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Abstract 

ASSESSING EXTRATROPICAL INFLUENCE ON TROPICAL CLIMATOLOGY 
AND VARIABILITY WITH REGIONAL COUPLED DATA ASSIMILATION 

Feiyu Lu 
Under the supervision of Professor Zhengyu Liu 

At the University of Wisconsin-Madison 

Tropical variability (e.g. El Niño-Southern Oscillation or ENSO) and climatology (e.g. 

asymmetric Inter-Tropical Convergence Zone or ITCZ) were initially thought to be 

determined mostly by local forcing and ocean-atmosphere interaction in the tropics. 

Since late 20th century, numerous studies have showed that extratropical forcing could 

affect, or even largely determine some aspects of the tropical climate. Due to the coupled 

nature of the climate system, the challenge of determining and further quantifying the 

causality of extratropical forcing on the tropical climate remains to be further explored. 

This dissertation studies the extratropical influence on the tropical climate, including 

both variability and climatology, using the Regional Coupled Data Assimilation (RCDA) 

method in a coupled general circulation model (CGCM). The RCDA method limits the 

data assimilation to the desired model components (e.g. atmosphere) and regions (e.g. 

the extratropics) and studies the ensemble-mean model response (e.g. tropical response 

to “observed” extratropical atmospheric variability).  

First, perfect-model RCDA experiments demonstrate significant control of 

extratropical atmospheric forcing on ENSO variability in the CGCM. When atmospheric 

“observations” are assimilated only poleward of 20° in both hemispheres, most ENSO 

events in the “observation” are reproduced. Experiments with single-hemisphere 
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assimilation show that the forced ENSO variability is contributed roughly equally and 

independently by the Southern and Northern Hemisphere extratropical atmosphere. 

Robust precursors are found in both the extratropical atmosphere over southeastern 

Pacific and equatorial Pacific thermocline, consistent with previous studies. However, 

neither precursor alone is sufficient to trigger ENSO onset, therefore neither alone could 

serve as a reliable predictor.  

Then, RCDA experiments with real world reanalysis data show extratropical impact 

on both tropical climatology and variability in the CGCM. The model’s double-ITCZ bias 

is improved systematically when SST, air temperature and wind are corrected toward real 

world data from the extratropics into the tropics progressively. Coupled dynamics, as well 

as atmospheric and oceanic processes, play important roles in this extratropical-to-

tropical teleconnection. Certain historical ENSO events are also reproduced by 

assimilating extratropical atmospheric observations. Analysis of the real world RCDA 

experiments confirms the effects of the precursors found in the perfect-model 

experiments, while also points to the impact of model bias on ENSO variability.  
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Chapter 1 

1. Introduction 

The tropical climate serves as the driver of the global climate by providing energy and 

moisture to the extratropics and exerting some of the most dominant climate variability 

from subseasonal (e.g. the Madden-Julian Oscillation or tropical cyclones) to interannual 

timescales (e.g. ENSO). The climatology and variability of the tropical climate have been 

the subject of numerous research fields, including climate dynamics, tropical meteorology, 

climate modeling, etc. The mechanisms that determine the tropical climatology and 

variability have long been thought to be dominated by tropical processes. However, in the 

past 20 years or so, the extratropical influence on the tropics has drawn a lot of attention 

from researchers, as the evidence of extratropical control on tropical climatology [Liu and 

Yang, 2003; Chiang and Bitz, 2005; Kang et al., 2008] and variability [Vimont et al., 

2001, 2003a, 2003b] surfaced from observational and modeling studies.  

  Extratropical Influence on tropical climatology 

The asymmetric features of the tropical climate, specifically those in the eastern 

Pacific Ocean, has been investigated for decades [Mitchell and Wallace, 1992; Philander 

et al., 1996; Xie, 2004]. The displacement of the Inter-Tropical Convergence Zone (ITCZ), 

despite the hemispherical symmetry of solar radiation, is one of the primary asymmetric 

features. Numerous theories have been formulated to explain the ITCZ asymmetry. The 

strong asymmetry in land mass distribution and continental topography could provide 

the necessary disturbances to break the asymmetry and displace the maximum SST and 

ITCZ to the north of the equator [Philander et al., 1996; Xie, 2004; Takahashi and 
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Battisti, 2007; Maroon et al., 2015], while several ocean-atmosphere feedback 

mechanisms, such as the Wind-Evaporation-SST (WES) feedback, stratus cloud-SST 

feedback and upwelling-SST feedback [Klein and Hartmann, 1993; Xie and Philander, 

1994; Philander et al., 1996], could amplify such disturbances and form the current 

asymmetric tropical climatology. These theories mostly focused on local processes and 

mechanisms inside the tropics, and they are often interconnected through the strong SST 

(sea surface temperature) control over precipitation, especially in the eastern Pacific and 

the Atlantic [Mitchell and Wallace, 1992; Waliser and Graham, 1993].  

Recently, an energetic perspective on the ITCZ asymmetry has emerged [Broccoli et 

al., 2006; Kang et al., 2008, 2009; Frierson and Hwang, 2012; Donohoe et al., 2013; 

Frierson et al., 2013; Schneider et al., 2014]. This energetic perspective considers the 

global atmosphere energy budget instead of the detailed dynamic processes. It has been 

widely and convincingly shown that the ITCZ tends to shift toward the warmer 

hemisphere in climate models. For example, when the northern high-latitude is cooled in 

general circulation models (GCMs), the northward cross-equator atmospheric energy 

transport (AET) strengthens and the ITCZ shifts southward [Kang et al., 2008; 

Cvijanovic and Chiang, 2013; Donohoe et al., 2013]. The change in northern high-

latitude energy budget could increase the meridional temperature gradient in the 

Northern Hemisphere and transport more energy from the north Tropics poleward via 

intensified eddy energy flux in the extratropics [Chiang and Bitz, 2005; Kang et al., 2008, 

2009; Frierson et al., 2013]. Given the strong correlation between cross-equator AET and 

the ITCZ position, researchers have argued that any perturbations to the 

interhemispheric atmospheric energy budget could equally affect the cross-equator AET, 
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and naturally, the ITCZ position [Chiang and Bitz, 2005; Kang et al., 2008, 2009; 

Frierson and Hwang, 2012; Donohoe et al., 2013].  

The double ITCZ bias is also a persistent problem even for the state-of-the-art coupled 

general circulation models (CGCMs). Analysis of CMIP5 (Coupled Model 

Intercomparison Project, phase 5) CGCMs shows clear double ITCZ bias in most models 

[Li and Xie, 2014], which could be attributed to the SST biases, and to a lesser extent, 

problematic precipitation-dynamics relationships [Oueslati and Bellon, 2015]. The 

double ITCZ problem in CMIP5 models has also been analyzed from an energetic 

perspective. Confirming the sensitivity experiments in a single GCM (e.g. Donohoe et al. 

2013), the severity of the double ITCZ bias is positively correlated with the bias in cross-

equator AET [Hwang and Frierson, 2013; Adam et al., 2016]. This has led to the 

conclusion that the double-ITCZ bias in current climate models can be attributed to the 

model deficiency in the extratropical energy balance over the Southern Ocean [Hwang 

and Frierson, 2013] and the NH extratropics [Adam et al., 2016]. However, the nature of 

these modeling studies has remained qualitative. Indeed, recent modeling studies have 

shown that reducing the Southern Ocean energy budget bias in fully coupled climate 

models does not lead to significant change in the ITCZ position because of the dominant 

role of oceanic energy transport in the interhemispheric energy balance [Hawcroft et al., 

2016; Kay et al., 2016], and the exact magnitude of extratropical impact on tropical bias 

depends on the specific coupled and oceanic dynamics in the models [Deser et al., 2015; 

Mechoso et al., 2016]. As such, it remains unclear if and how the extratropics can impact 

tropical bias in climate models. 

Another aspect of the double-ITCZ bias is the deficiency in precipitation close to the 

equator compared to the whole tropics, which contributes to the shape of two 
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precipitation peaks straddling the equator in GCMs. It has been found that the equatorial 

precipitation is directly related to the net energy input into the equatorial atmosphere, 

more than any extratropical sources [Adam et al., 2016]. 

  Extratropical Impact on El Niño-Southern Oscillation 

(ENSO) 

ENSO dominates the interannual variability of tropical climate and has significant 

global impacts. The dynamics of the El Niño-Southern Oscillation (ENSO) phenomenon 

has been studied extensively in the past 50 years. It has been recognized that the genesis 

of ENSO events depends critically on coupled ocean-atmosphere dynamic processes in 

the tropical Pacific [Philander, 1990; Neelin et al., 1998].  In the meantime, more recent 

studies suggest that ENSO could also be triggered by extratropical atmospheric variability 

from the North Pacific through the “seasonal footprinting mechanism” (SFM) [Vimont et 

al., 2001, 2003a, 2003b] or the North Pacific Meridional Model (NPMM) [Chiang and 

Vimont, 2004; Chang et al., 2007], and from the South Pacific through the South Pacific 

Meridional Model (SPMM) [Zhang et al., 2014], with the extratropical influence on the 

equatorial Pacific accomplished by the equatorward penetration of coupled ocean-

atmosphere disturbances via the WES feedback [Liu and Xie, 1994; Liu, 1996; Vimont, 

2010]. As such, extratropical climate variability and the associated tropical Pacific climate 

variability, such as NPMM, has also been suggested as a precursor for the onset of ENSO 

events [Anderson, 2007; Chang et al., 2007; Larson and Kirtman, 2013, 2014]. 

The assessment of ENSO predictability relies upon the identification of such 

precursors that can act as triggers of ENSO events. Several precursors have been proposed 

in the literature. They include tropical precursors such as equatorial Pacific heat content 
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[Jin, 1997] and high-frequency wind variations in the form of wind bursts [Hu et al., 2014; 

Fedorov et al., 2015], as well as the aforementioned extratropical precursors like NPMM 

and SPMM. However, the interplay and relative importance of these different precursors 

is unclear. Correlations can be found between some precursors and ENSO events [Chang 

et al., 2007], but the limited sample size makes it difficult to analyze the relationship 

between precursors and ENSO events. Besides the short duration, observations are a mix 

of climate variability at all spatial and temporal scales, which makes it even harder to find 

causal relationships. Since ENSO is well known to exert a strong impact on extratropical 

climate over the Pacific [Alexander et al., 2002; Liu and Alexander, 2007] and therefore 

can be closely coupled with extratropical climate variability, the study of the extratropical 

impact on ENSO requires first to separate the triggering extratropical variability from the 

tropical ENSO variability itself before the extratropical impact on ENSO could be studied. 

The impact of extratropical climate variability on ENSO has been studied mainly in two 

approaches. In the first approach, the extratropical climate variability and its equatorial 

impact is statistically extracted from observations or a control simulation in a fully 

coupled general circulation model (CGCM) using linear statistical methods [Vimont et al., 

2001, 2003a, 2003b; Anderson, 2007; Yu et al., 2010; Larson and Kirtman, 2013, 2014]. 

However, ENSO is known to exert a significant impact on extratropical climate variability, 

and its impact may not be filtered cleanly in the observation statistically [Compo and 

Sardeshmukh, 2010]. For example, the common practice of simple linear removal of an 

ENSO index from wind observations doesn’t necessarily generate ENSO-independent 

wind data due to nonlinearity or non-simultaneous correlations. Therefore, the 

extratropical impact on ENSO may not be fully represented in this approach. In the 

second approach, the extratropical variability is simulated dynamically or specific 
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extratropical forcing is prescribed in a coupled model that filters out ENSO by employing 

a slab ocean [Vimont et al., 2009; Newman et al., 2011; Zhang et al., 2014], and then its 

impact on ENSO can be studied using either statistical methods or another coupled model 

that incorporates ENSO dynamics. This approach can isolate the extratropical impact 

from ENSO variability, but the dynamics of the impact may not be well represented 

because of the use of different models. In either approach, the extratropical impact on 

ENSO is studied more from a statistical perspective, which makes it difficult to assess the 

role of extratropical impact for any specific ENSO event. 

  Coupled Data Assimilation (CDA) 

As mentioned before, there are generally two approaches to studying extratropical 

control on tropical climate, namely observational analysis and model simulations. Each 

approach has its limits. For observational analysis, it is difficult to obtain causal relations 

from statistical inference, and it is almost impossible to isolate specific signals from 

observations of the real world. For model simulations, there is a dilemma between 

retaining coupled dynamics and using real world observations. One can either prescribe 

real world observations to force single-component GCMs and regional climate models, or 

use a fully coupled GCM but work within the limits of the model dynamics without direct 

implication for the real world.  

As a complementary approach to the previous work, we attempt to study the 

extratropical impact on tropical climate explicitly using an approach derived from 

coupled data assimilation (CDA). We will prescribe the extratropical variability and 

climatology using an ensemble CDA scheme in a CGCM and then study the tropical 

responses, particularly ENSO and precipitation responses, of the coupled model to the 

extratropical forcing. The CDA, especially the ensemble Kalman filter (EnKF) and its 
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variations, has been used as a comprehensive strategy for generating climate reanalysis 

and initial conditions for prediction in the coupled climate system [Zhang et al., 2007; 

Saha et al., 2010; Raeder et al., 2012; Karspeck et al., 2013]. Here, we will use the CDA 

as a tool for the understanding of climate dynamics, specifically the extratropical impact 

on tropical climate in a GCCM. Ensemble-based data assimilation has been used in the 

study of atmospheric dynamics [Hakim and Torn, 2008; Liu and Kalnay, 2008; Torn 

and Hakim, 2008; Kalnay et al., 2012; Kunii et al., 2012], but seems to have not been 

used to investigate the coupled dynamics in a CGCM. An ensemble approach has been 

adopted in some previous studies mainly to reduce the atmospheric noises [Kirtman and 

Shukla, 2002; Vimont et al., 2009].  
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Chapter 2 

2. Model and Methods 

 Fast Ocean Atmosphere Model (FOAM) 

The CGCM is the Fast Ocean Atmospheric Model (FOAM, version 1.5). FOAM is a 

fully coupled global atmosphere-ocean model with parallel implementation [Jacob, 1997]. 

The atmosphere component (PCC M3-UW) [Drake et al., 1995]) is a spectral model with 

a R15 horizontal resolution (equivalent to 7.5°×4.5°) and 18 vertical levels. The ocean 

component (OM3) is based on the Modular Ocean Model (MOM) [Cox, 1984] created by 

the Geophysical Fluid Dynamics Laboratory (GFDL). It has a horizontal resolution of 

2.8°×1.4° and a z-coordinate with 24 vertical levels. The land surface and sea ice models 

are based on those of Community Climate Model 2 (CCM2) [Hack et al., 1993]. Without 

flux adjustment, a 6000-model-year simulation of FOAM shows no apparent drift in 

tropical climate [Liu et al., 2007b]. FOAM can capture most major features of the 

observed global climatology as in some more advanced CGCMs. It also shows reasonable 

climate variability in regions such as the tropics [Liu et al., 2000, 2004], the North Pacific 

[Wu et al., 2003; Liu et al., 2007a], and the North Atlantic [Wu and Liu, 2005]. 

 CDA System in FOAM 

Ensemble-based analysis techniques such as EnKF [Evensen, 1994; Houtekamer and 

Mitchell, 1998] and Ensemble Adjustment Kalman Filter (EAKF) [Anderson, 2001, 2003] 

have emerged as viable options for CDA systems in complex systems such as a CGCM. 

EAKF, in particular, was used to develop the first ensemble-based CDA system in a fully 

coupled general circulation model [Zhang et al., 2007]. 
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The CDA system in FOAM [Liu et al., 2014a, 2014b; Lu et al., 2015b] uses EAKF and 

includes both atmosphere data assimilation (ADA) and ocean data assimilation (ODA). 

All experiments in this study use an ensemble size of 16, similar to previous studies [Liu 

et al., 2014b; Lu et al., 2015b]. We applied several filtering techniques to improve and 

stabilize this CDA system, including covariance inflation, covariance localization and 

incremental analysis update. Considering the moderate ensemble size and the model bias 

when assimilating real world observations, covariance inflation is needed to stabilize the 

assimilation. Because of its superior stability when dealing with drastically variable 

observation density, a relax-to-prior scheme [Zhang et al., 2004] is used for both 

atmospheric and oceanic updates over a multiplicative covariance inflation scheme 

[Hamill and Whitaker, 2005]. The relaxation factor is set at 0.5 for all experiments. 

Covariance localization scheme [Houtekamer and Mitchell, 1998; Hamill et al., 2001] is 

also adopted in this system to reduce the impact of remote observations. Incremental 

analysis updates [Bloom et al., 1996] is a method to reduce the initial shock introduced 

by assimilating observations.  

The CDA system can assimilate temperature and salinity observations in the ocean 

and temperature and wind observations in the atmosphere. The update algorithm also 

uses the covariance between model variables, both within a single model component and 

across different model components. The latter capability, also called the Strongly Coupled 

Data Assimilation (SCDA) will be further described in section 2.3 

 Strongly Coupled Data Assimilation (SCDA) 

There are two levels of coupling in regards to the exchange of information in the 

analysis stage of a CDA system [Han et al., 2013; Liu et al., 2013]. In the weakly coupled 

data assimilation (WCDA), the analysis increments are calculated and applied separately 
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in each model component such that the coupling between different components is 

accomplished only dynamically through cross-component fluxes in the forecast stage. 

ADA and ODA are the two most common components of a WCDA system. In contrast, the 

SCDA applies the analysis increments using the fully coupled error covariance, especially 

the coupled covariance between variables from different model components (hereafter 

cross covariance). As a result, the coupling between different components is accomplished 

not only dynamically in the forecast stage, but also statistically through the coupled 

covariance in the analysis stage. In an SCDA system, the observed information in one 

model component can be directly projected onto another, resulting in instantaneous 

adjustment and balanced analysis increments. The WCDA has been adopted in some 

state-of-the-art CDA systems [Zhang et al., 2007; Sugiura et al., 2008; Saha et al., 2010], 

however, the use of SCDA has remained in the exploration stage. 

In principle, the use of cross covariance should add additional information and 

improve the analysis. This has been recognized, for example, in a simple coupled model 

study (Liu et al. 2013). However, the implementation of the SCDA in CDA systems faces 

many challenges, such as time-scale differences, different analysis schemes among 

components, cost of computation, etc. The mismatch of time scales of variability between 

different components causes the coupled covariance to be dominated by noise of the 

variables from the fast component. Therefore, in an ensemble-based filter with a finite 

sample size, it is difficult to estimate the coupled covariance accurately, and sampling the 

coupled covariance may introduce more noise than signal and deteriorate the analysis. 

For instance, a recent study [Han et al., 2013] using a biased-model framework and a 

simple coupled model found that the SCDA does not improve the analysis quality 

compared to the WCDA unless a very large ensemble size on the scale of 10000 is used. 
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In addition, it is more difficult to improve the quality of analysis in the fast component 

through cross update, since observations from the slow component do not contain enough 

information about the high-frequency variability. 

The physical characteristics of a coupled climate system could provide ways to 

improve the accuracy of sampling the cross covariance. In a typical midlatitude ocean–

atmosphere coupled system, the ocean–atmosphere interaction is dominated by the 

stochastic forcing of the atmospheric internal variability on the slow ocean, such that the 

ocean–atmosphere lead–lag correlation shows a strong asymmetry. More specifically, the 

cross correlation is small at the zero lag and reaches maximum when the atmosphere 

leads the ocean by about the decorrelation time of the atmosphere [Hasselmann, 1976; 

Barsugli and Battisti, 1998]. This asymmetry could potentially benefit the cross update if 

the high correlation between the ocean and the preceding atmosphere could be used to 

enhance the signal-to-noise ratio when calculating the corresponding cross covariance. 

To further boost the accuracy of sampling the covariance, the leading correlations could 

be combined with the use of time-averaged observations [Huntley and Hakim, 2010], 

which leads to even higher correlation with the oceanic state. Some recent studies [Tardif 

et al., 2014a, 2014b] utilized the high correlations between time-averaged atmospheric 

and oceanic variables. In their cases, the slow meridional overturning circulation (MOC) 

benefits from the cross update using time-averaged atmospheric observations.  

In a two-part paper, we proposed the Leading Averaged Coupled Covariance (LACC) 

method to improve the effectiveness and efficiency of cross update in an SCDA system. In 

Part 1 [Lu et al., 2015a], we proposed the LACC method and tested it in a simple coupled 

model. The LACC method utilizes the asymmetric ocean–atmosphere coupling dynamics 

by using the leading forecasts and observations of the fast atmospheric variables. This 
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leads to increased cross correlation and enhanced signal-to-noise ratio during cross 

update. To further reduce the sampling error, the leading atmospheric states are averaged 

over time to produce even higher correlations [Dirren and Hakim, 2005; Huntley and 

Hakim, 2010; Tardif et al., 2014a]. In the simple coupled model of Part 1, the LACC 

method significantly increases the cross correlation for the cross update and reduces the 

analysis error of the slow model variable compared to both the WCDA and the regular 

SCDA without LACC [Lu et al., 2015a].  

The LACC method was then used to setup an SCDA system in FOAM. To our 

knowledge, this was the first successful application of an SCDA scheme in a CGCM. In a 

perfect-model framework, the SCDA system implements cross update from the 

atmosphere component (low-level air temperature) to the ocean component (SST), 

utilizing the coupled covariance between atmosphere temperature and SST. The details 

of the SCDA system and LACC method in FOAM can be found in  [Lu et al., 2015b].  

We showed that, although the direct SCDA using simultaneous cross covariance 

(SimCC) fails to improve upon the WCDA, the SCDA with the LACC method can indeed 

improve upon the WCDA significantly. The WCDA system refers to the CDA system 

described in Chapter 2.2. Figure 2.1 shows the zonal mean RMSE of monthly SST analysis 

of the SimCC and the LACC method with different averaging lengths, normalized by the 

WCDA. “AveX” means that cross update is done every X days with the X-day-averaged 

leading 𝑇)  (surface air temperature). The SimCC method performs poorly across all 

latitudes except for the deep tropics between 10°𝑆  and 10°𝑁, where the simultaneous 

correlations are the largest and the SimCC can indeed reduce the RMSE of monthly SST 

by up to 10%. Nevertheless, the SCDA using SimCC is far from an acceptable scheme 

because of its much poorer analysis outside the equatorial region. The RMSE increases by 
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up to 70% over WCDA in the mid-latitude in both hemispheres. As the averaging length 

becomes longer, the cross update with the LACC method begins to have a consistently 

positive impact on the system. The optimal case, the “Ave7” experiment, notably 

outperforms the benchmark WCDA experiment: its RMSE of SST is reduced by 10% to 

20% between 24°𝑆  and 33°𝑁 , and remains smaller than the WCDA across the entire 

domain, except for the very northern part (> 40°𝑁).  

 

Figure 2.1 Zonal-mean RMSE (Root Mean Square Error) of monthly SST from the SimCC 
experiment and the LACC experiments with different averaging lengths, normalized by 
the WCDA experiment. (from [Lu et al., 2015b]) 

A detailed comparison is made between the under-performing SimCC and the 

optimal “Ave7”. Figure 2.2 shows the spatial distribution of the RMSE of SST from the 

SimCC experiment normalized by the WCDA, the “Ave7” experiment normalized by the 

WCDA, and the “Ave7” experiment normalized by the SimCC. The zonal average of Figure 

2.2a and b will produce the curves of SimCC and Ave7 in Figure 2.1, respectively. Aside 

from the zonal-mean features already demonstrated in Figure 2.1, Figure 2.2a shows that 
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the improved SST in the SimCC experiment expands into higher latitudes in the Atlantic 

and the eastern Pacific where the simultaneous correlations are relatively large (not 

shown). Figure 2.2b shows that the inferior analysis quality of “Ave7” north of 40°𝑁 is the 

result of larger RMSE in the northwestern Pacific and northwestern Atlantic than the 

WCDA. These inferior analyses, we speculate, are caused by two reasons. First, they could 

be attributed to the small ensemble correlations north of 40°𝑁  as well as the small 

correlations in those specific areas. Second, they could also be caused by the large analysis 

errors of air temperature over land and their westward extension. Since the observation 

innovations for the cross update are calculated from the observation and forecast of air 

temperature, the poor quality of air temperature analysis leads to less accurate 

observation innovations and less effective cross update. Directly comparing “Ave7” to 

SimCC (Figure 2.2c), the RMSE ratio in the tropics is very close to 1, while the analysis 

quality is improved across most of the extra-tropics.  

As shown in Figure 2.1, the averaging length is a critical parameter governing the 

performance of the LACC method [Tardif et al., 2014a; Lu et al., 2015a]. In each SCDA 

system with fixed observations, ensemble size, ADA/ODA frequencies and analysis 

schemes, there are two competing factors that determine the optimal averaging length. 

The first is the magnitude of the leading averaged cross correlation, which controls the 

signal-to-noise ratio when estimating the sample covariance for cross update. This 

correlation usually increases rapidly with the averaging length starting from 1, peaks at a 

certain length and eventually declines. The other is the frequency of cross update, since a 

longer averaging length implies less frequent assimilation through coupled covariance 

and therefore less constraint by atmospheric observations on the ocean. The competing 

effects of these two factors usually result in an optimal length, which tends to be longer in 
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the case of a system with larger noise [Lu et al., 2015a]. In a CGCM like FOAM, these 

factors are not spatially homogeneous, yet, the length of 7 days, which is close to the 

decorrelation time of the atmosphere surface temperature, seems to be the optimal choice 

for most latitudes. A longer 10 days is slightly better for higher latitudes south of 40°𝑆 and 

north of 40°𝑁, which also agrees with [Lu et al., 2015a], since the higher latitudes have 

smaller correlations. Changes in the observations, ensemble size, configuration of 

ADA/ODA and analysis schemes could all lead to different optimal averaging lengths. The 

sensitivity of the optimal average length in a complex CGCM like FOAM, however, 

remains to be studied in the future. 

Compared to SimCC, the improvement from the LACC method mainly comes from 

the increased cross correlations compared to the simultaneous correlations, due to the 

use of leading averaged atmosphere temperature, which enhances the signal-to-noise 

ratio in calculating the coupled covariance for the cross update. The success of the LACC 

method indicates the potential to combine coupling dynamics with proper statistical 

techniques to improve coupled data assimilation systems. 

The success of [Lu et al., 2015b] demonstrates the potential to apply the SCDA in 

state-of-the-art CGCMs. With an SCDA system, currently assimilated observations can be 

used more effectively, and information from a well-observed component like the 

atmosphere can be directly projected to a less-observed or unobserved component such 

as the ocean or the land. Compared with the WCDA systems that are currently being 

established for some major reanalysis projects, SCDA systems, in principle, would 

produce a more accurate and balanced analysis of the coupled state and provide better 

initialization for predictions. 
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Figure 2.2 Spatial distribution of the RMSE of monthly SST from a) the SimCC experiment 
(normalized by the WCDA), b) the “Ave7” experiment (normalized by the WCDA), and 
c) the “Ave7” experiment (normalized by the SimCC). (from [Lu et al., 2015b]) 

 Regional Coupled Data Assimilation (RCDA) 

Based on the CDA system in FOAM, the RCDA method limits the assimilation to the 

desired model variables and domain, then analyzes the ensemble-mean model responses 

in regions without the assimilation of observation. Because of the flexibility of the 

ensemble-based Kalman filter, the data assimilation can be selectively activated for any 

model variable in any region. In other words, the system could proceed with only a subset 
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of the global observations. If both ADA and ODA are active over the entire globe, the end 

result is like a “reanalysis” product and the model is closely constrained by the 

observations everywhere [Zhang et al., 2007; Lu et al., 2015b]. If the data assimilation is 

active only in a limited region, the product shows the impact of the observations in the 

chosen region on the evolution of the coupled model outside the assimilation region, 

similar to the observation sensitivity experiments (e.g. Kunii et al. 2012). 

In Chapter 3, the RCDA method is used to study the extratropical influence on the 

tropical bias in FOAM dynamically, systematically and quantitatively [Lu et al., 2017a]. 

RCDA experiments show that the model’s double-ITCZ bias is improved systematically 

when SST, air temperature and wind are corrected toward real world data from the 

extratropics into the tropics progressively. More quantitatively, the tropical asymmetry 

bias in precipitation and surface temperature is reduced by 40% due to extratropical 

impact from outside of ~25°. Coupled dynamics, as well as atmospheric and oceanic 

processes, play important roles in this extratropical-to-tropical teleconnection. Energetic 

analysis of cross-equatorial atmospheric energy transport and equatorial net energy input 

are used to explain the changes in the precipitation bias. We also discuss the implications 

of our RCDA method and experiments for diagnosing the sources of the tropical bias in 

climate models.  

In Chapter 4 and Chapter 5, the RCDA method is used to study the extratropical 

control on the El Niño-Southern Oscillation (ENSO) variability in FOAM. Extratropical 

observations are assimilated, both in a perfect-model framework [Lu et al., 2017b] and 

with real world observations, and the ensemble-mean ENSO response is analyzed to study 

the dynamics, precursors and predictability of ENSO variability in FOAM and the real 

world.  
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The perfect-model experiments demonstrate significant control of extratropical 

atmospheric forcing on ENSO variability in FOAM. When atmospheric “observations” are 

assimilated only poleward of 20° in both hemispheres, most ENSO events in the 

“observation” are reproduced and the error of the Nino3.4 index is reduced by over 40% 

compared to the ensemble control experiment that does not assimilate any observations. 

Further experiments with the assimilation in each hemisphere show that the forced ENSO 

variability is contributed roughly equally and independently by the Southern and 

Northern Hemisphere extratropical atmosphere. Further analyses of the ENSO events in 

the southern hemisphere forcing experiment reveal robust precursors in both the 

extratropical atmosphere over southeastern Pacific and equatorial Pacific thermocline, 

consistent with previous studies of the South Pacific Meridional Mode and the discharge-

recharge paradigm, respectively. However, composite analyses based on each precursor 

show that neither precursor alone is sufficient to trigger ENSO onset by itself and 

therefore neither alone could serve as a reliable predictor. 

RCDA experiments with real world reanalysis data demonstrate extratropical control 

on certain historical ENSO events. The effectiveness of several common ENSO precursors 

in triggering strong historical ENSO events (equatorial heat content, westerly wind bursts, 

NPMM and SPMM) is compared and discussed. Additional forecast and forced 

experiments identify the relative importance of each precursor for a few extreme ENSO 

events.  
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Chapter 3 

3. Extratropical Influence on Tropical Climatology 

The RCDA method is first used to study the extratropical influence on the tropical bias in 

FOAM dynamically, systematically and quantitatively [Lu et al., 2017a]. The essence of 

the RCDA method here is to quantify, when allowing the full ocean-atmosphere coupling, 

the degree by which accurately improving large-scale model variability and climatology 

in the extratropics could reduce the tropical bias in a CGCM. The combination of 

observational constraint, coupled dynamics and ensemble approach gives the RCDA 

method unique advantages when investigating teleconnections of inherently coupled 

problems such as ENSO and double-ITCZ bias. 

 Methods 

3.1.1. Datasets 

The assimilated datasets include daily-mean air temperature and wind components 

from the NCEP/NCAR Reanalysis 1 [Kalnay et al., 1996] and monthly-mean SST from 

NOAA ERSST [Huang et al., 2015, 2016; Liu et al., 2015]. We use 68 years of data from 

1948/01, start of the NCEP/NCAR Reanalysis 1, to 2015/12, end of the most recent year 

at the time of this study. Monthly CMAP data from 1979 to 2015 are used as precipitation 

observation [Xie and Arkin, 1997]. All data are interpolated to FOAM grids before 

assimilation or comparison. 

3.1.2. Experiment Design 

All RCDA experiments use the same ensemble of initial conditions, which are the 

restart files after a 10-year ensemble control present-day FOAM simulation that started 
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with the same ocean initial conditions and slightly different atmosphere initial conditions. 

The RCDA experiments run for 68 years (1948-2015). Since the CMAP data are only 

available since 1979, the last 37 years (1979-2015) of the output are used to match the 

precipitation record. The same 37-year period from NCAR/NCEP Reanalysis 1 and ERSST 

is used for all model-data comparison. The analysis is repeated using all 68 years from 

RCDA experiments, NCAR/NCEP Reanalysis 1 and ERSST, and the effects on the results 

and conclusions are minimal. 

3.1.3. Assimilating Reanalysis Data 

Reanalysis datasets instead of actual observational data (satellite, radiosonde, ocean 

floats, etc.) are assimilated to facilitate this study. Given our limited resources, it is 

unrealistic to develop and operate a coupled data assimilation system that assimilates 

huge amounts of raw observations, which are irregular in space and time, and sometimes 

indirect measurements of the target variables. Such comprehensive assimilation systems 

are only available at a few of the most advanced institutions around the globe, such as 

NCAR, GFDL and ECMWF. The advantages and caveats of assimilating reanalysis data 

instead of actual observations are investigated by [Liu et al., 2016]. Through sensitivity 

experiments in a simple coupled model, it is found that assimilating reanalysis-like data 

resulted in a 5-20% increase, depending on assimilation schemes and experiment setup, 

of error in the synoptic variability of the final assimilation products. Considering the small 

sacrifice in assimilation quality and the significant relief in required resources, we chose 

to assimilate reanalysis data in this study. 

One challenge of assimilating reanalysis datasets is to determine their uncertainties. 

The uncertainties or errors of reanalysis data are not readily available, and 

understandably difficult to quantify considering that reanalysis datasets are the 
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combination of state-of-the-art climate models and millions of observations of various 

types. Therefore, we use the typical observational uncertainties as in previous studies of 

similar systems [Zhang et al., 2007; Liu et al., 2014b; Lu et al., 2015b, 2017b]: 0.5 K for 

monthly-mean SST; 1 K for daily-mean atmosphere temperature; and 1 m/s for daily-

mean wind components. Key experiments are repeated with smaller observational 

uncertainties (0.2 K/0.5 K/0.5 m/s, respectively) and the impacts on the results and 

conclusions are minimal. 

 Tropical Asymmetry Bias of Precipitation 

Assimilated 
Variables & 

Latitudes 
None 

Atm T/U/V & 
SST 

(coupled) 
Atm T/U/V SST 

None CTRL    

All  CDA_ALL ADA_ALL ODA_ALL 

>10°N & <10°S  CDA_10 ADA_10 ODA_10 

>15°N & <15°S  CDA_15 ADA_15 ODA_15 

>20°N & <20°S  CDA_20 ADA_20 ODA_20 

>24°N & <24°S  CDA_24 ADA_24 ODA_24 

>28°N & <28°S  CDA_28 ADA_28 ODA_28 

>33°N & <33°S  CDA_33 ADA_33 ODA_33 

>37°N & <37°S  CDA_37 ADA_37 ODA_37 

>42°N & <42°S  CDA_42 ADA_42 ODA_42 

Table 3.1 Table of all RCDA experiments in Chapter 3. (from [Lu et al., 2017a]) 

The extratropical impact on tropical bias in FOAM is quantified using a series of 

RCDA experiments in which the coupled climate is corrected towards real world 
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observations progressively from the extratropics to the equator (see Table 3.1 for a 

complete list of the RCDA experiments). The ensemble control simulation without 

assimilation (CTRL hereafter) shows significant tropical bias in precipitation, SST and 

wind (Figure 3.1 and Figure 3.2) in the model. The zonal- and annual-mean precipitation 

shows two peaks of comparable magnitude straddling the equator, while in sharp contrast, 

the northern peak is twice as large as the southern peak in the observation (Figure 3.1a). 

Coupled with the double-ITCZ bias, the surface air temperature exhibits a significant 

warm (cold) bias in the SH (NH) extratropics (black dashed line in Figure 3.1b). The 

southern tropical rainfall peak results partly from excessive precipitation in southern 

tropical Pacific and Atlantic, which is closely coupled with the biases of warm SST and 

weak trade wind there (Figure 3.2c). 

FOAM is also wetter overall in the 

tropics by 14%, averaging to 4.56 

mm/day of precipitation between 

20°S and 20°N compared to 4.00 

mm/day in observation. 

 

Figure 3.1 Zonal-mean 
climatological precipitation and 
surface air temperature of selected 
CDA experiments, along with 
observation and CTRL. (a) Total 
precipitation. (b) Surface air 
temperature bias from observation. 
Filled circles indicate the data 
assimilation boundaries when 
applicable. (from [Lu et al., 2017a]) 
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Figure 3.2 Climatological SST (shadings), precipitation (contours with 2 mm/day interval) 
and surface wind (arrows). (a) Observation. (b) CTRL. (c) Difference of CTRL minus 
observation. (from [Lu et al., 2017a]) 
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Figure 3.3 Differences in climatological SST (shadings), precipitation (contours with 2 
mm/day interval) and surface wind (arrows). (a) Between CDA_ALL and observation. (b) 
Between CDA_ALL and CTRL. (c) Between CDA_24 and CTRL. The horizontal dotted 
lines indicate the data assimilation boundaries of CDA_24. (from [Lu et al., 2017a]) 
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peak is enhanced while the SH peak is reduced, reducing the tropical bias systematically 

(Figure 3.1a). Accompanying the precipitation change is the reduced bias in tropical 

surface temperature that is not directly updated by data assimilation (say between 20°N 

and 20°S in CDA_28). The reduction of precipitation bias from CTRL to CDA_ALL is 

contributed primarily by reduced precipitation over the southeastern tropical Pacific, 

southeastern tropical Indian and southern tropical Atlantic Oceans, and enhanced 

precipitation over oceans north of the equator (Figure 3.3b). It is notable that, even with 

observations assimilated all the way to the equator, CDA_ALL still suffers from 

precipitation bias, such as excessive 

precipitation in the tropics. This implies 

deficiencies in the model’s land component 

and precipitation-dynamics relationship, 

which could not be improved by the current 

assimilation. The tropical climatology in 

CDA_ALL, despite its biases, will thus serve as 

the optimal achievable scenario in FOAM 

against which other experiments will be 

measured. 

Figure 3.4 A summary of annual-mean 
climatological indices from observation 
(pentagon), FOAM control (asterisk), CDA 
(blue circle), ADA (red square), and ODA 
(green diamond) experiments. (a) Tropical 
precipitation asymmetry index 𝑃4 . (b) 
Tropical surface temperature asymmetry 𝑇4 . 
(c) Equatorial precipitation index 𝑃56 . (from 
[Lu et al., 2017a]) 
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The tropical asymmetry bias is reduced systematically when the assimilation domain 

expands towards the equator. This is seen more clearly from the tropical precipitation 

asymmetry index 𝑃4 (Figure 3.4a). 𝑃4 is defined as the area-averaged precipitation in the 

NH tropics (0°-20°N) minus that in the SH tropics (0°-20°S) normalized by that in the 

whole tropics (20°S-20°N) [Hwang and Frierson, 2013; Adam et al., 2016]. With no 

assimilation, CTRL has a slightly negative 𝑃4 of -0.04, indicating more precipitation in 

the SH tropics than in the NH tropics, while in sharp contrast, the observation has 

significantly more precipitation in the NH tropics with a 𝑃4  over 0.2. When the 

extratropical assimilation domain expands equatorward, 𝑃4  gradually increases, 

eventually exceeding the observation. The increase of 𝑃4	is caused by the observations 

assimilated in the extratropics (CDA_28 relative to CTRL) and subtropics (CDA_20 

relative to CDA_28), but not in the deep tropics (CDA_ALL relative to CDA_10). The 

assimilation in the deep tropics, however, will later be shown to affect equatorial 

precipitation, another aspect of the tropical bias. The higher-than-observed 𝑃4 when the 

assimilation expands inside 20° is a result of excessive precipitation in the northern 

tropics. Similar response to extratropical forcing is also seen in the tropical surface 

temperature asymmetry index 𝑇4 (Figure 3.4b), defined as the difference between area-

averaged bottom-level air temperature in the northern tropics (0°-20°N) and that in the 

southern tropics (0°-20°S), consistent with the strong correlation between 𝑃4 and 𝑇4 as in 

previous studies [Donohoe et al., 2013; Hwang and Frierson, 2013; Adam et al., 2016]. 

𝑇4 saturates below the observed value due to the still biased land model. We should note 

that the jump of 𝑃4 from CDA_24 to CDA_20 is not an artifact of the domain (20°S-20°N) 

we choose to calculate 𝑃4. A different domain (15°S-15°N) results in the same jump in 𝑃4. 
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Instead, it is rather a dynamical response to the fact that the additional assimilation from 

CDA_24 to CDA_20 starts to directly alter the trade winds, thus affecting the tropical 

precipitation more strongly. 

 

Figure 3.5 Correlation of monthly SST anomaly between CDA_24 and observation. The 
dotted points indicate that significance level of the correlation is over 99% based on a 
Student-t test. The horizontal dotted lines indicate the data assimilation boundaries of 
CDA_24. (from [Lu et al., 2017a]) 
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found to support the extratropical control on ENSO variability in FOAM [Vimont et al., 

2009; Lu et al., 2017b]. These high SST correlation tongues correspond approximately to 

the regions with large bias reduction in SST and precipitation, indicating the consistency 

between improved variability and climatology due to extratropical impact. Furthermore, 

extratropics may also influence the tropical climatology through equatorward ventilation 

and equatorial upwelling in the ocean [Liu et al., 1994; Yang and Liu, 2005]. This oceanic 

process is on the decadal timescale and therefore fully effective for climatological 

influence. This process could also be effective when only mid- and high-latitude oceans 

have assimilation. For example, when comparing CDA_42 to CTRL, the 0-400m ocean 

temperature in the tropics is significantly different (Figure 3.6), and the change in oceanic 

energy transport accounts for a majority of the total change in meridional energy 

transport at most latitudes (Figure 3.7). This important role of ocean dynamics in the 

extratropical climatological impact on the ITCZ is consistent with recent fully coupled 

model studies [Hawcroft et al., 2016; Kay et al., 2016]. 
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Figure 3.6 Zonal-mean climatological 0-400m average temperature change from CTRL for 
CDA_28, CDA_42, ADA_28, ADA_42, ODA_28 and ODA_42 experiments. Filled circles 
indicate the data assimilation boundaries where applicable. (from [Lu et al., 2017a]) 

 

Figure 3.7 Changes in meridional energy transport by the (a) atmosphere and (b) ocean 
from CTRL to ADA_ALL, ADA_15, ADA_24, ADA_33 and ADA_42 experiments. Filled 
circles indicate the data assimilation boundaries where applicable. 

 The extratropical impact on tropical bias is also tested in two parallel sets of ADA and 

ODA experiments (Table 3.1), which are the same as the CDA experiments except that 

only observations of atmospheric temperature and wind (ADA) or SST (ODA) are 

(a) Atmosphere Energy Transport (VT)

60S 45S 30S 15S 0 15N 30N 45N 60N

 A
ET

: A
tm

os
. E

ne
rg

y 
Tr

an
sp

or
t (

PW
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

(b) Ocean Energy Transport (Flux)

60S 45S 30S 15S 0 15N 30N 45N 60N

 O
ET

: F
lu

x 
M

et
ho

d 
(P

W
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

CTRL
ADA_ALL
ADA_15
ADA_24
ADA_33
ADA_42



 30 

assimilated. Indeed, 𝑃4 and 𝑇4 from ADA and ODA experiments show similar dependence 

on the data assimilation boundary, albeit with slightly smaller changes than from CDA 

experiments (Figure 3.4a and b). The agreement between ADA and CDA experiments is 

expected. In ADA, the assimilation in the atmosphere component enables the atmosphere 

to force a realistic ocean even for short term climate variability: the correlation of monthly 

SST anomalies between model and the observation averaged in the region of data 

assimilation is 0.473 for ADA_28, similar to 0.507 as in CDA_28 (Table 3.2). Besides, the 

atmosphere dynamics is directly responsible for producing precipitation in the model. 

Therefore, an ADA experiment should behave similarly to its CDA counterpart. On the 

other hand, the comparable extratropical impact of ODA and ADA experiments is 

surprising, because the extratropical ocean has little control on tropical interannual 

variability in the same model [Lu et al., 2017b]. Physically, atmospheric variability in the 

extratropics is generated predominantly internally, rather than being forced by 

extratropical SST [Kushnir et al., 2002]. In fact, ODA experiments poorly reproduce the 

observational atmospheric variability in the extratropics (Table 3.2). For example, the 

monthly surface zonal wind anomalies of ODA_28 and observation have an average 

correlation of 0.002 in the assimilation region, compared to 0.750 in CDA_28 and 0.752 

in ADA_28. We speculate that the strong control of extratropical SST on tropical 

climatology could be caused by two reasons. The first reason is the surface ocean-

atmosphere coupling through WES feedback as discussed before, which could be effective 

when the subtropical ocean is constrained by assimilation. The WES feedback process 

from SST assimilation in the ODA experiments may not be as strong or as fast as that from 

wind and air temperature assimilation in the ADA experiments to impact interannual 

variability like ENSO [Lu et al., 2017b], but its long-term impact on tropical climatology 
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is significant. The second reason is the important role of ocean dynamics in the 

extratropical influence on tropical climatology. Because of the decadal or longer timescale 

for the ventilation through the subtropical cell [Liu et al., 1994], the impact of 

extratropical oceans on the tropics is effective for climatological influence, but not for 

interannual variability. Indeed, ODA_28 shows significant changes in the climatological 

subsurface temperature (Figure 3.6) and meridional oceanic energy transport in the 

tropics compared to CTRL (not shown), despite minimal impact on extratropical or 

tropical atmospheric variability. 

 

Figure 3.8 Same as Figure 3.5, but for ADA_24. 

 

Figure 3.9 Same as Figure 3.5, but for ODA_24. 
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VARIABLE SST ATM T ATM U 

REGION 28°S-
28°N 

>28°N & 
<28°S 

28°S-
28°N 

>28°N & 
<28°S 

28°S-
28°N 

>28°N & 
<28°S 

CTRL 0.127 -0.01 0.102 0.006 -0.007 -0.002 

CDA_ALL 0.638 0.511 0.644 0.738 0.604 0.778 

CDA_28 0.457 0.507 0.401 0.731 0.278 0.750 

ADA_28 0.424 0.473 0.378 0.735 0.275 0.752 

ODA_28 0.006 0.404 -0.038 0.136 0.024 0.002 

Table 3.2 Correlation of anomalous monthly SST, surface air temperature and surface 
zonal wind between the model and the observation for CTRL, CDA_ALL, CDA_28, 
ADA_28 and ODA_28 averaged over 28°S-28°N and poleward of 28°S/28°N. (from [Lu et 
al., 2017a]) 

Tropical bias in FOAM has a strong seasonal variance, leading to a seasonal 

extratropical impact (Figure 3.10). Both 𝑃4 and 𝑇4 of CTRL have the largest negative bias 

in boreal spring (March-April-May), followed by winter (December-January-February), 

indicating particularly warm and wet southern tropics in those seasons. Fittingly, boreal 

spring and winter are also the seasons when the biases of 𝑃4 and 𝑇4 are reduced the most 

by extratropical impact. In the boreal summer and fall, 𝑃4 and 𝑇4 of CTRL are much closer 

to observation, and the extratropical impact is not significant on 𝑃4 and 𝑇4. The seasonal 

breakdown of 𝑃4 and 𝑇4 biases suggests that the improvement of tropical annual-mean 

climatology by extratropical data assimilation is achieved through the proper seasons. 
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Figure 3.10 A summary of seasonal-mean climatological indices from observation 
(pentagon), FOAM control (asterisk), CDA (other markers) experiments. (a) Tropical 
precipitation asymmetry index 𝑃4 . (b) Tropical surface temperature asymmetry 𝑇4 . (c) 
Equatorial precipitation index 𝑃56. (from [Lu et al., 2017a]) 
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 Equatorial Deficiency Bias of Precipitation 

Besides excessive precipitation in the southern tropics, insufficient equatorial 

precipitation also contributes to the tropical bias of a double-ITCZ. The equatorial 

precipitation index 𝑃56 is used to evaluate the relative amount of tropical precipitation 

that falls within close proximity of the equator. 𝑃56 is the defined as the area-averaged 

precipitation between 3°S and 3°N divided by that between 20°S and 20°N, then minus 

1. Similar to most CMIP5 models [Adam et al., 2016], FOAM has insufficient equatorial 

precipitation ( 𝑃56 = 0.02 ) compared to observation ( 𝑃56 = 0.13 ). This equatorial 

insufficiency bias in 𝑃56 is again caused mainly by the spring season (Figure 3.10c) as in 

𝑃4. 

In contrast to the tropical asymmetry bias, the equatorial insufficiency bias is 

improved primarily by local processes in the deep tropics instead of remote processes 

from the subtropics or extratropics. This can be seen in 𝑃56 across the RCDA experiments 

(Figure 3.4c). In CDA experiments, the deficient equatorial precipitation deteriorates, 

rather than improves, from CTRL to CDA_40 through CDA_15. The same deterioration 

also occurs in the ADA experiments, but much less severe in ODA experiments, reflecting 

the bias in the atmospheric dynamics-precipitation relationship in FOAM. 𝑃56 increases 

towards the observation only when the deep tropics is constrained by assimilation in 

CDA_10 through CDA_ALL. The different responses of 𝑃4 and 𝑃56 to the change in data 

assimilation domain suggest that the two aspects of the double-ITCZ bias could be caused 

by different model deficiencies. Remote extratropical forcing seems to have substantial 

impact on the tropical asymmetry bias (𝑃4) via extratropical-to-tropical teleconnections, 

while local tropical processes seem to control the equatorial insufficiency bias (𝑃56). 
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 Energetic Analysis 

The improvement of the tropical asymmetry bias and equatorial insufficiency bias in 

the RCDA experiments can be understood from the perspective of atmospheric energetics, 

as suggested by previous studies [Donohoe et al., 2013; Hwang and Frierson, 2013; 

Bischoff and Schneider, 2014; Schneider et al., 2014; Adam et al., 2016]. As expected 

from the control of tropical SST on precipitation, the asymmetry indices  𝑃4 and 𝑇4 have 

a strong positive correlation across all RCDA experiments (𝑅 = 0.912 , Figure 3.11a). 

Meanwhile, 𝑃4  is strongly and negatively correlated with the cross-equatorial 

atmospheric energy transport 𝐴𝐸𝑇56  (𝑅 = −0.913, Figure 3.11b), which calculates the 

zonally- and vertically-integrated transport of moist static energy by the atmosphere 

model. The observed 𝐴𝐸𝑇56 ranges from 0.1 PW to 0.2 PW southward in previous studies 

of observational data [Donohoe et al., 2013; Hwang and Frierson, 2013; Adam et al., 

2016], and the value of 0.15 PW southward is used here [Adam et al., 2016]. The implicit 

negative correlation between 𝐴𝐸𝑇56  and 𝑇4  is easily deduced since the anomalous AET 

goes from the warming hemisphere into the cooling one. The correlation between 𝑃4 and 

𝐴𝐸𝑇56 here is stronger than previous studies [Hwang and Frierson, 2013; Adam et al., 

2016] since it is calculated for the same CGCM instead of across multiple models. In 

general, the more equatorward the data assimilation boundary is, the less biased 𝑃4, 𝑇4 

and 𝐴𝐸𝑇56 are compared to CTRL. 
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Figure 3.11 Scatterplots between indices for observation (pentagon), CTRL (asterisk), 
CDA (blue), ADA (red) and ODA experiments (green). (a) Tropical precipitation 
asymmetry 𝑃4 against tropical surface temperature asymmetry 𝑇4. (b) 𝑃4 against cross-
equatorial atmospheric energy transport 𝐴𝐸𝑇56 . (c) 𝑃4  against equatorial precipitation 
index 𝑃56. (d) 𝑃56 against equatorial net energy input 𝑁𝐸𝐼56. (from [Lu et al., 2017a]) 
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The correlation between 𝑃4  and 𝑃56  is not nearly as strong (𝑅 = 0.508) and much 

more scattered (Figure 3.11c), which again shows that 𝑃4 and 𝑃56 could be controlled by 

different mechanisms, at least in this model. The bias of insufficient tropical precipitation 

asymmetry (small or negative 𝑃4) can be greatly improved by correcting extratropical 

large-scale dynamics toward observation, while the bias of insufficient equatorial 

precipitation (small or negative 𝑃56) is only alleviated when the model is constrained by 

assimilation in the deep tropics. The local control of 𝑃56  is further shown by the high 

correlation between 𝑃56 and 𝑁𝐸𝐼56 for the RCDA experiments (𝑅 = 0.847, Figure 3.11d), 

as in CMIP5 models [Adam et al., 2016]. 𝑁𝐸𝐼56 is the 5°S-5°N average of the atmospheric 

net energy input, calculated from top-of-atmosphere and surface net shortwave and 

longwave radiative fluxes, and sensible and latent heat fluxes at the surface. The observed 

𝑁𝐸𝐼56 of 26.2 W/m2 is used in this paper [Adam et al., 2016]. It is notable that 𝑃56 of 

CTRL is much smaller than observation despite larger 𝑁𝐸𝐼56 . Only CDA_ALL and 

ODA_ALL have 𝑃56  close to observation, but 𝑁𝐸𝐼56  exceeds 30 W/m2 in both 

experiments, far over the observed 𝑁𝐸𝐼56 . The fact that the observed 𝑃56 - 𝑁𝐸𝐼56 

relationship is more of an outlier among the RCDA experiments indicates flaws in 

FOAM’s tropical precipitation schemes. 

 Summary and Discussion of Chapter 3 

This chapter explicitly shows that the tropical bias in a coupled climate model can be 

reduced by extratropical coupled data assimilation. The model bias in tropical north-

south precipitation asymmetry shows improvement when the data assimilation is only 

active poleward of 30° or even 40° in both hemispheres, and further improves as the 

assimilation expands equatorward into the tropics. When the model’s extratropics are 
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constrained by observations, the extratropical-to-tropical teleconnection leads to not only 

higher north-south asymmetry in tropical precipitation, but also higher north-south 

asymmetry in tropical atmosphere surface temperature and more southward atmospheric 

energy transport across the equator. However, extratropical data assimilation cannot 

reduce the bias of insufficient equatorial precipitation in the model. The equatorial 

precipitation is closely related to the net energy input into the equatorial atmosphere, and 

the bias is only reduced when the data assimilation is active the deep tropics.  

The coupled nature of the double-ITCZ bias is also studied here by activating the data 

assimilation in different model components. The double-ITCZ bias can be improved 

whether the key atmosphere variables or SST are corrected by assimilation. This is in 

complete contrast with the extratropical influence on the tropical interannual variability, 

which is dominated by extratropical atmosphere in this model [Lu et al., 2017b]. The WES 

feedback seems to play a role in the extratropical influence on both tropical climatology 

and variability, while other mechanisms such as oceanic transport remain to be further 

explored with the RCDA method. 

This study suggests that correcting FOAM’s extratropical biases in variability and 

climatology toward the real world could reduce its tropical bias, especially the lack of 

precipitation and temperature asymmetry. Therefore, in the pursuit of eliminating the 

double-ITCZ bias in climate models, extratropical biases and extratropical–to-tropical 

teleconnection may require similar attention as tropical precipitation schemes and SST 

climatology. The RCDA could quantify the extratropical influence in climate models as in 

this study if such an appropriate data assimilation system is available. 

It should also be pointed out that tropical bias in climate models is not limited to only 

precipitation bias or the double-ITCZ bias. The zonally heterogeneous aspect of the 
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tropical precipitation distribution is not explored in this study; neither are the Pacific cold 

tongue bias nor the influence of landmass. The model we use also have deficiencies such 

as the coarse resolution of the atmosphere component and the persistent biases even with 

data assimilation. The effects of these deficiencies could not be addressed in this study. It 

would greatly benefit our understanding and modeling of the tropical climate, particularly 

the double-ITCZ bias, to apply the RCDA method with higher-resolution state-of-the-art 

earth system models and more comprehensive coupled data assimilation systems. 
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Chapter 4 

4. Extratropical Influence on Tropical Variability: 

Perfect-model Study 

As a pilot study, we will use RCDA to systematically investigate coupled model 

dynamics and teleconnections involved in the extratropical control of ENSO variability, 

first in the perfect-model framework. More specifically, active data assimilation of model-

generated observations is performed in the extratropics and the forced climate variability 

in the tropics is studied. The use of model ensemble minimizes the noise from natural 

variability in the experiments. Chapter 4 shows that extratropical atmospheric variability 

in our CGCM can indeed exert significant control on ENSO and therefore serve as a 

precursor for ENSO onset. This part is organized as follows. Section 4.1 describes the 

model and methods. Section 4.2 includes a summary analysis of all RCDA experiments. 

Section 4.3 discusses the precursors and their implications. 

 Model and Methods 

4.1.1. ENSO in FOAM 

The current version of FOAM incorporates a parameterization of the solar 

penetration depth (SPD), which can influence the tropical climate [Lewis et al., 1990; 

Schneider and Zhu, 1998; Murtugudde et al., 2002]. FOAM simulates a reasonable 

tropical climatology, although the model still exhibits a tendency of strong Cold Tongue 

and double ITCZ (Figure 4.1a) as in most state-of-the-art CGCMs [Li and Xie, 2014]. The 

model equatorial eastern Pacific SST is also dominated by an annual cycle (not shown). 
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Figure 4.1 Annual-mean tropical SST climatology from a 500-year FOAM control 
simulation. (b) The power spectrum of the Nino3.4 index from the same 500-year FOAM 
control simulation. (from [Lu et al., 2017b]) 

The model ENSO is dominated by variability with the frequency of 2-6 years, as 

shown by the power spectrum of the Nino3.4 index (average SST anomaly in the region 

of 5°S-5°N, 120°W-170°W) in Figure 4.1b, similar to previous work [Liu et al., 2000]. The 

evolution of the equatorial (3°S-3°N meridional average) upper ocean temperature 

associated with ENSO can be seen in its regression on the normalized Nino3.4 index for 

different leads and lags (Figure 4.2). A weak subsurface warming develops in the western 

Pacific 12 months prior to the peak of ENSO (Figure 4.2a), expanding eastward along the 

thermocline and filling the entire equatorial upper Pacific with an anomalously high heat 
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content (Figure 4.2b); the eastern Pacific SST anomaly and therefore ENSO onset then 

starts to develop (Figure 4.2c), growing in amplitude (Figure 4.2d) and spread westward 

across the surface of equatorial Pacific (Figure 4.2e); in the meantime, a weak cooling 

develops in the subsurface western Pacific, grows in amplitude (Figure 4.2f) and spreads 

across the thermocline eastward (Figure 4.2g), leading to the following cold event of La 

Nina (Figure 4.2g, h, i), which resembles the preceding warm event (Figure 4.2a, b, c), 

albeit with a smaller amplitude and opposite sign. The similar patterns, but of opposite 

sign, between the 9-month lead (Figure 4.2b) and 9-month lag (Figure 4.2h) regressions 

imply a prevailing period of about 3 years. The oceanic process displayed in Figure 4.2, 

along with the active Bjerknes feedback (not shown), follows the classical delayed 

recharge oscillator theory [Cane and Zebiak, 1985; Cane et al., 1986; Jin, 1997]. 

 

Figure 4.2 Regression of equatorial upper ocean temperature (3°S-3°N meridional 
average) on normalized Nino3.4 index from the 500-year FOAM control simulation. The 
relative times between ocean temperature and Nino3.4 index are -12, -9, -6, -3, 0, 3, 6, 9 
and 12 months (positive when Nino3.4 index leads) from left to right and top to bottom. 
(from [Lu et al., 2017b]) 
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4.1.2. Experiment Design 

Assimilation Assimilated 
Latitudes 

Experiment 
Name 

RMSE of 
EnsMean 
Nino3.4 

Ensemble 
Spread of 
Nino3.4 

% of 
CTRL 

None None CTRL 0.641 0.637 100% 

ADA 

All ada_all 0.114 0.085 17.8% 

>10°N & 
<10°S ada_10 0.206 0.169 32.2% 

>20°N & 
<20°S ada_20 0.366 0.309 57.0% 

>30°N & 
<30°S ada_30 0.439 0.384 68.4% 

>20°N 
ada_north20 0.558 0.533 87.0% 

ada_north20A 0.551 0.535 86.0% 

<20°S 
ada_south20 0.517 0.506 80.7% 

ada_south20A 0.524 0.507 81.8% 

>30°N ada_north30 0.581 0.542 90.6% 

<30°S ada_south30 0.600 0.605 93.5% 

ODA 
All oda_all 0.125 0.105 19.5% 

>20°N & 
<20°S oda_20 0.654 0.627 101.9% 

CDA 
All cda_all 0.119 0.041 18.5% 

>20°N & 
<20°S cda_20 0.347 0.319 54.1% 

Table 4.1 A summary of all experiments in [Lu et al., 2017b]. 

In this paper, we apply the RCDA method described in Section 2.4 to investigate the 

influence of extratropical climate variability on tropical Pacific climate variability with the 

focus on ENSO. In particular, we will focus on the forcing role of extratropical 

atmospheric variability on ENSO, so that most of our experiments apply only ADA in the 
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coupled model. The sole use of ADA ensures that the atmosphere is the only source of 

observational information, while the use of a coupled model provides the full ocean 

dynamics over the globe and fully coupled ocean-atmosphere dynamics both inside and 

outside the assimilation region. The major experiments consist of those with the ADA 

activated at all latitudes (ada_all), poleward of 20° in both hemispheres (ada_20), north 

of 20°N (ada_north20), and south of 20°S (ada_south20). These major experiments, 

along with other supplementary experiments, are summarized in Table 4.1: CTRL 

represents the ensemble control experiment without data assimilation; ADA (ODA) 

experiments employ only ADA (ODA) in the coupled model; CDA experiments employ 

both ADA and ODA simultaneously in the coupled model. For CDA and ODA, the 

assimilation is active either at all latitudes (cda_all and oda_all) or poleward of 20° 

(cda_20 and oda_20) in both hemispheres. Besides, additional ADA experiments are 

performed with active ADA poleward of 10° (ada_10), 30° (ada_30) and 40° (ada_40) 

in both hemispheres, north of 30°N (ada_north30), or south of 30°S (ada_south30). 

More specifics of the experiment design can be illustrated using the ada_20 

experiment as the example. The ADA is activated only in the extratropics (poleward of 

20°) and therefore the atmosphere resembles closely to the observation in the 

extratropics. This observed atmospheric variability in the extratropics directly forces the 

underlying extratropical ocean via buoyancy, heat and momentum fluxes through the 

coupler, as well as the tropical climate system through atmospheric and coupled dynamics. 

In the tropics, the model is constrained along the boundaries at 20°S and 20°N in the 

atmosphere. Because the use of ensemble-based data assimilation, the model tropics are 

forced by slightly different extratropical variability in each ensemble member, so each 

model member’s tropical coupled climate variability tends to develop differently due to 
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its chaotic natural variability. The averaged tropical variability of all ensemble members, 

however, can eliminate the influence of the chaotic natural variability, as later shown by 

the results of the CTRL experiment. Therefore, any tropical variability that is significant 

in the ensemble average should be generated by the common extratropical forcing to all 

ensemble members. The main difference between our approach and previous ensemble 

forecast experiments [Vimont et al., 2009; Larson and Kirtman, 2014] is that the 

extratropical atmospheric variability, as well as its forcing on the ocean and the tropical 

atmosphere, are prescribed continuously as in the observation such that the coupled 

tropical climate variability is no longer a pure initial value ensemble forecast. Instead, our 

experiments represent the tropical climate variability forced by the observed extratropical 

atmospheric variability. Furthermore, EAKF should provide a more accurate analysis of 

the atmospheric/oceanic states in the assimilation region than, for example, a simple 

nudging scheme.  

A perfect-model framework is adopted, and the output of a 50-year control simulation 

is used as the “truth”. The observations are constructed by adding Gaussian white noise 

onto the “truth”. The observations are therefore gridded data at the same gridpoints as 

the model state variables. The available observations include 5-day-mean SST with an 

error scale (standard deviation) of 0.5 K and daily-mean atmosphere temperature (T) and 

wind components (U, V) with error scales of 1 K and 1 m/s, respectively. These 

observational errors and frequencies represent typical conditions for such observed 

variables as in previous studies [Zhang et al., 2007; Lu et al., 2015b]. The details of the 

CDA is not critical for the purpose of this study, because the CDA is used only as a 

sophisticated way of “nudging” the model ensemble atmosphere towards the 

“observation”. Nevertheless, the CDA likely minimizes the shocks of "observational" 



 46 

constraints and provides a more accurate reconstruction of atmospheric variability in the 

assimilation region. Furthermore, the ensemble aspect is of critical importance for the 

suppression of noise and the interpretation of the results. 

Each experiment runs for 52 years, starting from an ensemble of initial conditions of 

16 consecutive years within the long control simulation. The data assimilation is activated 

after 2 years of spin-up and lasts for 50 years, which is the length of the observation. The 

ensemble-mean output is calculated by averaging the monthly outputs from all ensemble 

members, and the anomalies of all variables are then calculated by subtracting the 

corresponding seasonal cycles. All experiments are repeated with different sets of initial 

conditions and observational errors, and the results are robust. Therefore, we will base 

our analysis on one set of experiments unless otherwise specified. 

4.1.3. Performance of RCDA 

Figure 4.3 displays the quality of the atmospheric (T and U) and oceanic (SST) 

analyses over the Pacific (120°E-80°W) for experiments ada_all, ada_20, ada_north20 

and ada_south20, all normalized by CTRL. The RMSE is calculated from the differences 

between monthly ensemble-mean analysis and the “truth” at each gridpoint, and Figure 

4.3 shows the zonally-averaged RMSE. The quality of V analysis is quantitatively similar 

to T and U. When the ADA is employed across all latitudes (Figure 4.3a), the RMSE of 

both T and U are reduced by 70-80% across all latitudes and heights compared to CTRL. 

Because the analyzed atmosphere provides fairly accurate surface boundary condition to 

the ocean, the SST RMSE is also reduced by over 70% in the tropics and 40-60% in the 

mid-latitudes. When the ADA inside 20° is removed in ada_20 (Figure 4.3b), the quality 

of analyses is largely maintained outside of 20°, but deteriorates rapidly from the 20° 

boundaries (dash-dot lines) equatorward. However, the tropical atmosphere and SST are 
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still partially constrained because of the accurate boundary conditions provided by ADA 

at 20°. In the deep tropics, RMSE of T, U and SST are still 30-40% smaller than CTRL. 

Similarly, for ada_north20 (Figure 4.3c) and ada_south20 (Figure 4.3d), the analyses 

are well constrained where assimilation is active, and deteriorates rapidly beyond the 

assimilation boundaries. The RMSE ratio of SST is essentially the same as that of the 

atmospheric surface temperature in Figure 4.3. The ADA outside of 20° in one 

hemisphere could affect the equatorial region, but shows little influence on the other 

hemisphere, where the RMSE remains the same as CTRL. 

 

Figure 4.3 Pacific (120°E-80°W) zonal-mean RMSE (normalized by CTRL) of ensemble-
mean atmospheric temperature (shadings), zonal wind (dashed lines) and SST (lower 
panel) for (a) ada_all, (b) ada_20, (c) ada_north20, and (d) ada_south20. The thick dash-dot 
lines indicate the boundaries of data assimilation where necessary. (from [Lu et al., 2017b]) 
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 Overview of Results 

4.2.1. General Assessment 

 

Figure 4.4 The time series of Nino3.4 index from (a) CTRL, (b) ada_all, (c) ada_20, (d) 
ada_north20, (e) ada_north20A, (f) ada_south20, and (g) ada_south20A. Red lines indicate the 
“truth” (same for all panels), black lines the ensemble mean, and grey lines all 16 
ensemble members. (from [Lu et al., 2017b]) 
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Overall, our experiments show a significant control of extratropical atmospheric 

variability on ENSO. Table 4.1 summarizes all experiments’ ability to reproduce the “true” 

ENSO variability by showing the RMSE of their ensemble-mean Nino3.4 indices in 

regards to the “true” Nino3.4 index. The ensemble spread of the Nino3.4 indices and the 

RMSE as a percentage of that of CTRL are also shown for each experiment. The ensemble 

spread represents the uncertainty in the Nino3.4 indices of the model ensemble, and is 

comparable to the corresponding RMSE, which is usually the case for a well-behaved CDA 

system in the perfect model framework [Anderson, 2001; Zhang et al., 2007]. Figure 4.4 

shows the Nino3.4 time series of several experiments (CTRL, ada_all, ada_20, 

ada_north20, ada_north20A, ada_south20, and ada_south20A), including those of 

each ensemble member, the ensemble mean and the “truth”. 

The RMSE of 0.617 in CTRL is very close to the standard deviation of the “true” 

Nino3.4 index because the ensemble average of 16 control simulations stays close to 0 at 

all times (Figure 4.4a). Even though each ensemble member has its own natural 

variability, the ensemble mean is affected little by the variability of any single member.  

Nino3.4 index closely resembles the "truth" when ODA is active in the tropics. This 

should be expected since the tropical SST is directly adjusted by observations in oda_all. 

Meanwhile, extratropical ODA has no effect on Nino3.4, as the RMSE of oda_20 is 

comparable to that of CTRL. It should be noted that oda_20 only assimilates SST 

observations poleward of 20°. The failure of oda_20 to reproduce the tropical variability 

in the observation implies the ineffectiveness of extratropical SST variability alone in 

forcing tropical climate variability.   

Among the ada experiments, the RMSE increases, as expected, when the boundaries 

of active ADA move poleward. However, extratropical ADA shows significant influence 
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on ENSO variability, reducing the RMSE of Nino3.4 by over 40% in ada_20 and over 30% 

in ada_30 compared to CTRL. The ada_all experiment, in which the ocean is forced by 

close-to-observation atmosphere at all latitudes, could accurately reproduce the “true” 

Nino3.4 index with minimal ensemble spread (Figure 4.4b). The ada_20 experiment 

produces both larger RMSE and ensemble spread compared to ada_all, but its ensemble-

mean output still captures most of the major ENSO events in the "truth" (Figure 4.4c). 

The fact that most ENSO events in ada_20 are significant among all ensemble members 

indicates that extratropical atmosphere alone could generate consistent ENSO signals.  

When the ADA is limited to only one hemisphere, the resulting Nino3.4 variability is 

significantly worse than when ADA is active in both hemispheres with the same latitude 

boundary (87.0% and 80.7% vs. 57.0% for 20° cases). As shown by Figure 4.4d and f, not 

only are much fewer ENSO events correctly produced in ada_south20 and ada_north20, 

the ensemble-mean magnitudes are also much smaller, and the ensemble spread much 

larger. 

The ENSO variability in ada_south20 and ada_north20 is indeed forced by the 

extratropical atmosphere, confirmed by parallel experiments ada_north20A and 

ada_south20A (Table 4.1 and Figure 4.4), which are the same as ada_north20 and 

ada_south20, respectively, except for different initial conditions and random 

observational errors. Each pair of experiments (e.g. ada_north20 and ada_north20A) 

have almost identical RMSE of Nino3.4 indices and reproduce the ENSO events at 

roughly the same times and with similar magnitudes. 

The results in Table 4.1, along with Figure 4.4, clearly demonstrate that the 

extratropical atmosphere has significant impact on ENSO variability. Figure 4.4 also 

shows the necessity of using ensemble. For ada_north20 and ada_south20, or even some 
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ENSO events in ada_20, the Nino3.4 index differs greatly among ensemble members. 

Due to the chaotic natural variability, each individual member often fails to capture the 

“true” ENSO events, while also generates erroneous events that do not exist in the “truth”. 

Clearly, the impact of natural variability is minimized by taking the ensemble average 

from the CDA scheme, as shown by the near-zero Nino3.4 index of the CTRL experiment.  

We note that the CTRL experiment can be used conveniently as a benchmark to 

evaluate the significance of other experiments. For every variable, the distribution of its 

ensemble-mean anomaly from CTRL specifies the magnitude of its natural variability 

without any input observations. In the following sections, the standard deviations of the 

ensemble-mean anomalies from CTRL (CTRL_SD hereafter) will be used to evaluate the 

significance of all variables. For example, the Nino3.4 index of CTRL has a standard 

deviation of 0.17°C and a maximum value of 0.55°C. In fact, there are only two instances 

when the Nino3.4 index exceeds 0.5°C over the 50 years of CTRL, and each lasts only one 

month. This means that the ensemble-mean ENSO events in ada_20, ada_north20 or 

ada_south20 that exceed peak Nino3.4 value of 0.5°C are very unlikely to be caused by 

natural variability. Rather, they are caused by the assimilation of extratropical 

atmospheric observations, which provides the same signal across all ensemble members. 

Therefore for the analysis of ada_south20, an ENSO event is counted everytime the 

monthly Nino3.4 index exceeds 0.5°C, regardless of the duration. A different criterion like 

Nino3.4 over 0.4°C for at least 3 consecutive months gives almost the same events. The 

ENSO events in ada_south20 are identified with lower SST threshold and shorter 

duration compared to observational standard because first, the overall weaker ENSO 

variability in FOAM (Nino3.4 standard deviation 0.65°C) than in observation (around 

1.0°C), and second, the even weaker ENSO variability of ada_south20 than the “truth” 
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due to ensemble averaging. The identified ENSO events in ada_south20 are indicated by 

the red (El Niño) and blue (La Nina) circles in Figure 4.4f. Note that there are a few 

instances where two ENSO events are very close to each other. Because the weak phase-

locking of ENSO events to the seasonal cycle, we will keep the identified events that have 

peak values less than 1 year but more than 6 months apart from each other. 

4.2.2. Extratropical Control on ENSO 

 

Figure 4.5 Scatter plots with linear regression slope coefficient and adjusted R2 for the 
Nino3.4 indices of (a) ada_north20 (blue) and ada_south20 (red) vs. truth, (b) ada_south20 
vs. ada_north20. (from [Lu et al., 2017b]) 

Now, we examine the control of extratropical atmosphere on ENSO variability in 

detail with the focus on the three main experiments, ada_20, ada_south20 and 

ada_north20. First, the extratropical atmospheric variability from both hemispheres can 

generate most of the “true” ENSO variability, while that from each hemisphere generates 

less. In Figure 4.4d and f, although both ada_north20 and ada_south20 could reproduce 

some of the ENSO events from the "truth", the magnitudes are mostly smaller than the 

"truth" or ada_20, and the overall variances of the Nino3.4 indices are also smaller. These 
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features are displayed more clearly in Figure 4.5a, where the Nino3.4 indices of 

ada_north20 (blue) and ada_south20 (red) are scattered against the “truth”. The 

markers are less scattered vertically than horizontally, indicating smaller variances of 

Nino3.4 in ada_north20 and ada_south20 than the “truth”. More specifically, the 

standard deviation of the Nino3.4 index is 0.63 for the "truth", 0.58 for ada_20, 0.39 for 

ada_north20, and 0.44 for ada_south20.  

Although ada_north20 and ada_south20 each inherits, in a statistical sense, about 

half of the Nino3.4 variance from ada_20, the relationship among ada_20, ada_north20 

and ada_south20 for individual ENSO events is complicated, as seen in the time series of 

Figure 4.4c, d and f. Some events in ada_20 are produced in ada_north20, but not in 

ada_south20 (around year 11, 27, 42); some are the opposite, produced in ada_south20 

but not in ada_north20 (around year 5, 9, 36); some are partially produced in both 

ada_north20 and ada_south20, but in smaller magnitudes (around year 4, 19). Overall 

ada_north20 and ada_south20 are reproducing mostly different ENSO events, 

indicating independent forcing from NH and SH. The independence of NH and SH 

extratropical control is supported by the plot between the Nino3.4 indices of ada_north20 

and ada_south20 in Figure 4.5b, which has a weak correlation of 0.193 but an adjusted 

R2 of only 0.033. Therefore, in the following sections, we will analyze ada_north20 and 

ada_south20 separately to better understand the role of extratropical atmospheric 

forcing on ENSO. Interestingly, the sum of the Nino3.4 indices of ada_north20 and 

ada_south20 closely resembles that of ada_20 with a correlation of 0.81, and the 

standard deviation of the sum is 0.61. 
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Figure 4.6 Standard deviations of the Nino3.4 index by calendar month from the truth, 
ada_20, ada_north20 and ada_south20. (from [Lu et al., 2017b]) 

The extratropical control of ENSO and the comparable contribution from NH and SH 

can also been seen in the seasonality of ENSO. The phase-locking of ENSO variability with 

the seasonal cycle is another important feature of the observed ENSO variability, which 

has not been fully understood. Figure 4.6 plots the standard deviations by calendar month 

of the Nino3.4 indices from “truth”, ada_20, ada_north20 and ada_south20. The 

seasonality of Nino3.4 variability in ada_20 is similar to the observation, albeit slightly 

smaller in magnitude for all months. The peak variance of the Nino3.4 index occurs in 

August and September, followed by October and November, which is shifted early to 

boreal fall from the boreal winter in the real world. In the single-hemisphere forcing 

experiments, the overall variance decreases significantly and the seasonality changes. 

Relatively speaking, there are higher spring variability (April to June) in ada_north20 

and lower spring variability in ada_south20. These changes of seasonality should be 

related to their respective extratropical atmospheric forcing and will be discussed in the 

following sections. 
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 ENSO Precursors 

Now, we examine in detail the extratropical control of ENSO, with the emphasis on 

the precursors for ENSO events. We will focus on the SH forcing in ada_south20, because 

the NH influence can be discussed in a similar fashion. We first discuss the potential 

precursors in equatorial heat content and extratropical atmosphere based on the 

composite of ENSO events. We will then examine if each potential precursor is sufficient 

to trigger ENSO on its own based on the composite of anomalous events on each precursor. 

Finally, we will discuss a potentially necessary and sufficient precursor by combining the 

heat content and extratropical atmosphere precursors together. 

4.3.1. ENSO Composites and Potential Precursors 

ENSO evolution and its potential precursors of ENSO in ada_south20 can be seen in 

the composite of ENSO events in Figure 4.7, which shows the composite of the Nino3.4 

index (Figure 4.7a), the zonal propagation of equatorial (5°S-5°N meridional average) 

Pacific SST (Figure 4.7b) for the 29 ENSO events in ada_south20 (La Nina events are 

included with reversed sign). These ENSO events, as indicated by the circles in Figure 4.4f, 

have peak Nino3.4 magnitudes that exceed 0.5°C, which is very close to the maximum 

value (0.55°C) and 3 times the standard deviation (0.17°C, black dashed lines in Figure 

4.7a) of the Nino3.4 index from CTRL. In other words, all these ENSO events in 

ada_south20 are very unlikely to occur due to natural variability without the assimilated 

extratropical observations. The Nino3.4 composite shows a warming that starts 6-7 

months prior to the peak, rises rapidly 2 months prior to the peak, and slowly decays 

afterwards over a span of 10 months. Although there is no obvious cycle, the Nino3.4 

composite is slightly negative 1-2 years prior and after the peak, indicating the succession 

between warm and cold events. Figure 4.7b shows that the SST anomalies originate 
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mostly from the eastern equatorial Pacific, and propagate westward from 100°W to the 

dateline in 3-4 months. In sum, the composite ENSO events in Figure 4.7are highly 

significant compared to CTRL, indicating a robust tropical response to SH extratropical 

atmospheric forcing.  

 

Figure 4.7 For ada_south20: (a) Composite of Nino3.4 index of 29 ENSO events exceeding 
0.5°C. La Nina events are included with reversed sign. Dashed lines indicate CTRL_SD, 
the standard deviations of the ensemble-mean anomalies from CTRL. (b) Composite of 
5°S-5°N averaged Pacific SST based on the Nino3.4 peaks (shadings) and its ratio to the 
corresponding CTRL_SD (contours). (c) Same as Figure 4.7a but for WS_SE. (d) Same as 
Figure 4.7a but for HC_EW. (from [Lu et al., 2017b]) 

Next we examine the evolution of surface (Figure 4.8) and subsurface (Figure 4.9) 

conditions prior to the ENSO events in ada_south20. Composites of SST, low-level wind, 

and latent heat flux (LHF hereafter) anomalies are created in the equatorial and south 

Pacific for the 5 months prior to the Nino3.4 peak in ada_south20 (Figure 4.8). The low-

Month
-24 -21 -18 -15 -12 -9 -6 -3 0  3  6  9  12 15 18 21 24 

An
om

al
ie

s 
(o C

)

-1  

-0.5

0   

0.5 

1   

1.5 
a) ada_south20 Nino3.4 Composite

1

1

1
1

2

2

2

b) 5S-5N SST Composite

Longitude
150E 180 150W 120W 90W

M
on

th

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12

o C

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Month
-12 -10 -8 -6 -4 -2 0  2  4  6  

An
om

al
ie

s 
(m

/s
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
c) WS_SE Composite

Month
-24 -21 -18 -15 -12 -9 -6 -3 0  3  6  9  12 

An
om

al
ie

s 
(o C

 #
 m

)

-150

-100

-50

0

50

100

150

d) HC_EW Composite



 57 

level wind is averaged over the bottom 3 levels (>900mb). Positive LHF anomaly (blue 

contours) indicates more LHF out of the ocean or a cooling effect on the ocean. The SST 

and wind anomalies are only visible 

where they exceed their CTRL_SD. 

The NH extratropics is excluded 

from Figure 4.8 because no robust 

ensemble-mean signals exist there 

for any variable. Only the 

atmospheric (T, U, V) observations 

south of 20°S are assimilated, so 

any robust signals in the ensemble-

mean anomalies of ada_south20 

should be attributed, ultimately, to 

SH extratropical atmospheric 

variability.  

Figure 4.8 Composites of 
anomalous SST (shadings, K), LHF 
(contours, 4 W/m2 intervals and 
zero line omitted) and wind 
(arrows) for the 5 months prior to 
the peak of the Nino3.4 composite 
in ada_south20. Blue (red) contours 
indicate more (less) upward LHF. 
Black dotted lines indicate the 
boundary of data assimilation. SST 
and wind anomalies are only shown 
where the composite exceed 
CTRL_SD. (from [Lu et al., 2017b]) 
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The propagation of SH extratropical variability into the equatorial Pacific preceding 

ENSO in ada_south20 resembles the SPMM described in [Zhang et al., 2014]. At 5 

months prior to the Nino3.4 peak (Figure 4.8 a), there is already positive SST anomaly in 

the eastern equatorial Pacific. Meanwhile, a low-pressure system centers at 40°S, 100°W 

as in the observation. The anomalous northwesterly to the northeast of the low-pressure 

center reduces the climatological southeasterly trade winds and, in turn, the LHF out of 

the ocean. One month later (Figure 4.8 b), the low-pressure center moves equatorward to 

30°S, 100°W with the wind anomalies intensified. The wind anomalies that extend 

beyond the assimilation region to north of 20°S, where the atmosphere and ocean are 

fully coupled and active, could be caused by atmospheric dynamic adjustment [Pierce et 

al., 2000]. Furthermore, the reduced LHF cooling continues to warm the SST in the 

southeast subtropical Pacific. This subtropical warming differs from the simultaneous 

equatorial warming in that the LHF anomaly tends to intensify, instead of damp, the SST 

anomaly in the former. As such, the coupled wind-SST anomaly can propagate 

equatorward through the WES feedback as suggested by [Liu and Xie, 1994]. The warm 

SST anomaly would induce anomalous westerlies on the equatorial side, which further 

reduces the mean easterly trade wind and LHF there, allowing the coupled anomaly to 

propagate equatorward. In the following 2 months (Figure 4.8 c, d), the subtropical SST 

anomaly moves from 20°S to 10-15°S and becomes connected to the pre-existing 

equatorial SST anomaly. The anomalous northwesterly still persists in the eastern 

equatorial and southeast tropical Pacific. Meanwhile, anomalous westerly wind expands 

westward and intensifies along the equator from 100°W all the way to 160°W. In the 

following month (Figure 4.8 e), the SST and wind anomalies start to move off the coast. 
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In the meantime, the off-equator northerly wind anomalies in southeast Pacific have 

mostly reversed to southerly, and the LHF anomalies have changed sign to positive across 

the entire tropical and subtropical eastern Pacific. Overall, the subtropics-to-tropics 

process in Figure 4.8 is similar to the 

SPMM process found in CMIP3 

(Coupled Model Intercomparison 

Project phase 3) AGCM-slab ocean and 

fully coupled models, as well as in the 

real world [Zhang et al., 2014].   

 

Figure 4.9 Composite of anomalous 
3°S-3°N averaged Pacific upper ocean 
temperature (a) 8 months and (b) 4 
months prior to the peak of the 
Nino3.4 composite in ada_south20. The 
contours indicate the ratios of the 
composite anomalies to CTRL_SD. 
(from [Lu et al., 2017b]) 

The accompanied evolution of the equatorial (3°S-3°N average) upper ocean 

temperature can be seen for 8 and 4 months prior to the Nino3.4 peak in the composite 

of Figure 4.9. There is significant subsurface warming before the ENSO events in 

ada_south20, like the regressed upper ocean temperature evolution of the 500-year 

control simulation in Figure 4.2 (thus only two snapshots in Figure 4.9). Both Figure 4.2 

and Figure 4.9 show an eastward and upward propagation and the subsequent ENSO 

onset in the eastern equatorial Pacific.  

Based on Figure 4.2 and Figure 4.9, we use the heat content anomaly in the equatorial 

western Pacific as the subsurface precursor for ENSO, with the heat content anomaly 
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(HC_EW hereafter) calculated as the 3-month running-averaged anomalous temperature 

integrated in the western equatorial Pacific (3°S-3°N, 120°E-180°, 40-240m). We will 

also use the 3-month running-averaged low-level wind speed anomaly (WS_SE hereafter) 

in the southeast subtropical Pacific (15°S-25°S, 80°W-100°W, bottom 3 levels) as the 

extratropical atmospheric precursor. We use wind speed instead of sea level pressure 

[Anderson, 2007; Deser et al., 2012] or SST [Zhang et al., 2014] because wind is directly 

constrained by the ADA in our experiments and better represents the prescribed 

extratropical atmospheric variability due to assimilation. As shown in Figure 4.8, the 

anomalous wind speed in this region is the largest 3-5 months prior to the Nino3.4 peak 

and leads to reduced LHF cooling, SST warming and subsequent WES propagation.  

The composites of WS_SE and HC_EW series based on the 29 ENSO events in Figure 

4.7a are plotted in Figure 4.7c and Figure 4.7d, respectively. The WS_SE composite shows 

significant negative values 3-5 months prior to the Nino3.4 peak, where it exceeds twice 

its CTRL_SD. There is also a sign change for WS_SE right before the Nino3.4 peak, 

consistent with the reversal of trade wind anomalies after the ENSO onset in Figure 4.8e. 

The HC_EW composite shows consistently positive values in the 1.5 years leading to the 

Nino3.4 peak and significant negative values after the Nino3.4 peak. The peak value of 

HC_EW composite preceding ENSO is not as significant as WS_SE, mainly because the 

time between HC_EW and Nino3.4 peaks varies greatly among ENSO events. Based on 

the preceding WS_SE and HC_EW, the 29 individual events in Figure 4.7 are color coded 

as follows: 18 “purple” events when any negative WS_SE value exceeds its CTRL_SD in 

the range of 3-5 months prior to Nino3.4 peak AND any positive HC_EW value exceeds 

its CTRL_SD in the range of  6-18 months prior to Nino3.4 peak; 6 “green “ events when 

only the WS_SE criterion is met; 2 “yellow” events when only the HC_EW criterion is 
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met; and 3 “blue” events when neither criterion is met. In sum, most of the ENSO events 

are preceded by significant anomalies in the wind and heat content precursors, given our 

wide range of leading times. 

Figure 4.7, Figure 4.8 and Figure 4.9 together confirm that ENSO events in 

ada_south20 are preceded by significant anomalous signals, or precursors, in both SH 

extratropical atmosphere/ocean and equatorial subsurface ocean. This is consistent with 

previous observational and modeling analyses, which showed that both the forcing of 

extratropical atmospheric variability and the preconditioning of the equatorial ocean heat 

content could play critical roles in the ENSO onset [Anderson, 2007; Vimont et al., 2009; 

Zhang et al., 2009; Deser et al., 2012; Larson and Kirtman, 2013, 2014]. As pointed out 

by [Larson and Kirtman, 2014], however, this type of composite analysis is based on 

subsampling only the years with ENSO events, therefore the identified precursors, such 

as WS_SE and HC_EW here, are potentially necessary precursors, but may be insufficient 

to trigger ENSO in the forecast sense or even produce false alarms. In the following, we 

further determine the necessity and sufficiency of either precursor, the anomalous 

equatorial heat content or extratropical atmosphere, for triggering ENSO events in the 

ada_south20 experiment.  

4.3.2. Equatorial Oceanic Precursor 

To focus on the role of the equatorial ocean heat content as a precursor, the 24 

strongest anomalous events in the HC_EW time series are composited (Figure 4.10a), 

accompanied by the corresponding composites of Nino3.4 (Figure 4.10b) and WS_SE 

(Figure 4.10c) that are aligned by the HC_EW peaks in Figure 4.10a. The threshold of 

anomalous HC_EW events is about twice the corresponding CTRL_SD and is chosen such 

that there are a comparable number of HC_EW events as ENSO events. The negative 
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anomalous events are again included by reversing the sign. The Nino3.4 and WS_SE 

series of those negative HC_EW 

events are also reversed accordingly. 

An individual event is marked as blue 

or red dashed line, while the average 

of all events as the black solid line. 

The horizontal black dashed lines in 

each plot indicate the corresponding 

CTRL_SD.  

 

Figure 4.10 (a) Composite of  HC_EW 
series for the 24 strongest HC_EW 
events. Negative anomalies are 
included with reversed sign. The 
HC_EW events that are followed by 
ENSO events of the same sign within 
16 months are marked red, and the 
rest are marked blue. The blue (red) 
solid line is the average of all blue 
(red) dashed lines. (b) Composite of 
Nino3.4 index in ada_south20 for the 
same events as (a); (c) Same as (b), but 
of WS_SE. (from [Lu et al., 2017b]) 

Although all the HC_EW events have significant heat content anomaly in the western 

Pacific, their composite Nino3.4 index following the HC_EW peaks is close to 0, 

indistinguishable from the natural variability of CTRL. Note the large spread among the 

Nino3.4 responses, we select those 12 HC_EW events that are followed by ENSO events 

(Nino3.4 over 0.5°C) of the same sign in the following 16 months and mark them red. The 

“red” events account for about half of the ENSO events in ada_south20. The remaining 

Month
-18 -16 -14 -12 -10 -8 -6 -4 -2 0  2  4  6  8  10 12 14 16 18 

An
om

al
ie

s 
(o C

 #
 m

)

-100

-50

0

50

100

150

200
a) Composite of HC_EW Events

Composite

Individual Events

Month
-12 -10 -8 -6 -4 -2 0  2  4  6  8  10 12 14 16 18 

o C

-1.5

-1  

-0.5

0   

0.5 

1   

1.5 
b) Nino3.4 Composite

Month
0 2 4 6 8 10 12 14

An
om

al
ie

s 
(m

/s
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
c) WS_SE Composite



 63 

12 HC_EW events are marked blue, and the averages of “red” and “blue” events are shown 

by the solid red and blue lines, respectively, in all of Figure 4.10. The 6 strongest HC_EW 

events are indeed “red”, but most other “red” and “blue” events are indistinguishable in 

terms of HC_EW magnitude. The “red” Nino3.4 composite hovers around only 0.2-0.4°C 

because the response time from the HC_EW peak to the Nino3.4 peak varies considerably. 

For the same reason of various Nino3.4 response time, there is no clear negative peak in 

the wind WS_SE composite for the “red” events (Figure 4.10c). However, the “red” 

WS_SE composite does stay negative in 6 of the 9 months following the HC_EW peak, 

while consistent and significant positive values of the “blue” WS_SE composite following 

the HC_EW peak are more notable (Figure 4.10c), indicating that intensified trade wind 

in southeast subtropical Pacific could hamper the possible ENSO onset induced by the 

heat content anomaly. It is also notable that very robust negative Nino3.4 anomalies 

precede the HC_EW events (Figure 4.10b), indicating the overshoot effect of previous 

ENSO events on subsequent equatorial heat content. The composite analyses based on 

the HC_EW events show that the heat content precursor is not a reliable predictor for 

ENSO onset (12 of 24 are followed by ENSO events), although its reliability could be 

increased (decreased) by subsequent favorable (unfavorable) extratropical atmospheric 

conditions. 

The spatial pattern of the difference between the “red” and “blue” HC_EW events can 

be seen in the composites of the equatorial subsurface ocean (Figure 4.11). At the time of 

HC_EW peak (Figure 4.11a, d), the ocean temperature anomalies are almost identical, 

with cold anomalies at the surface and in the eastern Pacific and strong warm anomalies 

in the western Pacific thermocline. On average, the eastern Pacific is slightly cooler in 

“blue” events than in “red” ones. The warm temperature anomalies propagate eastward 
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for both “red” and “blue” events, however, the anomalies decay considerably for the “blue” 

events such that the magnitude and extent of the heat content anomaly in the eastern 

Pacific are much smaller in the “blue” events than in the “red” events (Figure 4.11e vs. b). 

At 6 months after the HC_EW peak, the “red” events have displayed considerable 

warming in the eastern Pacific SST (Figure 4.11c), while the warm anomalies in the “blue” 

events have disappeared and turned into substantial cooling in the eastern Pacific.  

 

Figure 4.11 Same as Figure 4.9, but for the “red” (left column, a-c) and “blue” (right 
column, d-f) HC_EW events from Figure 4.10, respectively. The composites are at the 
same time as the peak of HC_EW composite (a, d), 3 months after (b, e), and 6 months 
after (c, f). (from [Lu et al., 2017b]) 
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The comparison of the two evolutions is quite striking: almost identical thermocline 

anomalies in the western Pacific lead to completely different ENSO responses. Different 

from previous analyses of the observation or a fully coupled control simulation [Anderson, 

2007; Deser et al., 2012; Larson and Kirtman, 2013, 2014], the design of our experiments 

ensures that this difference is caused, ultimately, by the information from the 

extratropical atmosphere in the SH, rather than that in the NH or the initial conditions in 

the tropics.   

 

Figure 4.12 Same as Figure 4.8, but for the “red” (left column, a-c) and “blue” (right 
column, d-f) HC_EW events from Figure 4.10, respectively. The composites are at 3 
months (a, d), 6 months (b, e) and 9 months (c, f) after the peak of HC_EW composite. 
(from [Lu et al., 2017b]) 

The difference between the “red” and “blue” events can also be seen in the composites 

of the surface climate (Figure 4.12) for SST, wind and LHF composites at several lags after 
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the HC_EW peak. For the “red” events, the tropical warming following the HC_EW 

events is the direct surfacing of the subsurface anomalies in Figure 4.11, but it is not 

preceded by any significant extratropical anomalies as in Figure 4.8. Because the timing 

from HC_EW peaks to the triggering of ENSO events varies considerably for different 

events, the short extratropical signals would not result in robust composites in Figure 

4.12a-c. Conversely and more notably for the “blue” events, cold SST anomalies and 

intensified trade winds persist in the southeast tropical and subtropical Pacific following 

the HC_EW peak, which could offset the positive temperature anomalies propagating 

eastward (Figure 4.11d-f) and hamper the possible onset of ENSO events. The discussion 

here suggests that equatorial heat content alone is insufficient to trigger ENSO and is 

therefore not a sufficient predictor for ENSO. This is consistent with an real-world 

observational analysis by [Anderson, 2007]. 

4.3.3. Extratropical Atmospheric Precursor 

Next, we assess the extratropical atmospheric variability, namely WS_SE, as a 

precursor for ENSO events in ada_south20. Figure 4.13 shows the composite analyses 

based on the 24 strongest anomalous WS_SE events from ada_south20 in the same way 

as the heat content in Figure 4.10. The threshold for WS_SE events is 1m/s and it is 7 

times the corresponding CTRL_SD. The much stronger ensemble-mean wind variability 

compared to CTRL is due to the data assimilation in the WS_SE region. The composite in 

Figure 4.13a shows that all the WS_SE events have highly significant 1-month peaks (the 

width is enlarged due to the 3-month running average), reflecting the short timescale of 

the extratropical atmospheric internal variability. Most of these WS_SE events occur 

from May through August, since the model SH extratropical atmosphere is the most 

energetic in boreal summer. At the peak of the WS_SE composite, the SST, wind and LHF 
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anomalies (Figure 4.13b) resemble the precursor composite based on ENSO events in 

Figure 4.8b, albeit with much stronger magnitudes in wind and weaker magnitudes in the 

equatorial SST warming.  

 

Figure 4.13 (a) Composite of WS_SE anomalies for the 24 strongest WS_SE events. 
Positive anomalies are included with reversed sign. The WS_SE events that are followed 
by ENSO events of opposite sign within 6 months are marked red, and the rest are 
marked blue. The blue (red) solid line is the average of all blue (red) dashed lines. (b) 
Same as Figure 4.8, but for all the WS_SE events at the peak. (c) Composite of Nino3.4 
index in ada_south20 for the same events as (a); (d) Same as (c), but of HC_EW. (from [Lu 
et al., 2017b]) 

Following the WES feedback as in Figure 4.8, the coupled anomalies of reduced wind 

speed, weaker LHF cooling, and warm SST could propagate into the equatorial region and 
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throughout the entire period following the WS_SE peaks (black solid, Figure 4.13c). 

Among the 24 WS_SE events, only 8 are followed by ENSO events (Nino3.4 over 0.5°C) 

of the correct sign in the following 2-6 months. Again, we mark these 9 events in red 

(dashed) and the other 16 in blue (dashed), and plot their averages as the solid red and 

blue lined, respectively. In terms of the magnitude of the WS_SE events, the “red” average 

is indistinguishable from the “blue” average (Figure 4.13a), but the subsequent responses 

in Nino3.4 are notably different: the “red” average exhibits a significant warming 4 

months after the negative peak of WS_SE, while the “blue” average exhibits no warming 

after the wind peak (Figure 4.13c). The HC_EW composite based on the WS_SE events is 

plotted in Figure 4.13d. The 3 WS_SE events that are preceded by large positive HC_EW 

values are indeed “red”, while the other 6 “red” events do not have significant leading 

HC_EW events. On average, the positive “red” HC_EW composite is primarily caused by 

the 3 events with large HC_EW values. Like the heat content precursor, the composite 

analyses based on the WS_SE events show that the extratropical atmospheric precursor 

alone is not a reliable predictor either (9 of 24 are followed by ENSO events), while 

favorable equatorial preconditioning could increase its skill.  

The preconditioning role of the equatorial ocean can also be seen by comparing the 

preceding patterns of SST and heat content between the “red” and “blue” events. The 

surface conditions at the peak of the WS_SE composite are plotted for “red” and “blue” 

events separately in Figure 4.14. While the SH extratropical anomalies remain the same 

as in the total composite in Figure 4.13b, there is a dramatic difference in the equatorial 

eastern Pacific. The “red” events have the same equatorial warming as in Figure 4.8, while 

the “blue” events have slight cooling in the equatorial Pacific. This cold anomaly does not 

favor the onset of ENSO events, and is likely to prevent the extratropical atmospheric 
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variability from triggering ENSO. Indeed, the difference in equatorial SST between the 

“red” and “blue” events can be traced back to the subsurface conditions prior to the 

WS_SE events. Figure 4.15 shows the composites of ocean temperature anomaly 8 and 4 

months prior to, and at simultaneous time of WS_SE events for the “red” and “blue” 

events, separately. The subsurface evolution of the “red” events (Figure 4.15a-c) matches 

the development in the composites of Figure 4.9 and Figure 4.11a-c. In contrast, the “blue” 

events exhibit weak to moderate subsurface cooling across the entire Pacific thermocline 

(Figure 4.15d-f), which does not provide the favorable preconditioning for the onset of 

ENSO events.  The discussion here suggests that, like the heat content, the extratropical 

atmospheric variability alone is insufficient to trigger ENSO and therefore is not a 

sufficient precursor, either. 

 

Figure 4.14 Same as Figure 4.13b, but for (a) “red” and (b) “blue” events, respectively. 
(from [Lu et al., 2017b]) 
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Figure 4.15 Same as Figure 4.9, but for the “red” (left column, a-c) and “blue” (right 
column, d-f) WS_SE events from Figure 4.13a, respectively. The composites are 8 months 
(a, d), 4 months (b, e) prior to, and at the same month (c, f) as the peak of the WS_SE 
composite. (from [Lu et al., 2017b]) 

4.3.4. The Precursors Combined 

The discussions above show that both WS_SE and HC_EW demonstrate robust 

signals prior to ENSO events in ada_south20 and therefore can be considered as 

potentially necessary precursors for ENSO onset. However, neither is sufficient to trigger 

ENSO by itself and be considered as a reliable predictor. This is consistent with previous 

studies of observational and model analyses [Anderson, 2007; Deser et al., 2012; Larson 
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and Kirtman, 2013, 2014, 2015]. These previous works further suggested that the 

combined effect of both equatorial preconditioning and extratropical atmospheric 

variability is more likely to trigger ENSO. This point seems to be consistent with our study 

here (Figure 4.10 through Figure 4.15).  

 

Figure 4.16 Scatterplot of all 29 ENSO events in ada_south20 based on the minimum 
opposite-sign value of 3-5 months leading WS_SE (y-direction) and maximum same-sign 
value of 6-18 months leading HC_EW (x-direction). The color and size of the markers 
together indicate the peak Nino3.4 values. The dashed lines indicate the corresponding 
CTRL_SD. (from [Lu et al., 2017b]) 
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more clearly in Figure 4.16, which is the scatterplot of the peak Nino3.4 values of all 29 

ENSO events in ada_south20 based on the maximum WS_SE (opposite-sign) in the 

range of 3-5 months prior to Nino3.4 peak and the maximum HC_EW value (same-sign) 

in the range of 6-18 months prior. Most El Niño events are in the bottom right quadrant, 

preceded by significantly negative WS_SE and positive HC_EW values. Conversely, the 

upper left quadrant contains most La Nina events, which are preceded by significantly 
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positive WS_SE and negative HC_EQ values. Based on Figure 4.16, it may seem that 

WS_SE and HC_EW is negatively correlated. However, this “correlation” exists because 

only the values preceding ENSO events are chosen and more importantly, each precursor 

is chosen from a range of leading times to highlight its impact on ENSO variability. The 

entire WS_SE and HC_EW series in the ada_south20 experiment vary independently 

with a correlation of -0.01.  

 

Figure 4.17 (a) Scatterplot of the April-July averaged WS_SE with August-October 
averaged Nino3.4 index of the same year, plotted for the years when the averaged WS_SE 
has the opposite sign as the June (previous year)-May (same year) averaged HC_EW. (b) 
Same as (a), but for the years when the averaged WS_SE has the same sign as the averaged 
HC_EW. (c) Scatterplot of the June (previous year)-May (same year) averaged HC_EW 
with August-October averaged Nino3.4 index, plotted for the years when the April-July 
averaged WS_SE has the opposite sign as the averaged HC_EW. (d) Same as (c), but for 
the years when the averaged WS_SE has the same sign as the averaged HC_EW. (from 
[Lu et al., 2017b]) 
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The combined effect of WS_SE and HC_EW is further demonstrated in Figure 4.17, 

which is the same as the Fig. 3 of [Anderson, 2007] and Fig. 19 of [Deser et al., 2012]. In 

Figure 4.17, the correlation between April-July averaged WS_SE or June (previous year)-

May averaged HC_EW and August-October averaged Nino3.4 of all years in ada_south20 

is separately estimated depending on whether the leading averaged WS_SE and HC_EW 

have the opposite or same sign. When the averaged WS_SE and HC_EW have the 

opposite sign, the two precursors may work together to trigger ENSO onset; when they 

have the same sign, they may work against each other and fail to trigger ENSO onset. 

Figure 4.17 shows that for averaged WS_SE (HC_EW), its negative (positive) correlation 

with the subsequent Nino3.4 is larger in the opposite-sign case (Figure 4.17a, c) than the 

same-sign case (Figure 4.17b, d). The inability of the two precursors to explain all the 

ENSO events is also reasonable, since ENSO variability can be forced by atmospheric 

variability features not considered here, such as the atmospheric variability in the central 

and western subtropical Pacific. The analyses on the SH impact in ada_south20 can also 

be carried out similarly for the NH impact in ada_north20, a point to return to later. 

The effectiveness of WS_SE and HC_EW together as a ENSO precursor (Figure 4.16) 

and their relation with each other (Figure 4.17) are consistent qualitatively with the 

previous works on ENSO precursors in the real world [Anderson, 2007] and climate 

models [Deser et al., 2012; Larson and Kirtman, 2013, 2014]. However, there is an 

important difference between our study and previous studies. By experimental design, all 

the significant ensemble-mean tropical responses in ada_south20 or ada_north20, 

including the ENSO events, are ultimately forced by SH or NH extratropical atmospheric 

variability. In contrast, the ENSO events in the observation or a fully coupled model 

simulation could be simultaneously related to extratropical variability from both 
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hemispheres as well as internal climate variability within the tropics. The exclusively 

forced tropical response in our model assures that the equatorial heat content anomaly 

precursor is also forced, somehow, by the extratropical atmosphere. In contrast, the ocean 

preconditioning in previous observational or modeling studies could be caused, again by 

extratropical variability from both hemispheres and tropical natural variability. It 

remains to be studied how the equatorial subsurface ocean is preconditioned by 

extratropical atmospheric variability. Tentatively, we speculate the heat content anomaly 

can be induced by the oceanic teleconnection [Matei et al., 2008], with the extratropical 

atmospheric variability directly forcing subtropical oceanic anomaly, which then 

propagations into the equatorial ocean via oceanic Rossby wave and the subsequent 

tropical thermocline adjustment [Kirtman, 1997; Anderson et al., 2013; Anderson and 

Perez, 2015], or via thermocline subduction [Liu et al., 1994; Schott et al., 2004]; it can 

also be forced directly by the atmospheric adjustment from the subtropics [Pierce et al., 

2000]. 

 Summary and Discussion of Chapter 4 

This section studies the control of extratropical atmospheric variability on ENSO 

variability in a CGCM using a limited-domain CDA system, in which the active 

assimilation is confined to the extratropics. The extratropical atmospheric variability is 

shown to have significant impact on ENSO variability, while the extratropical SST has no 

influence on ENSO at the timescale considered here. When atmospheric observations are 

assimilated only poleward of 20° in both hemispheres, most of the strong ENSO events 

in observation are reproduced in ada_20 and the RMSE of the Nino3.4 index is reduced 

by over 40% compared to CTRL with no assimilation. The comparison with CTRL also 

indicates that any robust ensemble-mean tropical variability must be attributed to the 
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assimilated extratropical atmosphere ultimately. Furthermore, the forced ENSO 

variability is contributed independently and roughly equally by the atmospheric forcing 

from the NH and SH extratropical atmosphere, as shown by ada_south20 and 

ada_north20.  

Composite analyses of the ENSO events in ada_south20 reveal robust signals in both 

extratropical atmosphere and equatorial subsurface Pacific, following previous studies of 

SPMM and the discharge-recharge paradigm. Specifically, most ada_south20 ENSO 

events are preceded by corresponding precursors of wind speed, LHF and SST anomalies 

in the southeast subtropical Pacific like the SPMM and heat content anomalies in the 

equatorial western Pacific. Furthermore, the ability of each precursor to act as a predictor 

is investigated based on their own composites in ada_south20. It is found that neither 

the extratropical atmospheric nor the tropical oceanic precursor alone is sufficient to 

trigger ENSO onset. The combined effect of the two precursors is also considered: when 

one precursor strongly favors ENSO onset, the other should also be favorable, or at least 

neutral for the emergence of ENSO. The existence of ENSO events without either 

precursor indicates the possibility of other connections from SH extratropical atmosphere 

to ENSO variability. 

Detailed analysis of the ada_north20 experiment, which is performed in the same 

way as ada_south20, is not shown in this paper. The major conclusions from 

ada_south20 qualitatively hold for ada_north20, although the results are somewhat 

more complex for ada_north20. In ada_north20, most ENSO events are preceded by 

wind, LHF and SST anomalies in the northeast and north-central subtropical and tropical 

Pacific, while only some are preceded by heat content anomalies in the equatorial western 

Pacific. The extratropical signals in ada_north20 spread over a larger region compared 
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to ada_south20 and resemble the key patterns of the NPMM. However, a few notable 

differences should be pointed out. First, ada_north20 appears to include both the 

Central-Pacific (CP) and Eastern-Pacific (EP) types of ENSO events [Yu and Kao, 2007; 

Kao and Yu, 2009], while ada_south20 includes the EP type exclusively. The EP type in 

ada_north20 is preceded by significant HC_EW precursor like ada_south20, while the 

CP type is not. Furthermore, the CP type in ada_north20 is more closely linked to 

preceding SST anomalies in the northeast subtropical Pacific and NH trade wind 

anomalies, similar to the “footprinting” mechanism [Vimont et al., 2001, 2003a, 2003b] 

and the trade wind charging [Anderson et al., 2013; Anderson and Perez, 2015]. The 

relation between NPMM or SPMM and different types of ENSO events has been 

investigated by several studies [Yu et al., 2010; Vimont et al., 2014; Zhang et al., 2014; 

Yeh et al., 2015], and most of which agree that NPMM is related to both types while SPMM 

leads to mostly the EP type. The different types of ENSO events and their respective 

mechanism in ada_north20 will be explored in the future.   

The quantitative strength of the extratropical control on ENSO variability depends on 

the dynamics of the model. The same ada_20 experiment is also performed in two other 

versions of FOAM with modified model parameters and shows significantly different 

strength of extratropical control. In one version of FOAM, ENSO becomes much stronger 

than the default version and is dominated by a biennial oscillation. In this version, the 

extratropical atmospheric variability has little impact on ENSO, suggesting the ENSO is 

generated predominantly by the tropical coupled system. In another version of FOAM, 

ENSO becomes weaker and its spectrum appears much “redder”.  In this version, the 

extratropical atmosphere exerts an even stronger control on ENSO than in the default 

version. Our diagnosis of the control simulations of the various versions of FOAM 
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suggests that the default version is the closest to the real world. In addition, the almost 

equal strength of extratropical control from both hemispheres could also be model-

specific. Nevertheless, we caution the direct application of the quantitative results in this 

study to other CGCMs and the real world.  

There are still many issues to be further explored on the current study. As previously 

discussed, the coupled dynamics in the eastern Pacific should only be one of the 

mechanisms by which extratropical atmosphere could influence ENSO variability. In 

addition, it remains unclear how the ocean preconditioning is caused by extratropical 

atmospheric variability. More analyses are needed to investigate the roles of 

atmospheric/oceanic/coupled processes in transferring extratropical variability into the 

tropics. This pilot study also serves to demonstrate of the utility of the limited-domain 

CDA method, or more generally the use of coupled data assimilation in studying climate 

dynamics. The real potential of this method would be its application to the understanding 

of the real-world ENSO events using a state-of-the-art CGCM. With this new method 

based on the CDA system, Section 0 will investigate the specific atmospheric noise forcing 

and related coupled dynamics that contribute to the historical ENSO events. 
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Chapter 5 

5. Extratropical Influence on Tropical Variability: 

Applications with Real-world Observations 

In Chapter 4, the extratropical influence on ENSO variability is studied within the 

model dynamics of FOAM in a perfect-model framework. Here in Chapter 5, the 

extratropical influence on historical ENSO variability is studied by assimilating real-

world reanalysis data into FOAM, which is a biased model compared to the observation. 

The same experiments as in Chapter 4 are repeated with reanalysis data. Additional 

sensitivity and forecast experiments are performed to study the triggers of a few ENSO 

events. Part of the results in this chapter will be reported in an upcoming paper [Lu and 

Liu, 2017].  

 Datasets and Experiment Design 

The experiments in this chapter again use FOAM and the RCDA method described in 

Section 2.1 and Section 2.4, respectively. The same reanalysis datasets as in Chapter 3 

(NCEP/NCAR Reanalysis 1 and NOAA ERSST) are assimilated in the RCDA experiments 

here. See Section 3.1 for a detailed description of the setup of the assimilation system and 

Table 5.1 for the list of experiments. Most of the analysis in this chapter is based on the 

same set of experiments in Chapter 3 unless noted otherwise. Some experiments are 

repeated with the addition of 2016 observations for validation purposes. Additional short-

term (2 to 3 years) forecast or assimilation experiments are performed to test the 

sensitivity of ENSO onset and development to different tropical and extratropical 

precursors.  
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Assimilated 
Variables & 

Latitudes 
None 

Atm T/U/V & 
SST 

(coupled) 
Atm T/U/V SST 

None ctrl    

All  cda_all ada_all oda_all 

>10°N & <10°S  cda_10 ada_10 oda_10 

>15°N & <15°S  cda_15 ada_15 oda_15 

>20°N & <20°S  cda_20 ada_20 oda_20 

>24°N & <24°S  cda_24 ada_24 oda_24 

>28°N & <28°S  cda_28 ada_28 oda_28 

>33°N & <33°S  cda_33 ada_33 oda_33 

>37°N & <37°S  cda_37 ada_37 oda_37 

>42°N & <42°S  cda_42 ada_42 oda_42 

Table 5.1 Table of all RCDA experiments in Chapter 5.  

 Overview of Results 

5.2.1. ENSO Variability 

The Nino3.4 indices from selected RCDA experiments are shown in Figure 5.1 (ctrl, 

cda_all, ada_all and oda_all) and Figure 5.2 (ada_10, ada_20, ada_28 and ada_37). 

The strongest ENSO events in the past 70 years are marked by the circles, which are red 

for El Niño events and blue for La Nina events. The ctrl experiment shows no ensemble-

mean ENSO variability like the perfect-model study in Chapter 4 (Nino3.4 correlation 

with observation R=-0.012). In the RCDA experiments where observation coverage is 

global, FOAM could produce accurate historical ENSO variability. Among cda_all, 

ada_all and oda_all, oda_all is the most accurate in terms of Nino3.4 index due to its 
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direct constraint on SST (R=0.874), while ada_all, despite its constraint on the 

atmosphere, is the least accurate because of the model bias in the coupling and oceanic 

components (R=0.746). Although oda_all assimilates the most observations, it slots 

between oda_all and ada_all in the ability to reproduce observed ENSO variability 

(R=0.818). 

 

Figure 5.1 The time series of Nino3.4 index from (a) ctrl, (b) cda_all, (c) ada_all and (d) 
oda_all. Grey lines indicate the observed Nino3.4 index (same for all panels), red lines the 
ensemble mean, and pink lines all 16 ensemble members. 

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16

-2

-1

0

1

2

3
a) nino34 (ctrl) Corr:-0.012

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16

-2

-1

0

1

2

3
b) nino34 (cda_all) Corr:0.818

48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16

-2

-1

0

1

2

3
c) nino34 (ada_all) Corr:0.746

Year
48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16

-2

-1

0

1

2

3
d) nino34 (oda_all) Corr:0.874



 81 

Next we focus on the ADA experiments. Like the perfect-model experiments in 

Chapter 4, the accuracy of the Nino3.4 variability declines as the assimilation boundary 

moves poleward. The Nino3.4 index correlation with observation decreases from 0.746 in 

ada_all to 0.655 in ada_10, 0.49 in ada_20, and 0.325 in ada_28. Their perfect-model 

counterparts have Nino3.4 correlations that are around 0.2 higher, ranging from over 0.9 

to about 0.5. Overall, the control of extratropical atmospheric variability on ENSO 

variability is weaker in the real-world experiments than in the perfect-model experiments. 

This could be caused by several reasons, most of which are related to the presence of 

model bias. First, the analysis quality in the regions with data assimilation is worse in the 

real-world experiments. Second, FOAM may be lacking or biased in some aspects of 

model dynamics and feedbacks related to extratropical-to-tropical teleconnection. Third, 

there are discrepancies between the regions with assimilation and those without. For 

example, the climatological annual cycle of SST is dragged toward observation in the 

extratropics, but it is still affected by FOAM’s biased climatology in the tropics without 

assimilation (Figure 5.5 and Figure 5.6). Last but not the least, it is possible that the 

extratropical control on ENSO variability is weaker in the real world than in FOAM. As 

we mentioned in Section 4.4, the extratropical control on ENSO variability in FOAM could 

be made stronger or weaker depending on certain model parameters. The real-world 

extratropical control could be weaker than that in our current version of FOAM. Despite 

all these reasons, experiments like ada_20 and ada_28 did reproduce a few ENSO events 

and partial variability. For example, in ada_20, correct warming or cooling of the Nino3.4 

index is reproduced for 1955-56 La Nina, 1957-58 El Niño, 1972-73 El Niño, 1986-87 El 

Niño, 1988-89 La Nina, 1997-98 El Niño, and 2009-10 El Niño, although many of these 

reproduced events are inaccurate in magnitude and/or off in timing by a few months. The 
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magnitude issue could be caused by the FOAM’s model bias in ENSO-related equatorial 

dynamics, while the timing issue could be related to the ENSO phase-locking in FOAM. 

Both issues will be discussed later in this chapter. Furthermore, ada_28 also reproduces 

ENSO events like 1957-58 El Niño, 1972-73 El Niño, and 2007-08 La Nina. The accuracy 

of the 1972-73 El Niño in both ada_20 and ada_28 is particularly prominent, which will 

be analyzed in details in Section 5.3. The ability to reproduce ENSO variability is almost 

gone in ada_37.  

 

Figure 5.2 Same as Figure 5.1, but for (a) ada_10, (b) ada_20, (c) ada_28 and (d) ada_37. 
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Among the strongest El Niño events, the contrast between the 1972-73 event and the 

1997-98 event among the ADA experiments is particularly interesting. While the 1972-73 

El Niño is reproduced accurately in ada_20 and even ada_28, the 1997-98 El Niño is 

weak in ada_20 and complete absent in ada_28. Previous study has shown that both 

events are preceded by North Pacific Meridional Mode (NPMM) signals, however, this 

contrast in RCDA experiments indicates the extratropical control on these two events may 

be completely different despite similar NPMM precursors. These two events and their 

precursors will be further analyzed in Section 5.3 and 5.3.2. 

The power spectrum of the Nino3.4 index is not heavily affected in the RCDA 

experiments. In Figure 5.3, ctrl represents a single member FOAM control simulation 

since the ctrl experiment has almost no ensemble-mean ENSO variability. FOAM has a 

realistic ENSO cycle of 2-7 years, slightly weaker than observation at lower frequency in 

the range. The ADA experiments still have similar Nino3.4 power spectrum, indicating 

mostly unchanged intrinsic ENSO dynamics in the coupler and ocean components.  

  

Figure 5.3 The power spectrum of the Nino3.4 index from observation, CTRL, ada_all, 
ada_20 and ada_28.  
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Overall, the influence of extratropical assimilation is seen more clearly in Figure 5.4, 

which contains the Nino3.4 index correlation and RMSE of all RCDA experiments. With 

no assimilation, ctrl has a correlation close to 0 with the observed Nino3.4. When the 

assimilation boundaries expand equatorward, the correlation gradually and linearly 

increases for ADA and CDA experiments, but not for ODA experiments. As demonstrated 

in the perfect-model experiments, extratropical SST assimilation (oda_15 and beyond) 

has almost no influence on the ENSO variability, and the effect of ODA only materializes 

when SST assimilation reaches inside 15°. Like the correlation, the RMSE of ADA and 

CDA experiments decrease when the assimilation boundaries move equatorward. The 

RMSE is relatively small for ctrl because the ctrl ensemble-mean Nino3.4 index just 

hovers around 0, thus reducing the error variance. Figure 5.2 and Figure 5.4 are clear 

evidence that certain extratropical atmospheric variability has a causal effect on ENSO 

variability. 

 

Figure 5.4 A summary of ENSO variability statistics from CTRL (asterisk), CDA (blue 
diamond), ADA (red circle), and ODA (green square) experiments. (a) Correlation of 
Nino3.4 index with the observation. (b) RMSE of Nino3.4 index compared to observation. 
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Besides the annual-mean climatological features discussed in Chapter 3 and the 

interannual variability shown in Section 5.2.1, another important aspect of the tropical 

climate is the seasonality of the tropical climate and ENSO variability, as well as their 

interaction. Current climate models, even the state-of-the-art ones, are still unable to 

simulate some of the tropical features such as the annual—instead of semi-annual—cycle 

of SST and precipitation in the Eastern Tropical Pacific, the phase-locking of ENSO 

variance with the seasonal cycle, and the spring barrier of ENSO prediction [Bellenger et 

al., 2014; Li and Xie, 2014; Chen et al., 2016].  

The observed equatorial Pacific SST shows a weak semi-annual cycle in the western 

part and a strong annual cycle in the eastern part (Figure 5.5a). In comparison, FOAM 

has an annual cycle in the west and a slightly semi-annual cycle in the east. With tropical 

and/or extratropical atmospheric data assimilation, the semi-annual cycle in the east is 

replaced by an annual cycle, in addition to the improved annual-mean climatology shown 

in Chapter 3. The improvement comes mainly from the southern hemisphere since 

ada_S20 is very close to ada_20 while ada_N20 is more like ctrl.  

The Eastern Pacific seasonal cycle is shown in Figure 5.6. The most prominent bias 

in FOAM is the warm boreal spring SST in the southeastern tropical Pacific (Figure 5.6b 

vs. a), which is highly correlated with the double-ITCZ bias since SST and precipitation 

are strongly coupled in the tropics. The warm SST bias is much reduced in the ADA 

experiments, which again mainly comes from the southern hemisphere as shown by 

ada_S20 (Figure 5.6h). 
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Figure 5.5 Equatorial (5°S-5°N average) Pacific SST and wind annual cycle for (a) CTRL, 
(b) observation, (c) ada_all, (d) ada_10, (e) ada_20, (f) ada_28, (g) ada_N20 and (h) ada_S20. 
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Figure 5.6 Eastern (80°W-120°W average) Pacific SST and wind annual cycle for (a) CTRL, 
(b) observation, (c) ada_all, (d) ada_10, (e) ada_20, (f) ada_28, (g) ada_N20 and (h) ada_S20. 
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In observation, a typical ENSO event—as represented by the Nino3.4 index—usually 

develops in boreal summer and fall, and peaks in boreal winter. This phenomenon is 

called the phase-locking between ENSO variability and the seasonal cycle. This can be 

seen from the standard deviation of the observed Nino3.4 index by calendar month (black 

line in Figure 5.7). In contrast, the ENSO variance in FOAM control simulation grows 

mostly in boreal summer and peaks in boreal fall (orange line in Figure 5.7). When 

assimilation is available in or close to the deep tropics (ada_all and ada_10), the RCDA 

experiments produce the correct phase-locking, while extratropical assimilation (ada_20 

and ada_28) moves the strongest Nino3.4 variance to the summer, even farther away 

from the correct phase-locking. The inability of FOAM—and some other climate models—

to produce the correct phase-locking could be attributed to many sources, including 

biased tropical climatology and seasonal cycle, deficiency in coupled instability, and 

wrong forcing of ENSO onset. These problems are likely connected and all contributing 

to the biased phase-locking. 

 

Figure 5.7 Standard 
deviations of 
Nino3.4 index by 
calendar month in 
observation, CTRL, 
ada_all, ada_10, 
ada_20 and ada_28. 
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5.2.3. Equatorial Pacific Heat Content 

The equatorial Pacific upper-ocean heat content is an important indicator of ENSO 

variability and a common precursor for ENSO onset. The 𝑡300  index, the average 

temperature in the equatorial Pacific upper ocean (5°S-5°N, 120°E-80°W, 0-300m), is 

shown for observation and some RCDA experiments in Figure 5.8 and Figure 5.9. Like 

the Nino3.4 index, ctrl has no ensemble-mean t300 variability either. The cda_all 

experiment can be considered our own reanalysis product, and its t300 index will be used 

as the reference to judge other RCDA experiments. The t300 index from cda_all is highly 

correlated with those from SODA (Simple Ocean Data Assimilation) [Carton et al., 2000, 

2008] reanalysis and NCEP GODAS (Global Ocean Data Assimilation System) reanalysis 

except for the first 10 years of SODA reanalysis, which have higher uncertainty due to the 

lack of subsurface observations.  

Due to the lack of subsurface assimilation, t300 index of oda_all is not as well 

reconstructed as those of cda_all and ada_all, which both have the surface air 

temperature to force the SST as well as wind observations to drive the ocean transport. In 

a series of ADA experiments from ada_all to ada_37 shown in Figure 5.9, the correlation 

of t300 index with cda_all and observation decreases when the assimilation boundary 

moves poleward. The similarity between Nino3.4 and t300 is expected since the heat 

content is usually a prerequisite for the occurrence of ENSO events, and there is always 

overshoot of the heat content to the opposite sign after ENSO events. 
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Figure 5.8 Equatorial Pacific (5°S-5°N, 120°E-80°W) zonal-mean 0-300m average 
temperature (t300) time series of (a) ctrl, (b) cda_all, (c) ada_all and (d) oda_all, red in each 
panel. The green, grey and blue lines are t300 of cda_all, SODA and GODAS respectively. 
Linear trends are removed from all t300 time series. 
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Figure 5.9 Same as Figure 5.8, but for (a) ada_10, (b) ada_20, (c) ada_28 and (d) ada_37. 
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this section, we will take a closer look at 1972-73 El Niño and investigate its triggering 

mechanism with additional short-term sensitivity experiments. 

 

Figure 5.10 For ada_all in the period 1971-1973: (a) Nino3.4 index of ensemble mean (red) 
and all ensemble members (pink) of ada_all, along with observation (grey) and ctrl (black); 
(b) W_SEPac (blue), W_NEPac (Purple) and t300 (orange) of ada_all (solid) and 
observation (dashed); (c) evolution of equatorial (5°S-5°N)  Pacific SST in ada_all; (d) 
evolution of equatorial (5°S-5°N) Pacific 0-300m average ocean temperature.  
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180°, bottom 3 levels). W_SEPac and W_NEPac anomalies represent the anomalous 

events in the strength of the trade wind that are related to SPMM and NPMM, respectively. 

Due to the complete coverage of atmospheric observations, both W_SEPac and 

W_NEPac in ada_all closely follows the observation. The t300 anomaly is slightly colder 

than observation in 1971 and warmer in the first half of 1972, but stays close to the 

observation after the El Niño onset.  

All three indices in Figure 5.10b favor an El Niño event in 1972 based on the analysis 

of Section 4.3 and previous studies of NPMM. The greatly reduced trade wind in the 

southeastern tropical Pacific (W_SEPac) in the summer of 1972 could initiate the WES 

feedback process that warms up the eastern equatorial Pacific. The equatorial Pacific 

upper ocean is in a recharged state in all of 1971 and 1972 (Figure 5.10d). Moreover, the 

NH atmospheric variability—reduced trade wind in the spring and summer of 1972 as 

indicated by the negative W_NEPac anomaly—also favors the development of an El Niño 

event [Chang et al., 2007; Vimont et al., 2009]. The combination of multiple favorable 

precursors is likely a prerequisite for the occurrence of strong ENSO events [Anderson, 

2007; Lu et al., 2017b], however, it’s important to know the relative importance of the 

precursors since each precursor contributes differently to the predictability and 

mechanism of ENSO variability. For example, the extratropical variability and equatorial 

heat content both favor the development of El Niño events in the year 1972, 1997 and 2014, 

but they did not lead to an El Niño event in 2014 as in 1972 and 1997. Even between 1972 

and 1997, previous observational studies may indicate that both extratropical and 

equatorial forcing played important roles, but our RCDA experiments demonstrate that 

the similar precursors may have different effects on triggering the El Niño events.  
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Figure 5.11 Same as Figure 5.10, but for ada_20 in the period 1971-1973. 

During the 1972-73 El Niño, ada_20 and ada_28 both reproduced accurate Nino3.4 

variability (Figure 5.11 and Figure 5.12), and in the case of ada_20, the equatorial Pacific 

is not in a recharged state at all as in observation (Figure 5.11b and d) in more than a year 

leading to the El Niño onset. The lack of a recharged equatorial Pacific thermocline may 

be responsible for the slightly weaker warming in ada_20 compared to ada_all, but the 

El Niño warming is still significant and thus likely caused by extratropical forcing such as 

W_SEPac and W_NEPac anomalies. Both ada_20 and ada_28 have W_SEPac and 

W_NEPac anomalies that closely follow the observation or ada_all, since the data 

assimilation either covers the wind speed region or is close enough to affect the 

atmospheric variability. The positive heat content anomaly in ada_28— caused by a La 

Nina event in 1971—results in stronger warming of the Nino3.4 index than ada_20. 
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Regardless of the state of the equatorial thermocline, the forced El Niño events in both 

ada_20 and ada_28 indicate extratropical atmospheric variability as the main trigger for 

the 1972-73 El Niño. 

 

Figure 5.12 Same as Figure 5.10, but for ada_28 in the period 1971-1973. 

The surface conditions—including monthly SST and wind anomalies—from March to 

November of 1972 are shown in Figure 5.13. The reduced trade wind and accompanied 

warm SST anomalies in the north-central tropical Pacific are persistent from April 

through October. Although the SST anomalies did not spread all the way in the equatorial 

Pacific, such wind speed anomalies could charge the equatorial thermocline through the 

Sverdrup transport or “trade wind charging” [Clarke et al., 2007; Anderson et al., 2013]. 

In the meantime, the WES feedback process from the southeastern tropical Pacific starts 

from June and propagates SST anomalies into the eastern equatorial Pacific in August 
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and September, which is joined by the SST warming caused by the surfacing of the 

eastward-propagating heat content anomaly (Figure 5.12d) and becomes a strong El Niño.  

 

Figure 5.13 Composites of anomalous monthly SST (shadings) and wind (arrows) from 
March 1972 to November 1972 in ada_20. Black dotted lines indicate the boundary of data 
assimilation. SST and wind anomalies are only shown where the composite exceed twice 
the standard deviation of ctrl (CTRL_SD as described in Section 4.2.1). 

To further test the extratropical atmospheric precursors for the 1972-73 El Niño, 
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conditions (IC) or observations. The first such experiment, listed as No.1 in Table 5.2 and 

shown in Figure 5.14 and Figure 5.15, is a 2-year ada_20 experiment from the start of 

1972, but with the ocean IC from the start of 1976. Otherwise, it is identical to the 1972-

1973 period of the original ada_20 experiment, including the same atmospheric 
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at the start of 1976. The ENSO variability following a discharged equatorial Pacific 

thermocline while forced with favorable extratropical atmospheric variability could 

demonstrate the relative importance of the precursors.  

No. Period RCDA Atm Obs Atm IC Ocn IC 

1 1972-73 ada_20 1972-73 1972 1976 

2 1972-73 ada_20 1972-73 (30-day running 
average) 1972 1972 

3 1972-73 ada_20 1972-73 (30-day running-
averaged anomalies removed) 1972 1972 

4 1972-73 ada_20 1972-73 1972 1997 

5 1997-98 ada_20 1997-98 1997 1972 

6 1972-73 ada_28 1972-73 1972 1997 

7 1997-98 ada_28 1997-98 1997 1972 

Table 5.2 List of the short experiments used in Chapter 5. The modified aspects of the 
experiments that are different from the original RCDA experiments are bold. 

 

Figure 5.14 Same as Figure 5.11a, with the addition of the Nino3.4 index from short 
experiment No.1 (blue). The grey, black, red and pink lines are observation, ctrl, original 
ensemble mean and ensemble members, respectively. 
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The Nino3.4 index in short experiment No.1 rises higher than the original 1972-73 El 

Niño in ada_20 (Figure 5.14), despite the initial dip due to the initial negative t300 

anomaly (Figure 5.15). As shown in Figure 5.15, the extratropical wind anomalies, 

represented by W_NEPac and 

W_SEPac, still start from and follow 

those from observation or the original 

ada_20, while t300 starts from a 

much lower initial value, but quickly 

rises to the same as the original 

ada_20 in less than 6 months.  

Short experiment No.1 

demonstrates that even with a 

discharged equatorial Pacific, an El 

Niño event could still be triggered with 

extratropical atmospheric forcing. We 

can safely assume that without the 

wind anomalies from both NH and SH 

extratropics, there won’t be such an El 

Niño event. 

Figure 5.15 Same as Figure 5.14, but 
for W_NEPac, W_SEPac and t300 
instead of Nino3.4 index, and without 
individual ensemble members. 

The wind anomalies analyzed so far are monthly values, and we are mostly focusing 
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assimilated should have a lot of high-frequency variability. The daily, weekly and monthly 

time series of W_SEPac in 1972 are shown in Figure 5.16. The W_SEPac time series have 

very large variance at high frequency, with extreme events lasting one to a few days every 

one to two weeks, which is typical of the mid-latitude synoptic variability. The high-

frequency variability is modulated by the monthly variability, resulting in more extreme 

events with reduced trade wind from April to June 1972. The low-frequency variability 

could be caused by teleconnection with the Pacific-South America (PSA) Pattern, SST 

variability, or just synoptic noise.  

 

Figure 5.16 Observed daily (asterisk with dotted line), weekly (solid line) and monthly 
(dashed line) W_SEPac anomalies in 1972.  

It turns out that the low-frequency variability is more important for triggering ENSO 
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stronger than the original 1972-73 El Niño (Figure 5.17). Without the high-frequency 

variability, the more persistent forcing from the reduced trade wind, albeit weaker in 

extreme values, is much more effective in triggering a strong El Niño event. Another short 

experiment with 7-day-running-averaged observations (not shown) also produces an 

stronger El Niño event than the original ada_20. In contrast to No.2, short experiment 

No.3 removes the 30-day running-averaged anomalies—the low frequency wind forcing 

retained in No.2—from the atmospheric observations. The removal of low-frequency wind 

anomalies leads to an neutral Nino3.4 index and eliminates the El Niño event all together. 

 

 

 

 

Figure 5.17 Same as 
Figure 5.11a, with the 
addition of the Nino3.4 
index from short 
experiment No.2 (blue). 

 

 

 

 

 

Figure 5.18 Same as 
Figure 5.11a, with the 
addition of the Nino3.4 
index from short 
experiment No.3 (blue). 
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5.3.2. 1997-98 El Niño (Unsuccessful) 

 

Figure 5.19 Same as Figure 5.10, but for ada_all in the period 1996-1998. 

The reproduction of the 1997-98 El Niño in the RCDA experiments is much worse 

that of the 1972-73 El Niño, despite being one of the strongest ENSO events in history and 

preceded by favorable NPMM conditions [Chang et al., 2007]. Even in ada_all as shown 

in Figure 5.19, the Nino3.4 index only reaches 1.5°C, compared to the observed peak of 

2.5°C. The initial warming in the early summer of 1997 is as rapid as the observation, 

which follows the extreme event of reduced trade wind in the southeastern tropical Pacific. 

however, the equatorial heat content does not reach the observed value, especially the 

eastward propagation of heat content anomaly from the western Pacific. The lack of 

positive heat content anomalies could be responsible for the plateauing of the El Niño 

warming in ada_all, since the 1997-98 El Niño was preceded by many strong MJO and 
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WWB events, which produced large heat content anomalies that contributed to one of the 

strongest El Niño in the observed history [McPhaden, 1999; Vecchi et al., 2000]. Due to 

the coarse resolution of the atmosphere component and other model deficiencies, FOAM 

is unable to simulate high-frequency and/or small-scale phenomena like MJO and WWB, 

which could explain the lack of positive heat content anomalies even in ada_all. Weak 

instability in the coupled equatorial Pacific coupled system could also be a reason for the 

weak 1997-98 El Niño, since the overall strength of ENSO variability is weaker in FOAM 

than in observation. 

 

Figure 5.20 Same as Figure 5.10, but for ada_20 in the period 1996-1998. 

The large negative anomalies of W_NEPac in early 1997 and W_SEPac in summer 

1997 make the unsuccessful reproduction of the 1997-98 El Niño in ada_all even more 

intriguing, since the equatorial Pacific is not as recharged as the observation before the 
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1972-73 El Niño either. The extratropical atmospheric forcing, primarily in the form of 

trade wind anomalies, is enough to produce enough warming for the 1972-73 El Niño, but 

insufficient for the 1997-98 El Niño. This contrast can be further demonstrated by the 

ada_20 (Figure 5.20) and ada_28 (Figure 5.21) experiments. Both trade wind speed 

indices W_NEPac and W_SEPac still follow the observed variability like ada_all because 

of the available subtropical and extratropical data assimilation, but these wind speed 

anomalies, despite similar strength to those in 1972, fail to produce a strong El Niño event. 

The Nino3.4 index even become negative from summer of 1997 through 1998.  

 

Figure 5.21 Same as Figure 5.10, but for ada_28 in the period 1996-1998. 
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73 El Niño by assimilating atmospheric observations poleward of 20° (Figure 5.22). The 

slight negative t300 index at the start of 1997 (Figure 5.20b) does not affect the onset of 

the 1972-73 El Niño, which is expected considering that the more negative t300 at the 

start of 1976 does not prevent the onset either (Figure 5.14 and Figure 5.15).  

On the contrary, with the ocean IC from 1972, short experiment No.5 produces similar 

Nino3.4 index as the 1997-98 period of the original ada_20 (Figure 5.23). The stronger 

warming is caused by the positive t300 at the start of 1972 replacing the negative one at 

the start of 1997, but this stronger initial warming does not significantly increase the 

subsequent warming and 

the peak Nino3.4 index.  

 

 

Figure 5.22 Same as 
Figure 5.11a, with the 
addition of the Nino3.4 
index from short 
experiment No.4 (blue). 

 

 

 

 

 

Figure 5.23 Same as 
Figure 5.20a, with the 
addition of the Nino3.4 
index from short 
experiment No.5 (blue). 
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The same pair of short experiments as No.4 and 5 are also performed based on the 

ada_28 experiment as No.6 (Figure 5.24) and 7 (Figure 5.25). In ada_28, there is a large 

gap between the oceanic conditions at the start of 1972 and 1997. The equatorial Pacific is 

in a recharged state in 1972 (Figure 5.12d), but in a neutral or discharged state in 1997 of 

ada_28 (Figure 5.21d). By swapping the ocean IC from 1972 and 1997, the El Niño 

warming of short experiment No.5 is initially suppressed in early 1972 (Figure 5.24), while 

triggered in early 1997 (Figure 5.25). However, after the initial period, the trends of 

Nino3.4 index mostly follow those from the original ada_28 experiment during the 

growing phase of the 

ENSO variability, up from 

summer 1972 to produce 

a weak El Niño event in 

No.6 while down to 

become neutral from 

summer 1997 in No.7. 

 

Figure 5.24 Same as 
Figure 5.12a, with the 
addition of the Nino3.4 
index from short 
experiment No.6 (blue). 

 

Figure 5.25 Same as 
Figure 5.21a, with the 
addition of the Nino3.4 
index from short 
experiment No.7 (blue). 
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Chapter 4, along with previous modeling and observational studies, has established 

that favorable extratropical atmospheric forcing and equatorial oceanic preconditioning 

are both needed to produce strong ENSO events, so it is no surprise to see that both the 

1972-73 and 1997-98 El Niño events are preceded by these favorable precursors. However, 

the existence of the precursors does not mean that each of them has the same function for 

every El Niño event. On the contrary, the comparison between the 1972-73 and 1997-98 

El Niño events in RCDA experiments such as ada_20 and ada_28 suggests that the more 

critical trigger is the extratropical atmospheric forcing for the former and the equatorial 

preconditioning for the latter.  

We speculate the difference between the 1972-73 and 1997-98 El Niño events in the 

RCDA experiments could be explained by two reasons. First, the equatorial oceanic 

preconditioning could simply have more contribution to the 1997-98 El Niño, so that the 

lack of it has a larger effect on the magnitude of the event. The weaker 1972-73 El Niño in 

ada_20 compared to ada_all and ada_28 could also be related to the lack of oceanic 

preconditioning, but the larger contribution from extratropical atmospheric forcing 

mitigates the loss of equatorial preconditioning. Second, the timing of the precursors 

could also play a role. The W_NEPac anomalies, which could recharge the western and 

central equatorial Pacific, exist primarily in the spring of 1972 and the winter of 1996, and 

this difference could change the equatorial heat content in the summer and fall when the 

El Niño is developing. 

 Summary and Discussion of Chapter 5 

In this chapter, real world reanalysis data are assimilated with the RCDA method in 

FOAM to systematically and quantitatively study the precursors of historical ENSO events, 

the extratropical atmospheric control on ENSO onset. The RCDA experiments 
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demonstrate clear extratropical control within the model dynamics of FOAM, although 

the control is expectedly weaker than in the perfect-model RCDA experiments. For 

example, the correlation of Nino3.4 index with observation is about 0.5 in ada_20, while 

it is over 0.8 in the perfect-model framework. The decrease from perfect-model to real-

world experiments could be explained mostly by the introduction of model bias. A 

correlation of 0.5 is still significant and proves a causal extratropical-to-tropical 

teleconnection.  

The introduction of model bias by assimilating reanalysis data into FOAM leads to 

some caveats in this study. Here we will discuss the caveats, in the order of increasing 

significance. First, the model bias directly impacts the quality of the data assimilation. 

Thus, the analysis is still biased compared to the observation as in the case of cda_all, 

and the ensemble spread tends to be too small to represent the uncertainty of the model. 

Second, the model does not include all the possible mechanisms that could facilitate 

extratropical-to-tropical teleconnections, while the current mechanisms could also have 

the wrong strength or physics. Third, and most importantly, the model climatology and 

annual cycle are still heavily biased in the regions without assimilation. Since the ENSO 

variability is highly connected with the tropical climatology and annual cycle [Guilyardi, 

2005; Liu et al., 2014c], such biases could result in biased ENSO variability such as the 

wrong phase-locking, which makes it harder to analysis ENSO mechanisms and 

precursors. The perfect-model study in Chapter 4 showed the model dynamics of FOAM 

and mitigated the impact of model bias on the analysis in Chapter 5. However, there are 

still model-specific aspects in the conclusions here, so one should take caution when 

applying the results to observation or other models. 

  



 108 

Chapter 6 

6. Summary 

 Summary 

In this dissertation, we systematically studied the extratropical influence on tropical 

climatology and variability. The RCDA method, based on the coupled data assimilation 

system in a CGCM, is proposed that enable us to study the extratropical-to-tropical 

teleconnections systematically and quantitatively. Both the ITCZ position and the ENSO 

variability are demonstrated to be causally connected to the extratropical climate.  

The RCDA experiments in FOAM showed that the tropical asymmetry bias in 

precipitation and surface temperature can be caused significantly by extratropical 

processes, with contributions from both the subtropics and mid-to-high latitudes. The 

extratropical climate changes the cross-equator AET and in turn the tropical climate 

asymmetry. This extratropical impact on tropical climatology seems to be accomplished 

through a combination of atmospheric teleconnection, ocean dynamics, and coupled 

processes. In contrast, the bias of insufficient equatorial precipitation is caused mainly by 

local tropical processes. The equatorial precipitation is closely related to the net energy 

input into the equatorial atmosphere, and the bias is only reduced when the data 

assimilation is active in the deep tropics. Our study suggests that, to improve tropical 

climate bias, it is essential to consider the fully coupled ocean-atmosphere system, and it 

is equally important to improve both the extratropics and tropics of climate models. 

The RCDA experiments also demonstrated significant control of extratropical 

atmospheric forcing on ENSO variability. First in a perfect-model setup in FOAM, when 
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atmospheric “observations” are assimilated only poleward of 20° in both hemispheres, 

most ENSO events in the “observation” are reproduced and the correlation of the Nino3.4 

index with the "observed" index is 0.89 compared to 0.2 in the ensemble control 

experiment that does not assimilate any observations. Further experiments with the 

assimilation in each hemisphere show that the forced ENSO variability is contributed 

roughly equally by the Southern and Northern Hemisphere extratropical atmosphere. 

Further analyses of the ENSO events in the southern hemisphere forcing experiment 

reveal robust precursors in both the extratropical atmosphere over southeastern Pacific 

and the equatorial Pacific thermocline, consistent with previous studies of the South 

Pacific Meridional Mode and the discharge—recharge paradigm, respectively. However, 

composite analyses based on each precursor show that neither precursor alone is 

sufficient to trigger ENSO onset by itself and therefore neither alone could serve as a 

reliable predictor. Additional experiments with northern hemisphere forcing, ocean 

assimilation or different assimilation boundaries are also performed. Contrary to the 

extratropical control on tropical climatology, the subtropical and extratropical ocean has 

no control on the seasonal and interannual variability in the tropics.  

Moving onto real world reanalysis data, the RCDA experiments still demonstrated 

clear extratropical control on ENSO variability by correctly triggering certain historical 

ENSO events, although the control is weaker than in the perfect-model study. For 

example, the perfect-model ada_20 experiment reproduced most of the “observed” ENSO 

events, while the real-world counterpart reproduced about half of the events with less 

accuracy. However, the accurate triggering of only certain historical ENSO events in 

RCDA experiments is already an improved determination of causality of extratropical 

control on ENSO variability compared to most previous observational and modeling 
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studies. The analysis of two representative events, the 1972-73 El Niño and the 1997-98 

El Niño, shows that the known precursors may have varying importance in triggering 

different events. Although both favorable extratropical atmospheric variability and 

equatorial oceanic preconditioning are found before all the strongest El Niño events, the 

extratropical precursor seems more important to the 1972-72 El Niño, while the 

equatorial preconditioning seems critical for the 1997-98 El Niño.  

 Possibilities for Future Research 

This dissertation work introduced the RCDA method and applied it to the 

extratropical control on tropical climatology and variability. There are still a lot to be 

explored, both in terms of using data assimilation to study climate dynamics and the 

extratropical-to-tropical teleconnections.  

Coupled data assimilation has been shown to be a powerful tool to study both synoptic 

and climate dynamics. It has even more potential as a tool to diagnose model errors. The 

ensemble-based assimilation methods even have built-in model ensemble to account for 

the uncertainty in model dynamics or parameterization schemes.  

The RCDA could also be applied to study other climate teleconnections. A simple 

extension of this dissertation work would be to zonally limit the data assimilation and 

study the impact of the Atlantic or Indian Ocean on tropical Pacific climatology and ENSO 

variability. Or more generally, the RCDA method could be used to test the interaction 

between the climatology or variability of different ocean basins.  

Perfect-model study like Chapter 4 could be very informative, although the RCDA 

method could use real world observations. Without the complication of model bias, the 

research subject can be investigated in great details within the scope of the model 

dynamics. For example, the extratropical atmospheric forcing from the two hemispheres 
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could be further studies by comparing single-hemisphere RCDA experiments. Such 

analysis could be very difficult with real world observations, since the forcing signal from 

each hemisphere may be too small to detect with the additional noises from model bias. 

A perfect-model study using the RCDA method in a high-resolution state-of-the-art 

CGCM, which has more realistic features like tropical climatology, annual cycle and ENSO 

diversity, will be immensely valuable to our understanding of all aspects of the ENSO 

phenomenon. 

It goes without saying that a high-resolution state-of-the-art CGCM would also 

greatly benefit real-world applications like Chapter 5. The ability to resolve MJO and 

WWB events could help further qualify the contributions from different precursors. The 

diversity of ENSO events has drawn a lot of attention recently. A CGCM with realistic 

ENSO diversity could also be used to study the difference between Central-Pacific and 

Eastern-Pacific ENSO events in terms of precursors and mechanisms. 

Besides the precursors, other aspects of the ENSO variability, such as the phase-

locking, spring prediction barrier and interaction with equatorial annual cycle, are all 

important and interesting topics that could be explored with the RCDA method. Creative 

applications of the RCDA method to these topics may greatly augment the current 

modeling and observational studies.  
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