a method to derive atmospheric temperature and moisture profiles from “the first 

hyperspectral radiance data obtained from aircraft” (Weisz, 2015a).  Dual Regression was 

first publicly released as part of the Cooperative Institute for Meteorological Satellite Studies 

(CIMSS) Community Satellite Processing Package (CSPP) in November 2012.  DR retrieves 

atmospheric parameters in real-time, regardless of surface and/or cloud condition, at single 

FOV resolution.  It was designed with multi-instrument capability, e.g., for use with AIRS, 

IASI, and CrIS (Weisz, 2013). While the mathematical basis for Dual Regression is linear 

regression, DR handles the nonlinearity issue of the inversion problem better than traditional 
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regression by incorporating additional steps like cloud height classification.  Its regression-

based foundation also implies that the DR method does not rely on a location-specific 

estimate of the atmosphere, as it instead relies only on the variance and the mean of the 

atmospheric state from pre-calculated regression coefficients (Weisz, 2013).  Smith (2012) 

calls Dual Regression a “fast, physical-statistical algorithm,” with the phrase “dual” referring 

to the utilization of two types of eigenvector [empirical orthogonal function (EOF)] 

regression coefficients: one for clear-sky conditions and one for cloudy conditions.  These 

coefficients are computed once for each instrument.  

 The “clear-trained” regression involved with DR relates the surface and atmospheric-

profile parameters to their associated calculated (i.e., simulated) radiance spectra.  These 

spectra are produced by radiative transfer calculations that assume clear-sky atmospheric 

conditions.  In contrast, the “cloud-trained” regression relates the surface, cloud, and 

atmospheric-profile parameters to their associated radiance spectra, which are calculated 

using a cloud radiative transfer model, which requires cloud parameters such as cloud height 

and cloud optical thickness as input.  Both sets of regression coefficients are then applied to 

the observed radiance spectra for every FOV to achieve a clear and cloudy regression 

retrieval profile solution. The cloud top is then determined from the clear and cloudy 

temperature profiles and a collocated model profile (e.g., National Centers for Environmental 

Prediction (NCEP) Global Data Assimilation System).  This is based on the concept that 

under clear conditions (and above clouds) both profiles are essentially the same, whereas 

under cloudy conditions the clear-trained retrieval will be colder than the cloud-trained 

solution below the cloud top (Smith, 2012; Weisz, 2013). 
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The Dual Regression algorithm then combines the clear-trained retrieval with the 

cloud-trained retrieval to produce accurate retrievals for both clear-sky and cloudy-sky 

conditions. Thus, the final profile retrieval “is taken as the clear-trained solution above the 

thermal-cloud-top level, and as the cloud-trained solution below the thermal-cloud-top-level” 

(Smith, 2012).  It is important to note that since clouds hinder retrieval of geophysical 

information from space-based infrared (IR) instruments, profiles from below optically thick 

clouds are rejected (Weisz, 2015a). A schematic diagram adapted from Weisz (2015b) for the 

Dual Regression process is shown in Fig. 4.  

Dual Regression has the processing capability of 25 – 75 FOVs per second, 

depending on available computational resources, and the entire suite of atmospheric 

parameters are provided for each FOV (Weisz, 2015a).  The method features geophysical 

classification based on window region brightness temperatures, scanning angle, and cloud 

heights to account for nonlinearity between infrared radiances and the atmospheric state.  The 

DR method uses the full information of hyperspectral sounder measurements, and because it 

does not depend on any background measurements (with the exception of the aforementioned 

GDAS profiles for determining cloud top), the retrievals are independent of any other data 

source and consistent in quality at every location (Weisz, 2015a).  

 

3.3.2 NOAA Unique Combined Atmospheric Processing System (NUCAPS) 

 The NOAA Unique Combined Atmospheric Processing System (NUCAPS) algorithm 

was originally developed as a method to retrieve vertical profiles of temperature and 

moisture from the AIRS/AMSU instrument suite measurements.  However, NUCAPS was 

made freely available through CIMSS CSPP for retrievals of the CrIS/ATMS instrument  
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Figure 4: Dual Regression retrieval algorithm schematic diagram. Adapted 
from Figure 1 of Weisz (2015b). “FM” refers to the “forward model” used for 
radiative transfer calculations. 

Pre-calculated for each instrument: 

Global clear soundings Global cloudy soundings
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Clear-trained regression 
coefficients
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Final Profile 
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suite only.  Thus, NUCAPS as a proprietary algorithm has the capability to process multiple 

instruments, but the version available to the user community can only be used with 

measurements from the Suomi-NPP satellite.  

 Gambacorta (2012) calls NUCAPS an “iterative regularized least squares 

minimization algorithm,” noting that the retrieval scheme includes the following steps: 

“(1) A microwave retrieval module which derives cloud liquid water flags and 

microwave surface emissivity uncertainty; 

(2) A fast eigenvector regression retrieval for temperature and moisture that is trained 

against ECMWF analysis and CrIS all-sky radiances; 

(3) A cloud clearing module that combines a set of microwave and IR channels (along 

with, in the future, visible observations provided by the onboard VIIRS instrument); 

(4) A second fast eigenvector regression retrieval for temperature and moisture that is 

trained against ECMWF analysis and CrIS cloud cleared radiances; 

(5) The final physical retrieval which employs the previous regression retrieval as a 

first guess.” 

Thus, the final IR retrieval module involved in NUCAPS is “an iterated regularized least 

squared minimization performed on a selected subset of infrared channels” (Gambacorta, 

2012).  This channel selection is a physically-based process where channels are selected 

based entirely on their spectral characteristics: high priority is given to “spectral purity, 

avoidance of redundancy, vertical sensitivity properties, low instrumental noise, and global 

optimality.” This selection incorporates a sampling of the entire 1305 channels of the CrIS 

instrument without including them all; Gambacorta (2012) claims that this selection “is 

capable of reducing significantly the execution time of routine operations, while still 



 

32  

retaining the bulk of the atmospheric variability contained in the original 1305 channel 

spectrum.”  

 Radiative transfer calculations are embedded in the NUCAPS retrieval algorithm 

during the least square residual minimization process.  These calculations involve the mean 

of the microwave Massachusetts Institute of Technology (MIT) microwave and infrared 

Stand Alone Radiative Transfer Model (SARTA) forward models, and occur at every FOV 

(Gambacorta, 2012).  Brightness temperature tuning, the process of identifying and removing 

modeling and calibration errors, is a fundamental part of achieving retrieval accuracy as it 

removes artificial systematic biases.  The retrieval output of the NUCAPS algorithm consists 

of cloud-cleared radiances, surface emissivity and temperature, and vertical profiles of 

temperature, water vapor, and trace gases.  

The NUCAPS retrieval method uses a 3x3 FOV array for its retrieval field.  

Additionally, the spatial resolution of NUCAPS is roughly 50 km, compromised as a result of 

incorporating microwave data from the microwave sounders ATMS (Suomi-NPP) and 

AMSU (Aqua).  However, this incorporation of microwave data into the NUCAPS algorithm 

allows for better retrieval yield below cloudy conditions.  Additionally, the inclusion of 

physical optimal estimation allows for refined sounding profiles in the planetary boundary 

layer (Weisz, 2015b).  A schematic diagram adapted from the NUCAPS Algorithm 

Theoretical Basis Document (ATBD) of the NUCAPS retrieval algorithm is shown on Fig. 5.   
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3.3.3 AIRS L2 Standard Physical Retrieval 

 The AIRS L2 Standard Physical Retrieval algorithm was developed in the early 2000s 

to support the retrieval of temperature and moisture profiles from the AIRS/AMSU 

instrument suite.  The operational AIRS L2 software is not publicly available through CIMSS 

CSPP, and thus cannot be independently installed and run by an individual like DR and 

NUCAPS.  The AIRS L2 Standard Physical Retrieval output files are available through 

download at NASA Goddard Earth Sciences (GES) Data and Information Services Center 

(DISC)7.  The AIRS L2 products featured in this study were obtained in this manner.  

 Linear regression serves as the mathematical basis for the AIRS L2 algorithm. For 

AIRS L2, this technique includes (1) principal component analysis for data compression, 

quality control, noise filtering and noise estimation, and regression and (2) AIRS FOV clear 

detection (Goldberg, 2003).  The principal component regression technique provides a very 

computationally efficient retrieval of atmospheric temperature, moisture, and ozone, as well 

as surface parameters, such as skin temperature and emissivity.  The regression retrieval, 

often referred to as the initial retrieval, is used as the first guess in the AIRS physical 

retrieval, and principal component scores are used to select a number of appropriately 

representative channels without adding the computational burden of using all 2378 AIRS 

channels.   

 The AIRS L2 Standard Physical Retrieval algorithm also uses a 3x3 FOV array as its 

retrieval field, much like NUCAPS.  Also much like NUCAPS, the incorporation of 

microwave data from AMSU compromises its spatial resolution, reducing to roughly 50 km.  

However, this incorporation of microwave data increases the yield of the retrieval data below 

                                                
7 NASA GES DISC. http://disc.gsfc.nasa.gov. 
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cloudy conditions.  A schematic diagram taken from the AIRS L2 Algorithm Theoretical 

Basis Document (ATBD) of the AIRS L2 Standard Physical Retrieval algorithm is shown on 

Fig. 6. 

 These three retrieval algorithms presented in this study each feature their own unique 

estimated solution of the vertical profile of the atmosphere at a given time and location, 

differing particularly in spatial resolution and in the handling of cloudy-sky conditions.  The 

goal of this study is not to argue the superiority of one retrieval algorithm over another, or to 

validate one retrieval product against another.  Rather, the intent of using these three separate 

retrieval algorithms is to provide comparative solutions of temperature and moisture profiles, 

and to demonstrate the benefits of each particular algorithm design.  Dual Regression data is 

used for the Yarnell case study, while DR, NUCAPS, and AIRS L2 data are used in the Fort 

McMurray case study.  

 

3.4 Weather Research and Forecasting (WRF) Model 

 The Weather Research and Forecasting (WRF) modeling system was developed with 

the intent to “provide a next-generation mesoscale forecast model and data assimilation 

system that will advance both the understanding and prediction of mesoscale weather and 

accelerate the transfer of research advances into operations” (Skamarock, 2005).  The model 

was developed as a collaborative effort among the following agencies: the National Science 

Foundation (NSF) funded National Center for Atmospheric Research (NCAR) Mesoscale 

and Microscale Meteorology (MMM) Division; National Oceanic and Atmospheric 

Administration (NOAA) National Centers for Environmental Prediction (NCEP) and  
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Derive Start-Up State

First Pass Physical Retrieval 
State

AMSU, HSB 
radiances

Tuning, RTA, 
physics error 

estimate

Regression 
state derived 
from initial 

cloud 
radiances     
based on       

microwave 
Second Pass Physical 

Retrieval State

Apply Quality Control 

Select Microwave State 

or Physical Retrieval 

State 

Figure 6: AIRS L2 Standard Physical Retrieval algorithm schematic 
diagram. Adapted from AIRS L2 ATBD. 
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Algorithm 
Dual-

Regression 
(DR) 

NUCAPS AIRS L2 

Development  UW/CIMSS NOAA NASA 

Instrument 
Capability 

AIRS, IASI, 
CrIS CrIS AIRS 

Algorithm Basis Regression 
Physical 
Optimal 

Estimation 
Regression 

Radiation Type 
(Microwave 
Instrument) 

Infrared only 
Infrared and 
Microwave 

(ATMS) 

Infrared and 
Microwave 

(AMSU) 

Cloud Capability 
No retrieval 

below optically 
thick cloud 

Retrieval below 
cloud 

Retrievals 
below clouds 

FOV Type    
(Approximate 
Resolution) 

Single FOV 
resolution (~14 

km/nadir) 

3x3 FOV Array           
(~50 km/nadir) 

3x3 FOV Array        
(~40.5 

km/nadir) 

Design Intent Research Operational Operational 

Table 2: Specifications of retrieval algorithms DR, NUCAPS, and AIRS L2. 
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Forecast System Laboratory (FSL); the Department of Defense (DoD) Air Force Weather 

Agency (AFWA) and Naval Research Laboratory (NRL); the Center for Analysis and 

Prediction of Storms (CAPS) at the University of Oklahoma; and the Federal Aviation 

Administration (FAA).  Additionally, a number of university scientists contributed to the 

development as well.  The WRF model was designed to be “a flexible, state-of-the-art, 

portable code that is efficient in a massively parallel computing environment” (Skamarock, 

2005).  The WRF model is suitable for use in a wide variety of disciplines, including research 

and operational numerical weather prediction (NWP), data assimilation and parameterized 

physics research, downscaling climate simulations, air quality research, atmosphere-ocean 

interaction, and idealized simulations.  

 The governing equations embedded within the WRF model are formulated using a 

terrain-following hydrostatic-pressure vertical coordinate system (Skamarock, 2005).  For 

applications of atmospheric radiation, the radiation schemes within the model provide 

atmospheric heating due to radiative flux divergence and surface downward longwave and 

shortwave radiation for the ground heat budget.  These schemes are one-dimensional, or 

“column” schemes, with each column treated independently.  This is an important part in 

ensuring accurate vertical thickness of model layers, as the radiative fluxes correspond to 

those in infinite horizontally uniform planes.  These radiation schemes are kept constant, 

rather than called at every time step, for computational speed and efficiency.  The radiation 

scheme used for this study is the Rapid Radiative Transfer Model (RRTM) Longwave, which 

is taken from MM5 and uses pre-set tables to accurately represent longwave radiation 
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processes due to water vapor, ozone, carbon dioxide, and trace gases, as well as accounting 

for cloud optical depth (Skamarock, 2005).  

The WRF model uses a third-order Runge-Kutta scheme for temporal discretization. 

Additionally, the WRF includes various options for physics packages, cumulus 

parameterizations, planetary boundary layer schemes, convection schemes, and land-surface 

models.  Embedded in the model are also methods of handling diabatic forcing, hydrostatic 

balance, Coriolis and curvature terms, advection, and moisture; while these are all crucial 

parameters in the successful completion of a forecast model, each are far too intricate to 

address in detail for the scope of this paper.   In the case of interest, a full, detailed 

explanation of the complex, inner workings of the model can be found online8.  

For the use of WRF data in this study, Version 3.9 of the WRF was compiled and run 

using six-hour analyses supplemented by three-hour forecasts between analysis times for the 

case study of the Fort McMurray wildfire, presented in Chapter 4.  The outer, larger domain 

was set to a resolution of 30 km, with an inner, nested domain of 10 km.  Figure 7 shows this 

domain configuration as it applies to the Fort McMurray case.  Model output was produced 

every hour for a 24-hour period during the case.  Initial and boundary conditions were 

identified using National Centers for Environmental Prediction (NCEP) Global Data 

Assimilation System (GDAS) 0.25 Degree Global Tropospheric Analyses and Forecast 

Grids9.  The intent of using these WRF model simulations for the Fort McMurray case was to  

                                                
8 Advanced Research WRF (ARW) User Guide. http://mmm.ucar.edu/wrf/users. 
9 National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. 
Department of Commerce, 2015: NCEP GDAS/FNL 0.25 Degree Global Tropospheric 
Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric 
Research, Computational and Information Systems Laboratory, Boulder, CO. Available 
online at https://doi.org/10.5065/D65Q4T4Z. 
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Figure 7: Domain configuration in WRF model for Fort McMurray case 
study. Outer domain denoted by black border. Inner (nested) domain 
denoted by white border. White dot inside nested domain denotes location of 
Fort McMurray wildfire.  

WPS Domain Configuration 
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compare and contrast retrieved profiles to a regional model that provides output at higher 

temporal resolution relative to that of radiosonde data, thereby correlating closely the timing 

of the model data with the timing of satellite overpasses.  

 

3.5 Additional Data Sources 

 In addition to Level 1 radiance data from AIRS, IASI, and CrIS, Level 2 retrieval 

products from Dual Regression, NUCAPS, and AIRS L2, and model output from WRF, 

various other data sources were incorporated into this study. 

 Radiosonde profile data for both the Yarnell Hill wildfire case and the Fort 

McMurray wildfire case were obtained through the University of Wyoming Upper Air 

Sounding page10.  Aqua-MODIS True Color images for the Fort McMurray wildfire case 

were obtained from NASA Goddard Space Flight Center (GSFC) MODIS-Atmosphere11. 

Suomi-NPP True Color images for both the Yarnell Hill wildfire case and the Fort 

McMurray wildfire case were obtained from NOAA-View Data Exploration Tool12.  GEFS 

Reanalysis data were obtained through GEFS Reforecast13 as GRIB files, and were converted 

to netCDF files.  Output provided from the GEFS Reanalysis data is the control forecast.

                                                
10 University of Wyoming Upper Air Soundings. 
http://weather.uwyo.edu/upperair/sounding.html.  
11 NASA GSFC MODIS-Atmosphere. http://modis-atmos.gfsc.nasa.gov 
12 NOAA-View Data Exploration Tool. http://www.nnvl.noaa.gov/view/globaldata.html 
13 GEFS Reforecast Data. https://www.esrl.noaa.gov/psd/forecasts/reforecast2/ 
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4 Case Studies 

4.1 Yarnell Hill Wildfire  

The Yarnell Hill wildfire was ignited by several lightning strikes on 28 June 2013 at 

approximately 2300 UTC in Yarnell, Arizona.  The area had not experienced fire since 1966; 

thus, the fuel load in the region was dangerously high given drought conditions and 

exceptionally high temperatures (Hardy, 2014).  Fire conditions became more favorable for 

rapid growth on 30 June, by which time the fire had spread from an initial half-acre in size to 

300 acres.  PyroCb activity developed that afternoon at approximately 2345 UTC; the 

overshooting cloud top signature that detected such activity is shown via GOES-15 visible 

imagery on Fig. 8.  A line of thunderstorms moved into the Yarnell area from the northeast as 

a prelude to the overshooting top signature.  A convective outflow boundary is suspected to 

have caused rapid intensification of the fire and an abrupt change in wind direction; the 

sudden change in conditions tragically killed nineteen members of the Granite Mountain 

Interagency Hotshot Crew as they attempted to shelter in place (Bachmeier, 2013; Hardy, 

2014).   

 The synoptic setup of the Yarnell Hill wildfire prescribes to the “monsoonal 

anticyclone” classification scheme of Dr. David Peterson.  Figure 9 shows GEFS Reanalysis 

data for 30 June 2013 at 1800 UTC.  The strong ridge in 500 hPa geopotential height and 

associated mid-tropospheric anticyclone was centered over the southwestern United States.  

The associated anticyclonic flow around this anticyclone allowed for the advection of 

moisture from the Four Corners region into central Arizona, providing a mechanism for the 

development of traditional convection over the high terrain of the Yarnell Hill wildfire  
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Figure 8: GOES-15 0.63-um visible image, 30 June 2013, 2345 UTC. 
Yarnell Hill PyroCb indicated by overshooting cloud top signature, outlined 
in red. 
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sufficient enough for PyroCb development (Peterson, 2017b).  The spatial distribution of 

mid-tropospheric moisture across the southwestern United States, shown on Fig. 9, 

demonstrates the setup for moisture advection with a northeasterly anticyclonic flow of 

higher moisture content into the Yarnell area.  

Level 1 data for the afternoon overpasses of 30 June indicate warm surface 

temperatures and support the existence of the incoming convective system from the northeast 

observed by visible imagery.  Figure 10 shows spectra of observed brightness temperatures 

from the location of the Yarnell Hill wildfire, representing successive satellite overpasses on 

the afternoon of 30 June at (a) 1650 UTC, (b) 1934 UTC, and (c) 2111 UTC.  IASI-A, shown 

in (a), overpassed Yarnell at 1650 UTC and observed very warm temperatures surpassing 

320 K within the window region.  CrIS, shown in (b), overpassed the Arizona and New 

Mexico region at 1934 UTC, roughly three hours after IASI-A.  However, the satellite did 

not pass over the exact location of the Yarnell Hill wildfire, passing slightly to the east; thus, 

the spectrum shown in (b) is taken from the location closest to Yarnell within the granule.  In 

(b), cooler temperatures are observed in the window region, indicative of cloudy-sky 

conditions over the area at that time.  AIRS, shown in (c), overpassed Yarnell at 2111 UTC, 

almost two hours after CrIS, and observed relatively similar cooler temperatures in the 

window region, implying that cloudy-sky conditions existed again over Yarnell at that time.  

It is worth noting that at 2111 UTC, this overpass from AIRS provided the closest 

hyperspectral measurements in time to the PyroCb activity observed at 2345 UTC, but a 

temporal separation of two and a half hours between the overpass and the PyroCb is not 

ideal, especially when investigating an event on such small scales of time and space. 
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Figure 10: Observed brightness temperature spectra for Yarnell Hill 
wildfire location, 30 June 2013, for (a) IASI-A at 1650 UTC; (b) CrIS at 
1934 UTC; and (c) AIRS at 2111 UTC. 
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Figure 11 shows observed brightness temperatures at 10.9 µm for each of the 

successive afternoon overpasses of the three hyperspectral sounders.  The aforementioned 

warm temperatures within the window region of the spectrum observed by IASI-A are 

supported by temperatures surpassing 310 K in much of central and northern Arizona, as 

shown in (a).  These warm brightness temperatures suggest extremely warm surface 

temperatures, as the cloud-free atmospheric column allows the atmosphere to act more like a 

blackbody, and therefore brightness temperatures are an appropriate representation of surface 

temperatures.  At the time of the IASI-A overpass, 1650 UTC, the incoming convective 

system was not yet observed to the northeast of Yarnell.  The location of Yarnell just outside 

the CrIS overpass is evident in (b), but the eastward path of the granule is still beneficial as it 

depicts cold brightness temperatures northeast of Yarnell, indicating the development of the 

incoming convective system.  It is important to note that the brightness temperatures 

observed by CrIS in (b) have been interpolated to a uniform 15-km grid; this was done to 

smooth the edges of the granule and preserve information that is lost at the outermost edges 

due to the high-scanning angle of the instrument.  The AIRS overpass at 2111 UTC, shown 

in (c), most strongly confirms the incoming line of thunderstorms to the northeast, as 

indicated by the leading edge of cold temperatures below 250 K approaching the Yarnell 

area.  The formation of this feature also closely matches the shape of the system observed via 

satellite imagery. 

Figure 12 shows retrieved vertical profiles of temperature, (a), relative humidity 

(RH), (b), and specific humidity, (c), for the afternoon overpasses of each instrument on 30 

June at the exact location of the Yarnell wildfire.  These profiles were all retrieved using the  
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Dual Regression algorithm; doing so allows for direct comparison between the overpasses as 

spatial and vertical resolutions and parameter calculations are identical for each profile. 

The temperature profiles between the three overpasses are relatively consistent 

through much of the vertical column, with increasing surface temperatures between the 

earliest IASI-A overpass and the AIRS overpass nearly five hours later.  The relative 

humidity profiles differ significantly throughout the column, however.  Surface values of 

relative humidity increase from roughly 25% at 1650 UTC to near 35% at 1934 UTC and 

2111 UTC.  The profiles diverge from one another significantly in the middle troposphere, 

where values of 45-50% are observed at 1650 UTC and at 2111 UTC near 700-hPa, but 

values approaching 100% are observed in between these two time periods at 1934 UTC.   

This could possibly be a result of clouds within the atmospheric column, as the brightness 

temperature spectra showed cooler temperatures within the window region, thus suggesting 

cloudy conditions over Yarnell during this overpass.  While these three relative humidity 

profiles are indeed distinct, it is worth noting that each has a relative maximum between 750 

– 500-hPa.  Specific humidity profiles exhibit similar behavior throughout the atmospheric 

column, with the most moisture observed at the middle time-step of 1934 UTC.  Surface 

values of specific humidity increase dramatically between the first overpass and the later two, 

increasing from roughly 6 g/kg at 1650 UTC to near 11 g/kg at 1934 UTC and 2111 UTC.  

There also exists a pocket of moisture in the CrIS and AIRS overpasses between 750 – 500-

hPa, in the same region of the column where all three relative humidity profiles reached their 

peaks.  This mid-level moisture signature is intriguing, as Peterson (2015) had previously 

found ambient mid-level moisture to be a potentially key ingredient to PyroCb development.  
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Figure 13 shows the latest afternoon overpass of AIRS at 2111 UTC compared to 

radiosonde and reanalysis data on a Skew-T diagram, and clearly demonstrates the 

importance in noting differences in time and space when making such a comparison.  The 

2111 UTC overpass of AIRS is roughly three hours ahead of both the Flagstaff radiosonde 

and the GDAS reanalysis data, both of which are valid at 0000 UTC on 01 July.  

Additionally, while the GDAS and AIRS profiles are collocated well nearest the Yarnell 

wildfire, the Flagstaff radiosonde is roughly 125 miles to the northeast.  As no two share the 

same temporal or spatial characteristics, the comparison between the three overpasses and the 

radiosonde is unfavorable.  This “best-available” comparison shows relatively similar 

temperature structures throughout the troposphere, however, with the exception of slight 

divergence between all three at the surface.  The GDAS and radiosonde profiles are much 

warmer at the surface than that of AIRS, likely due to the three-hour time difference.  

Additionally, the three dew-point temperature profiles are seemingly in disagreement 

throughout the entire atmospheric column, with the GDAS profile showing a significantly 

moist profile from roughly 600-hPa upward that the radiosonde and retrieval both do not 

feature.  

Figure 14 shows two different parameters used for measuring the instability of the 

environment: Convective Available Potential Energy (CAPE) and Lifted Index (LI) derived 

from hyperspectral retrievals.  High values of CAPE and low, negative values of LI both 

denote an unstable environment conducive for convective development.  All four plots in 

Figure 14 feature data interpolated to a uniform 15-km grid.  While the exact location of the 

Yarnell fire (denoted by the black plus sign) is not retrieved for either the CrIS overpass at 

1934 UTC or the AIRS overpass at 2111 UTC, it proves useful to observe the stability of the  
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AIRS Retrieval 2111 UTC 
FGZ Radiosonde 0000 UTC 
GDAS Reanalysis 0000 UTC 

Figure 13: Skew-T diagram with solid lines indicating temperature (in 
Celsius) and dashed lines indicating dew-point temperature (in Celsius).  Black 
profiles denote AIRS retrieval from 2111 UTC 30 June 2013.  Red profiles 
denote Flagstaff, Arizona radiosonde from 0000 UTC 01 July 2013.  Blue 
profiles denote GDAS reanalysis at Yarnell from 0000 UTC 01 July 2013. 
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Figure 14: Retrieved values of Convective Available Potential Energy 
(CAPE) (a,c) and Lifted Index (LI) (b,d) for CrIS and AIRS overpasses at 
1934 UTC and 2111 UTC, respectively.  Data interpolated to a uniform 15-km 
grid. Exact location of the Yarnell wildfire is denoted by a black plus sign. 
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surrounding environment.  Values of CAPE exceeding 1500 J/kg and LI values below -15 C 

existed in the surrounding area of Yarnell during both overpasses.  Thus, it can be inferred 

that the environment proceeding the PyroCb event was highly unstable, ripe for convective 

development. 

The use of hyperspectral satellite data in the investigation of the Yarnell Hill wildfire 

helped show the very warm, dry surface conditions that led to the enhancement of the fire on 

30 June.  Additionally, hyperspectral brightness temperatures confirmed the development of 

the incoming convective system from the northeast as seen via visible imagery.  Analysis of 

retrieved profiles over the timespan of the three afternoon overpasses showed increasing heat 

throughout the afternoon, as well as an increase in mid-level moisture between 750 – 500-

hPa.  Values of CAPE and LI both show regions of high instability in the environment 

preceding the PyroCb, as well.  However, the timing of the satellite overpasses for this case 

study were not ideal when comparing with the time of the PyroCb event, as two and a half 

hours separated the last overpass with the observed PyroCb.  Likewise, differences in time 

and space made comparisons between the overpasses to radiosonde and reanalysis data 

difficult as well.  Nevertheless, the use of hyperspectral data in this case provided a unique 

glimpse into the environment preluding the PyroCb that traditional in-situ observations 

would otherwise not provide. 
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4.2 Fort McMurray Wildfire 

 The Fort McMurray wildfire in Fort McMurray, Alberta was chosen as a second case 

study, largely because its higher latitude meant a higher number of potentially overlapping 

satellite overpasses.  The fire began on 1 May 2016 in the absence of a known cause, and 

PyroCb development was detected via visible imagery two days later on 03 May.  Multiple 

PyroCb events would later develop, as the Fort McMurray fire would continue to burn for 

weeks, prompting the largest wildfire evacuation (90,000 residents) in Alberta history13.  At 

$8.9 billion (USD), the fire was also deemed the costliest disaster in Canadian history, with 

the provincial state of emergency lasting from 4 May to 1 July.  The fire was not officially 

declared “under control” until 5 July.   

 Figure 15 features the visible images that show the initial PyroCb development on 3 

May, with the Aqua satellite overpassing Fort McMurray at 1950 UTC and the Suomi-NPP 

satellite overpassing at 2022 UTC, nearly one half hour later.  Overshooting cloud tops are 

observed in both images; at 1950 UTC, the plume has a circular shape, but at 2022 UTC, the 

plume has already been transported to the east while the shape becomes elongated.  The 

detected PyroCb exists within an existing region of clouds, making a potential retrieval using 

Dual Regression slightly more challenging. 

 The synoptic setup of the Fort McMurray wildfire does not distinctly fall into the 

“Canadian Ridge Breakdown” classification scheme of Dr. David Peterson, but there does 

exist a strong ridge in 500-hPa geopotential heights around western Canada, as shown by Fig. 

16.  This ridge began to break down on 05 May, perhaps serving as a trigger mechanism for  
                                                
13 Global News Canada, The Canadian Press. Fort McMurray Wildfire. 
http://globalnews.ca/news/3187254/fort-mcmurray-wildfire-study-pegs-cost-of-lost-
buildings-income-and-environmental-damage-at-9-5b/ 
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the development of later PyroCb events observed within this wildfire (Bachmeier, 2016).   

Also shown on Fig. 16 is a relatively lackluster moisture structure at 500-hPa, suggesting less 

moisture being advected into the region than was observed with the setup of the Yarnell Hill 

wildfire.  However, further analysis of moisture at various levels of the atmosphere will be 

presented with retrieved vertical profiles. 

 Due to the temporal proximity of the Aqua and Suomi-NPP satellite overpasses to 

one another and to the PyroCb event, AIRS and CrIS data were exclusively used for this 

study.  Figure 17 shows observed brightness temperature spectral for (a) AIRS at 1947 UTC 

and (b) CrIS at 2018 UTC, with both spectra featuring relatively cold temperatures in the 

window region.  In both spectra, temperatures specifically become colder nearest the 

absorption band around 700 cm–1, implying the presence of a high, cold cloud in the 

atmospheric column.  Figure 18 shows observed brightness temperatures at 910 cm-1 for (a) 

AIRS at 1947 UTC and (b) CrIS at 2018 UTC on 03 May.  Recall that the PyroCb event 

detected by visible imagery in Figure 15 existed in a region of clouds; the cold brightness 

temperatures between 250 K – 270 K near the Fort McMurray region match the shape of the 

cloud signatures on visible imagery.  At 15-km grid resolution, it is difficult to detect the 

exact signature of the overshooting top from brightness temperatures alone due to this 

prevalence of clouds in the region.  However, a small but significant feature of extremely 

cold brightness temperatures (less than 250 K) appears on the CrIS overpass at 2018 UTC 

that is not observed just thirty minutes prior by AIRS.  When combining these observations 

to the visible images, one can infer that this small feature is related to the development of the 

PyroCb event.  
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(a) AIRS 1947 UTC Brightness Temperatures 
[K] 

(b) CrIS 2018 UTC Brightness Temperatures [K] 

Figure 18: Brightness temperature observations at 10.9 µm, 03 May 
2016, by (a) AIRS at 1947 UTC and (b) CrIS at 2018 UTC.  Data 
interpolated to uniform 15-km grid.  Location of Fort McMurray denoted 
by red circle.  Black box and arrows in left figures denote region of zoom 
in right figures. 
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 For Level 2 retrieval data, three retrieval algorithms were used in this study: Dual-

Regression, NUCAPS, and AIRS L2.  Recall that the spatial resolution of DR is roughly 

14km, as it uses one single FOV for the area of retrieval, but that the spatial resolutions of 

both NUCAPS and AIRS L2 are approximately three times coarser as they both use a 3x3 

FOV array.  Therefore, in order to make an appropriate comparison between the three 

retrieval algorithms, nine single FOV’s centered on Fort McMurray from Dual Regression 

were averaged.  The mean of these nine FOV’s then gives a profile representative of the 

same 3x3 FOV array that is used in NUCAPS and AIRS L2.  Thus, comparisons between the 

algorithms can be made more equally.  Fig. 19 (a) shows these nine Dual Regression profiles 

in blue that were used to calculate the mean profile in red; then, the red profiles can be more 

accurately compared to the NUCAPS retrievals in (b).  Vertical profiles of temperature 

remain relatively consistent between the two algorithms, with surface temperatures retrieved 

by NUCAPS being slightly warmer than those by Dual Regression.  While relative humidity 

values are consistently higher in the lower- to mid-troposphere with DR, values are much 

higher in the UTLS with NUCAPS.  Noteworthy, however, is that both relative humidity 

profiles feature similar structures, with peaks in relative humidity occurring near 700-hPa 

and relative minimum values occurring near 500-hPa.  Interestingly, the specific humidity 

profiles between the two algorithms are strikingly similar throughout much of the column, 

with surface values around 5 g kg-1 and 700-hPa values around 3.5 g kg-1.  However, DR 

does show slightly more moisture in the lower troposphere than NUCAPS.  

 Figure 20 shows retrieved profiles of (a) temperature, (b) relative humidity, and (c) 

specific humidity.  The operational AIRS L2 retrieved profiles are shown in red for the 1947 

UTC overpass of AIRS, whereas the NUCAPS retrieved profiles are shown in blue for the  



 

62  

  

(a) Vertical Profiles from Dual Regression Algorithm 

(b) Vertical Profiles from NUCAPS Algorithm 

Figure 19: Vertical profiles of temperature (left), relative humidity (center), and 
specific humidity (right) retrieved from CrIS at 2018 UTC 03 May 2016, using 
(a) the Dual Regression algorithm and (b) the NUCAPS algorithm.  Red profiles 
in (a) represent the mean of the nine profiles in blue, calculated in order to match 
the resolution in (b). 
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2018 UTC overpass of CrIS.  The CrIS Dual Regression retrieved profiles are shown in green 

for the 2018 UTC overpass of CrIS.  The Dual Regression algorithm was not applied to the 

AIRS overpass at 1947 UTC as it was deemed sufficient to have the AIRS L2 retrievals. 

 Recall that thirty minutes separate the AIRS overpass (red) from the CrIS overpass 

(blue and green).  Surface temperatures between the two algorithms are relatively similar, 

with AIRS and NUCAPS with the highest precision nearing 296 K and the DR retrieval 

roughly 4 K warmer.  This implies little change in surface temperatures between the two 

overpasses. Temperature structures throughout the vertical column are relatively consistent 

among the algorithms with the exception of Dual Regression showing cooler temperatures in 

the middle troposphere.  Relative humidity profiles show an increase in mid-level humidity 

nearest 700-hPa between the AIRS and CrIS overpasses, implying a change within those 

thirty minutes.  However, surface values of relative humidity between AIRS L2 and 

NUCAPS are very similar, both at approximately 28%, where DR surface values are just 

slightly higher, nearing 35%.  The three algorithms feature comparable relative humidity 

structures throughout the atmospheric column, however, with AIRS L2 matching the 

aforementioned peaks in relative humidity near 700-hPa and minima near 500-hPa.  Specific 

humidity profiles between the three algorithms vary immensely in the lower troposphere, 

with AIRS L2 featuring far less moisture at 700-hPa than both NUCAPS and DR.  This 

implies an increase in mid-level moisture during the thirty minutes that separate the two 

overpasses, during which PyroCb development was evident.  Additionally, the DR algorithm 

maintains a specific humidity value of roughly 5.5 g/kg throughout the boundary layer, 

where the NUCAPS retrieval dries out immediately above the surface before becoming more 
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moist around 700-hPa.  Nevertheless, these profiles confirm the aforementioned warm 

surface temperatures and mid-level moisture signatures necessary for PyroCb enhancement. 

 Comparing retrieved profiles with radiosonde data, Fig. 21 shows the locations of the 

three nearest radiosonde launches to Fort McMurray.  The average distance from each station 

to the wildfire is a staggering 484 kilometers.  Thus, the radiosonde data for this particular 

case would in no way represent the conditions or the environment at Fort McMurray.  

Additionally, radiosonde launches are typically conducted at 0000 UTC and 1200 UTC each 

day, with an occasional special launch at 1800 UTC. For this case, the timing of the 

radiosondes would miss the PyroCb event entirely.  

 Nevertheless, comparisons of the AIRS overpass at 1947 UTC to each afternoon 

radiosonde are shown in Fig. 22 to demonstrate the benefit of hyperspectral retrievals in this 

case.  In (a), the operational AIRS L2 retrieved temperature and dew-point temperature 

profiles are contrasted with an 1800 UTC radiosonde profile from Edmonton, located 235 

miles to the southwest.  The surface temperature at Edmonton is much warmer than at Fort 

McMurray, but the structures of the temperature profiles remain in close agreement to one 

another throughout much of the atmospheric column.  Fluctuations between the two dew-

point temperature profiles exist, however, throughout most of the troposphere.  These 

differences are likely due to latitude, distance, and separation in time.  In (b), the operational 

AIRS L2 retrieved temperature and dew-point temperature profiles, shown again in red, are 

contrasted with three 0000 UTC radiosonde profiles from Edmonton (blue), Fort Nelson 

(green), and Fort Smith (pink).  Surface temperatures from all three 0000 UTC radiosondes 

are much warmer  
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Distances from Fort McMurray to Radiosonde Locations 
Fort McMurray (o) to Edmonton (▲) = 378 km  

Fort McMurray (o) to Fort Nelson (▲) = 710 km  
Fort McMurray (o) to Fort Smith (▲) = 367 km  
Average distance from Fort McMurray = 484 km 

Radiosonde Locations nearest Fort McMurray  

Figure 21: Radiosonde locations nearest location of the Fort McMurray 
wildfire. 
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than the AIRS L2 retrieval, perhaps due to an increase in diurnal surface heating between 

1947 UTC and 0000 UTC.  With the exception of the AIRS retrieval, the lapse rates of the 

other three profiles are dry adiabatic in the lower-troposphere.  Given the time of day, and 

one might anticipate that dry adiabatic layers would have formed.  In general, retrieving 

accurate temperature and humidity profiles from infrared satellite measurements is most 

challenging near the surface, where the thermal contrasts between surface and atmospheric 

layers above is too small and knowledge of surface parameters like surface emissivity and 

surface skin temperature may be insufficient.   Additionally, dew-point temperatures between 

the four profiles are seemingly divergent from one another throughout the atmospheric 

column, with the Fort Nelson profile featuring the moist moisture of the four, and the Fort 

Smith profile featuring the least moisture of the four.  

 The use of the WRF model to compare hyperspectral retrievals in closer temporal 

proximity to the PyroCb event is shown in Fig. 23, featuring 700-hPa mixing ratio at (a) 1800 

UTC, (b) 1900 UTC, (c) 2000 UTC, and (d) 2100 UTC for 03 May 2016.  It is important to 

note that the simulation provided by the WRF model does not incorporate the Fort McMurray 

wildfire, or the embedded PyroCb event.  In Fig. 23, only values over 2.4-g kg-1 are 

contoured. Across all four time periods, the WRF output shows that Fort McMurray lies in a 

region of relatively constant mixing ratio value of 3.2-g kg-1, with higher values above 4-g 

kg-1 to the west and north.  By 2100 UTC, this region of higher mixing ratios is advected 

upstream, closer to Fort McMurray, as a result of westerly flow.  This suggests that the WRF 

simulation showed a similar synoptic setup favorable for moisture advection in the mid-

troposphere.    
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 Figure 24 shows a skew-T diagram of a WRF sounding valid at 2000 UTC on 03 

May, overlaid with the AIRS L2 retrieval valid at 1947 UTC.  The WRF sounding shows 

surface temperatures near 24 °C, very similar to that of the AIRS L2 surface temperature of 

23 °C just thirteen minutes earlier at 1947 UTC (seen on Fig. 22).  The WRF sounding shows 

a slight near-surface temperature inversion that the AIRS L2 profile does not, but in all other 

regards, the profiles are strikingly similar.  The profile of the WRF dew-point temperature 

also follows a similar structure to that of the AIRS L2 dew-point temperature, with a relative 

peak around 700-hPa and a relative pocket of drier air around 500-hPa.  Thus, the WRF 

sounding compares favorably with the AIRS L2 retrieval, with a temporal difference of only 

thirteen minutes.   

 A time-height diagram is featured in Fig. 25, with a vertical profile of specific 

humidity in g kg-1 shown across seven hours, each hour from 1600 UTC to 2200 UTC on 3 

May.  There exists a nose of higher specific humidity of 4.5 g kg-1 near 750-hPa from 1600 

UTC until approximately 2030 UTC, around the same time of the PyroCb event.  Levels of 

surface moisture also increase dramatically following the event, rising nearly 3 g/kg from 

2000 UTC to 2200 UTC.  Analysis of this moisture evolution in the lower troposphere is 

insightful, as the WRF model does not simulate the Fort McMurray wildfire; in this 

simulation, the mid-tropospheric moisture exhaustion is still present without the wildfire or 

embedded PyroCb.  

 The hyperspectral sounder dataset proves useful in the case of the Fort McMurray 

wildfire as it provides an alternative method to analyze the atmospheric column when 

traditional radiosonde data does not collocate well in time or space.  GEFS Reanalysis data  
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Figure 24: Skew-T diagram of AIRS L2 retrieval valid 1947 UTC (red) 
and WRF output valid 2000 UTC (blue) at location of Fort McMurray 
wildfire 03 May 2016.  Solid lines indicate temperature in degrees Celsius.  
Dashed lines indicate dew-point temperature in degrees Celsius.  
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showed the synoptic environment characterized by a strong 500-hPa geopotential height 

ridge, not entirely consistent with Dr. Peterson’s “Canadian Ridge Breakdown” classification 

scheme as the ridge had not broken down by the time of the PyroCb.  Hyperspectral 

brightness temperatures showed the Fort McMurray PyroCb developed in a region of high, 

cool clouds, with window region temperatures below 250 K and a signature consistent 

spatially with the PyroCb detected on visible imagery.  Differences in the three retrieval 

algorithms were presented, but similar structures in vertical profiles between the three 

showed strong agreement of warm surface temperatures, relative peaks in relative humidity 

near 700-hPa, and similar specific humidity values throughout much of the troposphere.  The 

WRF model provided spatially and temporally proximate simulations of the PyroCb event 

environment, suggesting a similar presence of mid-level moisture to that shown by 

hyperspectral retrievals.  Additionally, a WRF sounding valid only thirteen minutes apart 

from the AIRS overpass showed strong collocation to the AIRS L2 retrieved profile, 

suggesting that the model handled the development of the PyroCb environment very well.  
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5 Summary and Conclusions  

 Hyperspectral sounders provide a valuable dataset from which profiles of temperature 

and moisture at high vertical resolution may be retrieved.  With four hyperspectral sounders 

currently aboard separate polar-orbiting satellites, the time evolution of atmospheric 

phenomena and associated processes can be readily analyzed.  Hyperspectral sounder data is 

most useful in its twice per day availability over every location on the planet, proving most 

useful in remote regions where components of traditional in-situ observation networks are 

sparse or nonexistent.  Most specifically, hyperspectral sounder data is greatly beneficial in 

the study of PyroCb events, where short lifetimes and remote locations typically make them 

difficult to analyze.  In this study, hyperspectral sounder applications were used to 

investigate two PyroCb events, the Yarnell Hill wildfire in Arizona and the Fort McMurray 

wildfire in Alberta, Canada.   

 Prior to using the data, a solid foundational understanding of remote sensing and 

atmospheric radiation is crucial.  Chapter 2 of this study presented the necessary equations of 

Planck function, Wien displacement, upwelling radiation, weighting function, and brightness 

temperature to better understand how an instrument measures radiation.  Also presented in 

this section were in-depth descriptions of the three hyperspectral sounders in orbit: AIRS, 

IASI, and CrIS.  Additionally, Chapter 2 provided an introduction to PyroCb activity and 

presented the three synoptic classification schemes (Peterson, 2017b).  

 Chapter 3 of this study provided an introduction to linear regression and physical 

optimal estimation as methods for retrieval of atmospheric profiles and parameters from 

hyperspectral radiances, presenting equations for the linear regression model and regression 
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coefficients, as well as for the physical optimal estimation solution and error covariance.  

These techniques were applied in explanation of the three retrieval algorithms used in this 

study: Dual Regression, NUCAPS, and AIRS L2 Standard Physical Retrieval.  Also 

presented in Chapter 3 was a background of the WRF model for additional simulation of the 

Fort McMurray case study, as well as other data sources used in the two case studies. 

 Hyperspectral sounder data associated to the Yarnell Hill wildfire of June 2013 was 

investigated in attempt to characterize the environment prior to a PyroCb event, specifically 

one detected via visible imagery at 2345 UTC on 30 June.  Hyperspectral brightness 

temperatures confirmed an incoming convective system from the northeast, and showed 

cooler temperatures in the window region over Yarnell, suggesting cloudy-sky conditions.  

Profiles of temperature and moisture retrieved using the Dual Regression algorithm 

confirmed very warm surface temperatures over 300 K, with dry conditions at the surface but 

an increase in both relative and specific humidity values near 700-hPa.  Comparison with 

radiosonde data from Flagstaff, Arizona at 0000 UTC on 1 July to the last satellite overpass 

of the afternoon was made, but strong disparity in time and space made such a comparison 

difficult.  Situated at a low latitude, the location of the Yarnell wildfire was not favorable 

with the given satellite overpasses of 30 June, making the use of hyperspectral sounder data 

slightly more difficult in this case.  Nevertheless, the hyperspectral sounder dataset provided 

information regarding the environment antecedent to the PyroCb that would otherwise not 

have been provided from radiosonde data.   

 Hyperspectral sounder data was also investigated for the Fort McMurray wildfire in 

far northern Alberta, Canada in May 2016 to characterize the environment leading up to a 

PyroCb event detected on visible imagery around 1945 UTC on 03 May.  Brightness 
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temperature spectra showed cool temperatures in the window region, confirming the location 

of the PyroCb among high, cool clouds in the region, and the overshooting top signature of 

the PyroCb was confirmed upon analysis of spatial brightness temperatures.  Retrieved 

profiles of temperature and moisture were presented using three different retrieval 

algorithms, and while each had its own distinct differences, the relative structures were 

similar in showing very warm surface temperatures and a surge of moisture near 700-hPa.  

Comparison with radiosonde data in this case was again difficult, as the average distance of 

the three nearest radiosonde locations to the location of the Fort McMurray wildfire was 

almost five hundred kilometers.  This proves the value of the hyperspectral sounder dataset 

as it provides observations in a region where radiosonde data would miss the PyroCb event 

entirely.  The use of the WRF model provided high resolution in space and time simulation 

data for this case, with model output of mixing ratio two hours prior and after the PyroCb 

event showing the setup for moisture advection by a westerly wind.  There can be no 

conclusions drawn about the effect of the moisture content on the PyroCb in this case, 

however, as the model does not simulate the wildfire or the associated PyroCb.  Additionally, 

a 2000 UTC sounding from the WRF model shows that the model was in close agreement 

with the AIRS retrieval algorithm, featuring a slightly moist adiabatic lapse rate through the 

lower troposphere.  Lastly, a time-height diagram of mixing ratio showed an exhaustion of 

moisture near 750-hPa in close timing to the PyroCb event that was not simulated by the 

model.  

 It is important to note that while hyperspectral sounder data is never meant to replace 

any existing source of in-situ observations, it can greatly enhance and complement other 

sources when analyzing the environments of various atmospheric phenomena.  The high 
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spectral resolution of the instruments translates to high vertical resolution of temperature and 

moisture profiles, which are used as valuable tools in nowcasting, weather forecasting and 

numerical weather prediction.  The conjunction of hyperspectral sounder data with a widely 

understudied phenomenon like a PyroCb event proves incredibly valuable, expanding both 

the use of hyperspectral sounder data and the understanding of PyroCb activity, both ultimate 

goals with sizeable implications within the atmospheric science community.   
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