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Dedication

To our God, the creator ...

The breath of God produces ice,

and the broad waters become frozen.

He loads the clouds with moisture;

he scatters his lightning through them.

At his direction they swirl around

over the face of the whole earth

to do whatever he commands them.

He brings the clouds to punish people,

or to water his earth and show his love.

—Job 37:10-13, NIV Bible
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ABSTRACT

Reduced-Dimensional Retrievals of Precipitation from the TRMM

Microwave Imager: Physical Insight and Information Content

by

Ke Li
University of Wisconsin-Madison, , 2013

The TRMM Microwave Imager (TMI) is employed to observe and measure tropical rain-

fall using information from nine passive microwave channels. These channels are sensitive

not only to rainfall but also to clouds, water vapor, ice, surface moisture, and snow cover,

among other variables. These other variables are a noise source in the retrieval of precip-

itation. Petty (2012) has devised a dimensional reduction algorithm that filters out much

of the background noise while retain much of the precipitation information in the form of

three so-called pseudo-channels, which are constructed as linear combinations of the original

nine channels. The purpose of the present work is to investigate the nature of the physical

information about storm structure contained in each of the pseudo-channels and to examine

their combined utility in revealing subtle differences between precipitating cloud systems in

different environments.

xiv



Chapter 1

Introduction

1.1 Historical Overview

Rain rate retrieval from satellite has been moving forward mainly according to the

technology improvement for radiometers.

1.1.1 Experimental basis before 1978

In the early 1970s, a few passive microwave sensors were used for precipitation estima-

tion research. Both Nimbus–5 launched in 1972 and Nimbus–6 launched in 1976 had

the Electronic Scanning Microwave Radiometer [ESMR, Wilheit (1972)] on board.

ESMR on Nimbus–5 platform had only one channel, 19 GHz, horizontally polarized,

with a resolution of 25 km. The swath width is 160 km. ESMR on Nimbus–6 platform

had two channels, 37 GHz, horizontally and vertically polarized.

One of the earliest quantitative rain rate estimations was built by Wilheit et al.

(1977), who associated the change of brightness temperature of 19 GHz on Nimbus–5

over the ocean with surface rain rate variation. Wilheit et al. (1977) utilized rain

gauge and radar observations to verify the assumption. The rain rate was calculated

from radar observations (Marshall and Palmer, 1948). The ocean was observed to be

a cold background in brightness temperature of 19 GHz. For moderate rain rate 1 ∼

20mm hr−1, the brightness temperature warms up. At high rain rates (> 20mm hr−1),

1
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brightness temperature of 19 GHz was observed to reach ‘saturation’, due to the

enhanced scattering of ice aloft.

Another one of quantitative rain rate estimations was built by Weinman and Guet-

ter (1977), who associate the change of brightness temperature difference between

vertical and horizontal polarizations of 37 GHz on Nimbus–6 over the ocean and land

with rain rate. The water surface was observed to have strong polarization compared

with land at 37 GHz. When precipitation was added to the water background, bright-

ness temperatures was observed to be weakly polarized. A ‘Polarization correction’

was defined to eliminate contrast between water and land as background noise in rain

rate retrieval. Simple form in noise filtering among surface types was widely used

in later rain rate retrieval algorithms (Spencer et al., 1989; Conner and Petty, 1998;

Kidd, 1998).

1.1.2 SMMR in 1978

In 1978, two copies of the Scanning Multichannel Microwave Radiometer (SMMR)

were launched, on the Seasat-A oceanographic satellite and the Nimbus-7 meteoro-

logical satellite (Gloersen and Barath, 1977). The first of these failed 3 months after

launch; while the Nimbus 7 SMMR continued to function for nine years. SMMR

was the most advanced microwave radiometer launched to that time. SMMR has ten

channels at frequencies at 6.6, 10.7, 18.0, 21.0, and 37.0 GHz with horizontal and

vertical polarizations each. SMMR was intended to obtain ocean and atmospheric

parameters (ex. sea surface temperatures, low altitude winds, water vapor and cloud

liquid water content). The Nimbus 7 SMMR was decomissioned in 1987.

Examining SMMR data, (Spencer et al., 1983) addressed three most basic and

quite influential concepts on physical-based rain rate retrieval algorithm for later

literatures. First, cold brightness temperature at 37 GHz was observed in heavy
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rainfall events over land. Brightness temperatures on SMMR include contributions

not only due to liquid phase atmospheric constituents, but also due to ice phase

atmospheric constituents. Due to this observation, rain rate retrievals were conceptu-

ally divided into two parts: emission based algorithm, where warm and nonpolarized

liquid phase atmospheric constituents were seen against cold and polarized water sur-

face background; and scattering based algorithms, where cold and weakly polarized

ice phase atmospheric constituents were seen against cold and polarized water sur-

face background or warm and weakly polarized land surface. The similar observation

associating surface rain rate with intensity of brightness temperature depression due

to ice scattering was addressed in Wilheit (1986). Third, rain rate retrieval biases

due to partially filled fields of views (FOVs) was observed in Spencer et al. (1983),

which was later named as ‘beaming filling effect’ (Kummerow, 1998; Kummerow and

Poyner, 2004; Petrenko, 2001; Petty, 1994a,b; Chiu et al., 1990; Ha and North, 1995).

These three basic observations regarding microwave brightness temperatures and rain

rate dominated mainstream thinking about the retrieved problem for many years.

1.1.3 SSM/I in 1987

On June 19th, 1987, the first Special Sensor Microwave/Image (SSM/I) was launched

on the F-8 satellite (Block 5D-2 model) in the Defense Meteorological Satellite Pro-

gram (DMSP). The goal of SSM/I was to provide the Navy and Air Force with

operational imagery of weather systems and remote sensing data on critical surface

and atmospheric parameters. The F-8 satellite was set to travel in a near polar

(98.8o) circular (±7m) sun-synchronous orbit. With an altitude of 833km has mi-

crowave channels of 19.35, 22.235, 37.0 and 85.5 GHz (Hollinger, 1989). Most of the

SSM/I microwave channels are dual polarized with vertical and horizontal directions,

except 22 GHz. In SSM/I, the new channel 85 GHz was added which reflects higher
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sensitivity to ice scattering as well as higher resolution.

Spencer et al. (1989) pointed out that 85 GHz shows small polarization over a op-

tically thick precipitating hydrometeor, and large polarization over the ocean surface.

He defined the so called ‘Polarization corrected temperature’ (PCT) and used it to

distinguish strong ice scattering from emission due to liquid clouds and precipitation.

The PCT was pointed out to reflect the intensity of scattering by ice without the

influence of background noise, and the column optical depth.

As new algorithms for SSM/I were developed by numerous investigators (Wilheit

et al., 1991; Liu and Curry, 1992; Prabhakara et al., 1992; Kummerow and Giglio,

1994b; Petty, 1994b; Ferraro et al., 1996; Wentz, 1998; Schols et al., 1999; Prigent

et al., 2001), a number of validation and intercomparison exercises were undertaken,

including the Precipitation Intercomparison Projects (PIP1–3) (Barrett et al., 10-

14 Jul. 1995; Smith et al., 1998; Adler et al., 2001) and the Global Precipitation

Climatology Project (GPCP) Algorithm Intercomparison Projects (AIP1–3). PIP1–

3 performed regional estimated rain fall comparison, over land and ocean. AIP1–3

focuses on improve algorithm by merging products. Comparisons were also made

between PIP1–3 and AIP1–3 by Ebert et al. (1996); Barrett et al. (10-14 Jul. 1995);

Smith et al. (1998); Adler et al. (2001); Schols et al. (1999) etc.

Petty (1994a,b) pointed out that SSM/I over the ocean reflects different degree

of three components: emission from atmospheric liquid water and gaseous absorbers,

featured with “warm” and weakly polarized Tbs, scattering due to ice-phase precip-

itation, featured with “cold” and weakly polarized Tbs, and polarized ocean surface

background, featured with “cold” and strongly polarized Tbs.

Further, two parameters were composed in (Petty, 1994a,b), to quantitatively

reveal the two most important cloud features strongly associated with rain rates: de-

polarization due to cloud liquid water from highly polarized ocean surface, measured



5

by normalized polarization difference P , and ice scattering from top of a precipitating

cloud, measured by volume scattering index S. The parameter P is described as:

P ≡ TV − TH
TV,O − TH,O

(1.1)

where TV and TH are the observed vertical and horizontal polarized brightness tem-

peratures are the same frequency; and TV,O and TH,O are the vertical and horizontal

polarized brightness temperatures of the same frequency at the same scene without

the clouds. The parameter S is described as:

S = PTV,O + (1− P )Tc − TV or, S = PTH,O + (1− P )Tc − TH (1.2)

where, Tc is the (unpolarized) limiting brightness temperature as a hypothetical non-

scattering liquid water layer becomes optically thick, which is suggested to be Tc =

273 K.

1.1.4 TRMM in 1997

The Tropical Rainfall Measuring Mission (TRMM) was launched on November 27,

1997, with precipitation radar (PR) and TRMM microwave imager (TMI). The

TRMM scans the earth averagely 16 times a day at a marching speed of 6.9 km/s,

covering 38oS ∼ 38oN, the tropical region and some subtropical regions. The TMI

measures the intensity of radiation at five separate frequencies 10.7, 19.4, 21.3, 37,

and 85.5 GHz with both vertical and horizontal polarizations, except 21.3 GHz only

has vertical polarization. The TMI has a swath width of 880 km on the surface. The

TMI has swath of 104 pixels per scan for channels of 10.7, 19.4, 21.3, and 37 GHz,

and 208 pixels for channels of 85 GHz (Simpson et al., 1988; Kummerow et al., 1998,

2000). Regarding the scanning geometry, the TMI has off-nadir incident angle of

52.8o and conical scan of 130o. The PR has nadir scanning with a swath of 215 km.

The nine TMI channels are set to have different of field of views (FOVs, in 1-1).
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TRMM experienced a satellite reposition in August 2001, which divides the life of

TRMM into preboost and postboost. The preboost started on December 8th, 1997,

and ended on August 7th, 2001. During the preboost, the swath width of TMI was

760 km. The spatial resolution is 4.4km at 85.5 GHz. The postboost started on

August 24th, 2001 and is still on going. The swath width of TMI during postboost

period is 878 km. The spatial resolution is 5.1 km at 85.5 GHz. Other variables

regarding TMI channels are presented in Table 1-1.

The installation of first spaceborne weather radar made the TMI and PR com-

plementary in terms of surface rain rate retrieval (Haddad et al., 1997; Grecu and

Anagnostou, 2002; Grecu et al., 2004; Grecu and Olson, 2006). The most recent algo-

rithms have been confined to Bayesian estimation methods, which will be introduced

in later sections. In particular, the Goddard Profiling algorithm (GPROF) (Kum-

merow et al., 2001, 2006, 2007, 2011) has become the standard operational algorithm

for TMI and will continually be refined for GMI for Global Precipitation Measure-

ment (GPM) mission. The earlier versions of GPROF (Kummerow et al., 2001, 2006)

depended on a database constructed from simmulation derived from cloud resolving

models. However, progress has been made in the later version of GPROF Kummerow

et al. (2011) that avoided both cloud resolving models and screening.

1.1.5 GPM in 2014

The Global Precipitation Measurement (GPM) mission is designed to carry an ad-

vanced radar and radiometer system to measure the global precipitation. The GPM

Core Observatory will have a Dual-frequency Precipitation Radar (DPR) and a multi-

channel GPM Microwave Imager (GMI) (Smith et al., 2007). Equipped with DPR,

GPM can provide new information about particle drop size distribution over moder-

ate precipitation intensities. The new features of GPM will provide measurement for
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research about human activity influencing precipitation. Similar to TMI, GMI will

have horizontal and vertical polarizations cross the 10.7 ∼ 89 GHz spectrum, and

possibly 3–5 additional high frequency channels positioned at 166 GHz and 183 GHz.

Regarding scan geometry, GMI will have swath width of 885 km, off-nadir incident

angle of 52.8o, and conical scan range of 140o. The DPR will have nadir scanning

with swath width of 215 km for Ku-band radar and 245 km for Ka-band radar. The

DPR will have spacial resolution of 5 km. The core of GPM is scheduled for launch

in early 2014.

1.2 Retrieval Methodology

1.2.1 Cloud Resolving Models

For the past twenty years, convective-scale models have greatly improved the study of

dynamics and microphysics of mesoscale convective systems. Modern cloud resolving

models are non-hydrostatic and include an explicit representation of microphysical

process(Kummerow et al., 2001, 2007, 2011). In several studies, (Panegrossi et al.,

1998; Adler et al., 2001; Aonashi et al., 1996), algorithms based on cloud resolving

models have been validated. It was pointed out that the precision of rain rate retrieval

largely depends on the quality of the cloud resolving models and associated radiative

transfer assumptions.

1.2.2 Screening

Screening is a modification methodology to improve the consistancy between rainfall

estimates from different sensors. Screening was firstly addressed in more completed

details by Ferraro et al. (1998), for rain/no rain idenfication. In microwave precipi-

tation retrieval over land, screening serves to make a decision whether the observed
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signiture reflects the rain condition or specific land type that shares the similar ob-

served signiture (Sudradjat et al., 2011). The Grody-Ferraro screening methodology

(Ferraro et al., 1998; Grody, 1991) is frequently applied, and was employed within

GPROF (Kummerow et al., 2001).

Used in some prior precipitation retrieval algorithms, screening is set to conceptu-

ally categorize non-rain scenarios from rain scenarios, or categorize stratiform precip-

itation from convective precipitation (Kida et al., 2009; Basist et al., 1998). Besides,

screening method is also applied to conceptually categorize land types, such as snow

cover, desert, etc Grody (1991); Sudradjat et al. (2011). The quality of rain rate

retrieval algorithm with screening largely depends on the correct screening, which

needs further investigation or offers large variations upon different observations.

1.2.3 Bayesian estimation methods

Modern algorithms to retrieve rainfall often rely on Bayes’ theorem (Bayes and Price,

1763). Bayes’ algorithm, which states that:

P (A|B) ∝ P (A) · P (B|A) (1.3)

where A is the retrieved variable, e.g. rain rate; B is the observational variable,

e.g. brightness temperatures from TMI; P (A) is the prior probability distribution

function (PDF) of retrieved variable A; P (B|A) is the PDF of the observational

variable B conditioned on a specific value of A; and P (A|B) is the posterior PDF of

A conditioned on a specific observational variable B.

Based on the Bayes’ theorem, the prior PDF in Equation 1.3 is replaced by large

data base rather than a continuous function in remote sensing retrievals (Chiu and

Petty, 2006). The large data base for prior PDF collect candidate solutions with

associated observed or modeled multichannel radiances. This variation of Baye’s
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theorem that involves the large data base for prior PDF was called a Bayesian Monte

Carlo (BMC) method (L’Ecuyer and Stephens, 2002).

Among the recent work done for TRMM and GPM rain rate retrieval algorithm

development, Bayesian estimation methods were majorly agreed upon (Evans et al.,

1995; Kummerow et al., 1996; Olson et al., 1996; Haddad et al., 1997; Marzano et al.,

1999; Bauer et al., 2001; Kummerow et al., 2001; Tassa et al., 2003; Di Michele

et al., 2005; Grecu and Olson, 2006; Olson et al., 2006; Chiu and Petty, 2006; ?;

Seo et al., 2008; Petty, 2013). In Bayesian methods for microwave imager rain rate

retrieval, a‘lookup’ table is created from the training data. The ‘lookup’ table links

the detectable variables to the retrieved variable. To retrieve rain rate, the detected

variables are matched according to the ‘lookup’ table, and the rain rate is retrieved.

Bayesian methods were employed in one of the mainstream rain rate retrieval al-

gorithms, Goddard Profiling Algorithm (GPROF) (Kummerow and Giglio, 1994b,a;

Kummerow et al., 1996; Huffman and Coauthors, 1997; Kummerow and Coauthors,

2001; Wilheit et al., 2003; Shin and Kummerow, 2003; Masunaga and Kummerow,

2005; Kummerow et al., 2006; Kummerow, 1993; Kummerow et al., 2009). GPROF

was mainly developed by Kummerow et al. (2001); Olson et al. (1996, 2006) over

the ocean, and Ferraro et al. (1998); Ferraro and Li (2002) over land. The GPROF

was firstly mentioned by Kummerow et al. (1996), and has undergone significant

improvements. GPROF aims to retrieve instantaneous rainfall and the vertical struc-

ture of the rainfall. GPROF uses radiative transfer model and cloud resolving models

(CRMs). GPROF 2004 was reported with representiveness errors (Kummerow et al.,

2006) on representing light smal rain system, since deep convective system is more

interesting in CRMs. Besides, GPROF 2004 uses empirical screening routines de-

veloped for various sensors in its rain/no rain discrimination, and was reported by

Kummerow et al. (2006) with incorrect ratio of stratiform, convective, and shallow
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rainfall. Later on in GPROF 2010 constructed an a-priori database from observed

TRMM radar and radiometer measurement. In GPROF 2010, CRM conservatively

served to constrain parameters such as cloud water and ice that are not detected

directly by PR. Compared with GPROF 2004, GPROF 2010 made the following

progress over the ocean, which became the TRMM V7 product:

• No more rain screens;

• No more convective/stratiform separation; and

• Pixels are classified only by background sea surface temperature (SST) and

total precipitable water (TPW).

GPROF 2010, compared with 2004, made the ocean part of the algorithm more

consistant, although the land part is not changed much. However, some troublesome

surfaces and coastlines remain problematic for light precipitation retrieval (Grody,

1991; McCollum and Ferraro, 2005; Sudradjat et al., 2011). It is crucial to find

the way to optimize the noise-to-signal ratio, where the noise refers to any physical

variation unrelated to rain rate and signal refers to variation due to precipitation.

UW algorithm was developed by Petty and Li (2013a,b) to retrieve the tropical rain

rate, by reducing the dimensionality of the nine microwave channels to three pseudo-

independent channels a.k.a. pseudo-channels, and applying Bayesian algorithm over

the three pseudo-channels (Petty and Li, 2013a,b; Petty, 2013). Dimensionality reduc-

tion from nine microwave physical channels to three pseudo-channels greatly improved

the efficiency of Bayesian estimation retrieving process (Petty, 2013). The dimension-

ality reduction would reduce the non-precipitating-related noise from TMI, maintain

sample density, and significantly reduce the computational memory requirement.

As validation, improvement was shown when the UW algorithm was compared

to 2A12 version 7 algorithm (Petty and Li, 2013a). In Figure 2-8 left, 2A12 v7 was
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pointed out to have a slight overall positive bias of about 4% over ocean, while UW

has no overall bias Petty and Li (2013a). Besides, the substantial smaller scatter in

the UW was also shown in Figure 2-8 (Petty and Li, 2013a). In UW, the training

data was made statistically identical to the retrieving data, completely independent

from models or screening (Petty and Li, 2013a).

By Petty and Li (2013b), UW algorithm was compared with other prior published

rain rate retrieving algorithms for TRMM. In the following are sum-ups of advantages

of UW algorithm compared with other algorithms.

• The UW algorithm doesn’t make conceptual distinction between land types

(such as ocean and land). Rather, all surface distinctions are embodied in the

particular transformation coefficients and a priori databases associated with

each of seven surface classes.

• No ‘screening’ (rain/no-rain classification or stratiform/convective precipitation

classification) is applied. Rather, the probobility of non-zero rain is reflected

through the posterior rain rate distribution generated by Bayesian algorithm.

• The result of rain rate retrieval is not just expected rain rates. Posterior distri-

butions of rain rate are also provided.

• In the UW algorithm, TMI-PR matchup data were employed as the a-priori

data base, and no cloud resolving models or simulated radiations are involved.

• The UW algorithm pre-averages the a priori database into a 5D lookup table,

which consists of two environmental variables (surface skin temperature and to-

tal precipitable water content) and three reduced-dimensional pseudo-channels

derived from nine microwave TMI physical channels (Petty, 2013).
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• During the retrieval using UW algorithm, there is no weighting for candidate

solutions.

Three pseudo-channels are derived using a two-stage principle component analysis

(Petty, 2013), representing the three multichannel signatures most related to surface

rain rate. Each of the three successive pseudo-channels in the Bayesian estimation

algorithm serves to alter the posterior PDF of rain rate. It is rare that an algo-

rithm produces an explicit posterior PDF of the retrieved variables. Therefore we

have unique opportunity to rigorously evaluate the information content of successive

pseudo-channels. Assuming other things we may examine whether three pseudo-

channels are both necessary and reasonably sufficient to maximize the information

from the 9 TMI channels.

1.3 Information Theory

As addressed by Kullback (1997), ‘speaking broadly, whenever we make statistical

observations, or design and conduct statistical experiment, we seek information.’ In-

formation theory is a mathematical subject that involves the rigorous quantification

of information. The fundamental information theory was pioneered in the 1950s,

mainly by Fisher (1956), Shannon (1956), and Viener (1956).

The concept of Information entropy was first presented by Shannon (1948) to

quantify the expected value of the information contained in a message. Therefore,

the information entropy is hereafter called Shannon entropy.

1.3.1 Shannon Entropy

A detailed mathematical description of Shannon entropy is addressed in (Xu, 2006),

both in discrete forms and continuous forms. The discrete Shannon entropy (DSE)
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was written as:

DSE ≡ −
∑

pi ln pi (1.4)

where pi refers to the probability of occurrence of the ith possible outcome and∑
pi = 1. The continuous Shannon entropy (CSE) is written as:

CSE ≡ −
∫
p(x) ln p(x)dx (1.5)

where p(x) refers to a continuous PDF with variable x.

1.3.2 Relative Entropy

Assuming p and q are two PDFs, relative entropy is a non-symmetric measure of the

difference between probability distributions p and q. Relative entropy is a measure

with direction. Relative entropy from q to p, denoted as RE(p||q), is a measure

of the information lost when q is used to approximate p. Relative entropy from p

to q, denoted as RE(q||p), is a measure of the information lost when p is used to

approximate q. RE(p||q) 6= RE(q||p) (Kullbak and Leibler, 1951). Relative entropy

has many synonyms in literatures, mean information for discrimination, Kullback-

Leiber divergence, crowd entropy, information gain, information number, information

divergence, KL distance, expected weight of evidence, discrimination (Verdu, 2010),

etc.

Wald (1945) for the first time brought in the conception of ‘relative entropy’ to

solve the sequential problem of testing. The literature described the relative entropy

as the expected number of observations necessary for reaching a decision. Jeffreys

(1945) further innovated the relative entropy with a symmetric expression. Despite

the symmetry, the formula for relative entropy in (Jeffreys, 1945) turned out not quite

useful in recent literature (Verdu, 2010). The innovated formula by Jeffreys (1945)
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nowadays is addressed as separate kind of measure of relative entropy, called Jeffery’s

divergence (Verdu, 2010).

Kullbak and Leibler (1951) provided the first commonly accepted definition of

relative entropy, which is the reason that relative entropy is sometimes called KL

divergence. By Kullbak and Leibler (1951), relative entropy was called mean infor-

mation for discrimination. The motivation to introduce the measure was to generalize

the definition of information by Shannon (1956)and Viener (1956).

A detailed mathematical description of relative entropy is addressed by Xu (2006),

both in discrete forms and continuous forms. The discrete Relative entropy (DRE)

was written as:

DRE ≡ R(p, q) =
∑

pi ln(pi/qi), (1.6)

while the continuous form is

CRE(p, q) ≡
∫
p(x) ln[p(x)/q(x)]dx, (1.7)

where pi and qi in Equation 1.6 are probabilities for a discrete distribution, and

p(x) and q(x) in Equation 1.7 are PDFs for continuous distribution. In Bayesian

statistics, RE(p, q) is defined as a measure of the information gain in moving from a

prior distribution q to a posterior distribution p (Chaloner and Verdinelli, 1995).

Information theory has been widely used in research in meteorology radar signal

analysis (Xu, 2006), electrical signal analysis, and remote sensing area. In particular,

within remote sensing area, Shannon entropy was employed by L’Ecuyer et al. (2005)

and Cooper et al. (2005) to explore optimal MODIS channels for cloud property

retrievals within the optimal estimation framework. In the present study, we evaluate

the information content of the three successive pseudo-channels used in retrievals of

rain rate from TMI, with both relative and Shannon entropies are employed.
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1.4 Objectives

This paper has two major objectives:

• Investigate the physical meanings of the three successive pseudo-channels de-

rived within the UW algorithm to retrieve surface rain rate over the ocean;

and

• Quantify the information content of the three successive pseudo-channels in

terms of altering the posterior surface rain rate distributions for each of several

surface classes.

To achieve the objectives, the first two chapters are dedicated to the basic introduc-

tions on brightness temperatures and three successive pseudo-channels. The third

chapter focuses on seeking the physical meanings of the three successive pseudo-

channels, and describing the procedure of each pseudo-channels altering the rain rate

probability distribution functions to retrieve rain rate. The fourth chapter focuses

on quantifying the information content of three pseudo-channels from both necessary

and sufficient perspectives. The last chapter is the conclusion.
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Figure 1-1: Data for postboost TMI sensors in various frequencies, including polar-

ization (V is vertically polarized, H is horizontally polarized.), instantaneous field of

view (IFOV), etc. (Kummerow, 2006)



Chapter 2

Passive Microwave Sensors and

Rain Rate Retrieval

The nine passive microwave channels on TMI include dual polarization channels at

10 GHz, 19 GHz, 37 GHz, and 85 GHz, and a vertically polarized 23 GHz chan-

nel (Figure 1-1), which have varying responses to atmospheric constituents, such as

water vapor, cloud and rain water, and ice particles aloft. Besides, the nine pas-

sive microwave radiants in TRMM have various degree of attenuation/scattering over

various global surface features, such as water surface, desert, coastal regions, agri-

cultural land, etc. The TRMM microwave imager (TMI) is responsible for passively

measuring brightness temperatures of atmospheric constituents and the earth surface

background. The associated precipitation radar (PR) is responsible for measuring the

reflectivity due to rain drops. PR estimation of rain rate from reflectivity is based on

Marshall-Palmer (Marshall and Palmer, 1948) drop-size distribution.

TMI covers a swath width of 833km, over three times as wide as the PR swath

with a width of 247 km. Limited by swath width, PR often cannot fully provide the

horizontal precipitation structure of mesoscale precipitating events. The precipitation

data from PR overlaps with brightness temperatures by TMI over a limited swath at

the center of TMI scans. Over two thirds of the TMI swath doesn’t have direct access

to the ground rainfall rate. Therefore, a precipitation algorithm is developed to link

17
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the TMI brightness temperatures that relates clouds and hydrometeors to surface

rain rate.

The reduced-dimensional Bayesian rain rate retrieve algorithm serves to predict

what the PR would retrieve at those locations that are covered only by TMI without

direct PR rain fall measurement. Besides, the rain rate retrieval can be extrapolated

to satellites without PR but only microwave sensor. In the algorithm, nine TMI

channels are reduced to three independent channels, which largely improves the com-

putational efficiency and the robustness of the retrieval. Comparisons are shown to

quantitatively demonstrate the improvement on retrieval quality.

2.1 Brightness Temperatures

2.1.1 Emission

By Planck’s function, with a fixed wavelength, the intensity of radiation of this black-

body should be unique upon a given blackbody’s temperature, and vice versa (Petty,

2006). Most real surfaces that emit less radiation at a given wavelength and temper-

ature than the blackbody does according to Planck’s function. The monochromatic

emissivity ελ of a surface is defined as the ratio between the actual emitted radiation

and the emitted radiation according to Planck’s function ignoring other sources, for

a fixed surface temperature T and wavelength.

ελ ≡
Iλ

Bλ(T )

where for a chosen wavelength λ, Iλ is the surface radiation, and the Bλ(T ) is the

planck’s function of a blackbody temperature T , which gives intensity of blackbody

radiation. Conversely, one can convert intensity of monochromatic radiation from any

surface to an equivalent blackbody temperature (a.k.a. Brightness temperature), us-

ing the inverse of Planck’s function. According to the Rayleigh-Jeans Approximation,
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Planck’s function for microwave frequencies is a linear operator:

TB ≡ B−1λ (Iλ) = B−1λ (ε ·Bλ(T )) = ε · T

2.1.2 Transmittance

Assuming the absence of scattering or emission, for a given wave length λ, the radia-

tion attenuation process through a optical path from point s1 to s2 can be calculated

as

Iλ(s2) = t(s1, s2) · Iλ(s1)

where Iλ(s) refers to the intensity of radiation at point s, t(s1, s2) is the transmittance

of the constituent between s1 and s2, that causes the radiation attenuation at the

chosen wave length. The transmittance t can be calculated as:

t(s1, s2) ≡ exp(−τ(s1, s2))

where τ(s1, s2) is the optical thickness of the constituents from point s1 to point s2

(Petty, 2006).

2.1.3 Radiative Transfer Equations

When scattering of a constituents take place, the complete radiative transfer equation

in differential form (Petty, 2006) is written as:

dI(Ω̂)

dτ
= I(Ω̂)− (1− ω̃)B − ω̃

4π

∫
4π
p(Ω̂′, Ω̂)I(Ω̂′)dω′ (2.1)

where ω̃ ≡ βs/βe is the single scattering albedo, βs is the scattering coefficient and βe

extinction coefficient, B is the Planks’ function, dτ is an increment of optical depth,

I(Ω̂) is the intensity of radiation from a chosen direction represented by a unit vector

Ω̂, p(Ω̂′, Ω̂) is the scattering phase function for an arbitrary combination of incoming

Ω̂′ and scattered directions Ω̂. On the right hand side of Equation 2.1, the first term
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gives the attenuation, the second term gives the emission, and the last term gives the

scattering source. The optical depth dτ can be calculated as:

dτ = −keds = −(ke/µ)dz

where ke is the extinction coefficient. s is the geometric distance along an optical path

of a constituent, which can be calculated with µ, the cosine value of zenith angle, and

vertical coordinates in cloud remote sensing.

Equation 2.1 describes that the radiance along a particular line of sight (with

optical depth of τ) either increase or decrease, depending on whether initial in-

tensity of radiation I(Ω̂) is greater or less than emission (1 − ω̃)B plus scattering

ω̃
4π

∫
4π p(Ω̂

′, Ω̂)I(Ω̂′). With assumption of non-scattering, a radiance passing through

the atmospheric constituents would depend on the transmittance t and emission from

constituents B(T ), as the first two terms in Equation 2.1 with ω̃ = 0. Incorporated

with Rayleigh-Jeans approximation, non-scattering version of Equation 2.1 is written

as:

dTB = ke(z)(T − TB)dz/µ (2.2)

After Integrating Equation 2.2 from surface to the top of atmosphere, one can calcu-

late the upward-directed atmospheric component of the brightness temperature T ↑B:

T ↑B =
1

µ

∫ ∞
0

T (z)ke(z)t(z,∞)dz (2.3)

After integrating Equation 2.2 from top of atmosphere to surface, one can calculate

the downward-directed atmospheric component of the brightness temperature T ↓B:

T ↓B = t(0,∞)T toaB +
1

µ

∫ ∞
0

T (z)ke(z)t(0, z)dz (2.4)

Both T ↑B and T ↓B are atmospheric brightness temperatures towards the top of atmo-

sphere and towards the surface of earth. The brightness temperature TB observed
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in the space by the satellite have direct relationship with T ↑B and T ↓B, and can be

calculated as:

TB = T ↑B + t(0,∞)[εsTs + (1− εs)T ↓B] (2.5)

When a radiance is received by the satellite microwave sensors, the signal consists

of contributions from three parts about the earth (Figure 2-1): surface emission,

atmospheric emission/scattering, and surface reflection.

The first part of radiation received by TMI comes from direct emission from the

earth surface (gray dotted arrows in Figure 2-1). the emission depends on two major

factors, the earth surface emission εsTs and atmospheric transmittance tA = t(0,∞)

in Equation 2.5.

The second part of radiation receive by TMI (blue solid arrows pointing upward

in Figure 2-1) comes from upward emission of the atmospheric constituents T ↑B, a

function of atmospheric temperature distribution T (z), extinction coefficient ke(z),

and transmittance t(z,∞) according to Equation 2.3.

The third part of radiation received by TMI is the radiance that originally are

emission from atmospheric constituents to earth surface, get reflected by the earth

surface, transmit through the atmospheric constituents for the second time, then

reach sensor (blue downward arrows and green arrows in Figure 2-1). The third part

of radiation that involves earth reflection depends on earth surface reflectivity (1−εs).

With scattering at presence, according to Equation 2.1, the emission B(T ) is

reduced due to a increased ω̃. Therefore in Equation 2.5, an increasing in scattering

due to ice would reduce the upward atmosphere emission T ↑B and reflected emission

T ↓B.

The ice particles can take in various forms, such as ice particles aloft in anvil or

deep convective storms, and ice formed atmospheric hydrometeors (Petty, 1994a,b;
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Bennartz and Petty, 2001). The ice particles in the clouds are strongly scattering,

directly resulting in a reduced bulk emissivity of the cloud top (Bennartz and Petty,

2001).

There are other factors contributing to the brightness temperatures (Petty, 1994a)

such as: the water vapor, reflected image of rain cell by the surface, FOV averaging

process, etc.

2.1.4 Earth Surface Types

As the second term t(0,∞)εsTs in radiative transfer equation (Equation 2.5), earth

surface types provide background in TMI images for rain rate retrieval. Correctly

assessing the surface type background would great aid the separation of atmospheric

constituents (such as clouds, rain, snow, ice aloft etc) from the earth surface. It is

known that in microwave sensors, surface background have a large variation in bright-

ness temperatures. As an acknowledged challenge of microwave rain rate retrievals,

some surface types also have reduced brightness temperatures from TMI as clouds, or

precipitating events would, such as coastal regions, desert regions, and accumulated

snow on the ground, etc. Therefore, it is extremely important to recognize the surface

types from microwave sensor perspectives.

Observed by microwave remote sensors, earth surface is in general categorized into

land, water, and sea ice (but sea ice is not a factor in the view of TMI). Land usually

provides a warmer background in microwave brightness temperatures, than water

(ocean, lake, etc) does (Figure 2-2). Ocean in TMI has large emissivity polarization

difference compared with land (Figure 2-3), and provides a colder background than

land (Figure 2-2).

Within land categories, various surface types are reflected in emissivities and sur-

face temperatures under TRMM microwave channels. Over the land in TMI, veg-
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Tb = ε · Ts + (1 − t − r) · TA + (1 − ε)(1 − t − r) · TA

where, Tb is brightness temperature, TA is the averaged atmospheric tempera-
ture, Ts is the surface temperature, ε is the surface emissivity, t is the transmit-
tance of the atmosphere, r is the reflectivity of atmosphere due to ice scattering

1

3'

Figure 2-1: Passive microwave remote sensing mechanism. Green arrows are radiance

reflected by the earth. Blue arrows are radiance emitted directly by the atmosphere.

The gray dotted arrow represents radiance emitted directly from the earth surface.

TA is the averaged atmospheric temperature. Ts is the surface temperature. ε is the

surface emissivity. t is the transmittance of the atmosphere.
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etation area is observed to have large emissivities, but low emissivity polarization

differences, compared with desert areas. Over at Tibetan plateau and some moun-

tain areas, cold brightness temperature is shown on single channel map (Figure 2-4).

Some surface types can not be easily shown through polarization difference or single

channel, but can be distinguished through combinations of nine TMI channels.

In order to quantitatively categorize surface types, a more detailed algorithm was

developed to categorize the surface types. This surface type division algorithm has a

resolutions 1◦×1◦, utilizing clustering technique applied to the means and covariances

of TMI brightness temperatures for non-precipitating pixels (Petty and Li, 2013a).

As a result from the surface type algorithm, the surface is categorized into 6 classes

as a background with warm and cold surface temperatures on each division Figure

2-5 by Petty and Li (2013a). The classes are named in Table 2.1. For each surface

class except ocean (Class 0), there are cold and warm background difference denoted

as ‘w’ and ‘c’ respectively.

In short, the surface backgrounds are reflected differently among nine TMI chan-

nels, and are categorized into six surface types. The categorized surface types serve

as various background for the rain rate retrieval algorithm.

2.1.5 Cloud and Rain Water Emission and Ice Scattering

During a precipitating event, vertical structure of the event consists of the near surface

hydrometeor (snow, rainfall, etc), the cloud and rain water, and the ice aloft. Cloud

and rain water emission is considered to have important correlation with rain rate.

In microwave remote sensing, the cloud water emission contributes to the received

brightness temperatures (Equation 2.5). Therefore, measuring cloud and rain water

emission by microwave channels in TMI would provide important information for rain

rate retrieval.
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Class Description

0 Ocean

1 Vegetated land

2 Land/water mix (coast)

3 Desert

4 Rain forest

5 Tibetan Plateau and similar

6 Himalayan range and similar

Table 2.1: Surface type descriptions in Figure 2-5 (Petty and Li, 2013a)

Figure 2-2: Land ocean brightness temperature difference reflected in the image of

AMSR-E 10 GHz V on the west coast of US. (Courtesy to U.S.Navy/NRL/NASA)
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Figure 2-3: Map of brightness temperature differences, 10 GHz(V) - 10 GHz(H) for

2002 TMI non-precipitating pixels.

Figure 2-4: Map of brightness temperature of 85 GHz(H) for 2002 TMI non-

precipitating pixels.

Fig. 1. Map of the seven surface classes constructed empirically from a climatology of TMI
brightness temperatures. See Table 1 for descriptive labels.
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Figure 2-5: Map of the seven surface classes constructed by using TMI brightness

temperatures for 2002. (Petty and Li, 2013a)
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Besides, ice can be at presence, when there is severe convective storm, hurricanes,

or anvil clouds. The ice aloft would be subject to scattering of radiance coming from

the lower part of atmosphere. Therefore ice scattering is counted to be responsible to

brightness temperature depression (Petty, 1994a, 2001). Therefore it is very impor-

tant to investigate the nine microwave channel behaviors towards cloud and rain water

emission and ice scattering. It is acknowledged that 10 GHz is less absorbed by cloud

and rain water, more transparent to the precipitating clouds, and less sensitive to

ice scattering than higher frequency channels. As frequency increases to 85 GHz, the

TMI is more absorbed by cloud and rain water, reflecting more opaque atmosphere

for precipitating events, and more sensitive to ice scattering (Petty, 2001).

An orbit of TMI and PR is chosen to reveal the relationship between PR measured

rain rate and TMI channels (Figure 2-6). The ocean is used as a background. (The

rest of this chapter, ocean is used as a background unless specially mentioned.) As

is shown in Figure 2-6 left, the brightness temperature in 10 GHz and 19 GHz get

warmer, when the rain rate is increasing. Typically, it is known that rain rate has

a positive correlation with cloud and rain water. A high precipitating event usually

is associated with thick cloud and rain water, which increase the emission from the

cloud. It is known that ocean tends to provide a cold background (160K ∼ 200K

for 10 GHz (V) and 19 GHz(V)), any cloud and rain water would obscure the ocean

background and warm up the brightness temperatures.

Under 37 GHz and 85 GHz, the increase of rain rate is subject to an eventual de-

crease of brightness temperatures. The decrease in brightness temperature in 37 GHz

and 85 GHz is believed to reflect the brightness temperature depression by ice scat-

tering (Petty, 2001). When a rain rate increases to be ≥ 5mm hr−1, the ice may be

very possible at presence which causes to decreases the brightness temperatures.

In short, it is confirmed in Figure 2-6 that lower frequency channels (10 GHz and
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19 GHz) are very sensitive to cloud and rain water emission, while high frequency

channels are very sensitive to ice scattering (37 GHz and 85 GHz).

2.1.6 Polarization and Rain Rate

The polarization in the microwave channels are not only playing a role in distin-

guishing earth surface backgrounds, but also are very important to reflect raining

features.

As is known, ocean background provides cold TMI brightness temperature and

is strongly polarized observed by TMI sensors. When a storm is detected over the

ocean background, the optical thickness of the cloud and rain water would have a

tendency to warm up the brightness temperature as the cold ocean background is

obscured by the precipitating layer (Petty, 2001). The ice aloft (if ice is involved

at all) would reduce the brightness temperature due to scattering, and also decrease

the polarization. the vertical gradients of brightness temperatures in a storm ice

particles aloft. The polarization of ice particles in TMI were addressed to depend on

the orientation and size distribution of the ice particles.

Polarization is shown in TMI 1B11 data. In Figure 2-7, polarization is linked

with rain rate over an orbit of TMI data. Figure 2-7 shows that when rain rate is

small, typically, more radiation directly comes from the ocean, which appears to be

strongly polarized and cold (black dots in Figure 2-7). As the rain rate increases,

more and more ice aloft is involved, which is responsible for high frequency channels

(85 GHz) to have brightness temperature depression (Figure 2-7 bottom, right). In

short, high rain rate samples tends to have smaller polarization than low rain rate

ones. Besides, high frequency channels are more sensitive to ice scattering than low

frequency channels in TMI.
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Figure 2-6: Typical response of different TRMM channels to rain rate. Red dots are

10 GHz. Blue dots are 19 GHz. Magenta dots are 37 GHz. Green dots are 85 GHz.

The horizontal axis is retrieved rain rate, not directly measured PR rain rate. The

plots here serve to illustratively show the trends of brightness temperatures. Using

retrieved rain rate would have more samples that represent trends of TMI brightness

temperatures.
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Figure 2-7: Scattering plots of polarizations with rain rate under TMI channel: (up-

per, left) 10 GHz, (upper, right) 19 GHz, (bottom, left) 37 GHz, (bottom, right)

85 GHz. Horizontal axes are brightness temperatures of vertically polarized channels,

and vertical axes are brightness temperatures of horizontally polarized channels.
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2.2 Bayesian Algorithm for Rain Rate Retrieval

To quantitatively retrieve the rain rate using the pre-mentioned features of each

microwave channels, the reduced-dimensional Bayesian algorithm (also known as UW

algorithm) was developed by Petty and Li (2013a). The goal for this algorithm is

to take in the nine TMI channels and retrieve the surface rain rate at places where

there is no PR available. The main idea of UW algorithm is to create a year long

‘look-up table’ that links the TMI brightness temperature to the PR rain rate, and

retrieve rain rate. Compared with current GPROF (Kummerow et al., 2001), the

reduced dimensional Bayesian algorithm features the high computational efficiency

and availability of posterior PDF of rain rate (Petty and Li, 2013b,a).

As the first step, the dimension of variables are reduced. Often in times, the

most dominant features (e.g. surface features) observed from microwave channels

are not necessarily the desired features (e.g. rain and cloud related). Through the

dimensional reduction, the geophysical noise is filtered out, and the sensitivity of

precipitation related features is captured.

Thus, the dimensional reduction of nine microwave physical channels consists of

two parts. The first part is to reduce the geophysical noises from physical channels.

With only no-rain pixels, the variance due to the non precipitating features is con-

verted to unit variance with zero cross-correlations (Petty, 2012). As a result, the

geophysical noises due to surface types or other non-precipitating-related features are

filtered out. The second part is to perform the second linear-transformation. When

adding the pixels of precipitating events, all the information due to precipitation is

collected. The principle component analysis is performed to collect the rain related

information into smaller number of pseudo-channels.
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The three modes from principle component analysis are independent 1 from each

other, thus are called independent channels (or ‘pseudo-channels’). During the process

of dimensional reduction, much of the background noise is filtered out (Petty and Li,

2013b). In short, the dimensionality reduction serves to filter out the background

noise, and reduce the number of channels from nine to three for Bayesian rain rate

retrieval. In addition, each of the scene was tagged with surface skin temperature

Tskin and total precipitable water (TPW) σwater. Both Tskin and σwater are inputs

to the algorithm, obtained from the European Centre for Medium-range Weather

Forecasting (ECMWF) Reanalysis ERA-Interim (Dee et al., 2011).

As the second step, the Bayesian ‘lookup table’ is created including two environ-

mental variables (Tskin and σwater) three independent channels (CH1, CH2, and

CH3) and PR rain rate. The background noise is majorly filtered out when indepen-

dent channels are generated, so the three independent channels can be used in the

table with equal weights (Petty and Li, 2013b). Besides, to use the ‘lookup table’,

the brightness temperatures for retrieval are required to be converted to the three

independent channels.

As a result of the algorithm, posterior rain rate PDFs and related information are

generated for all the gridded independent channels and environmental variables (col-

umn water vapor depth and surface temperature). The mean of each rain rate PDF

is counted as the retrieved rain rate for each independent channel grid. Comparison

between UW and 2A12 v7 was made (Petty and Li, 2013a) (Figure 2-8). The UW

improves both precision of rain rate retrieval and efficiency of finding the match in

the ‘lookup’ tables.

1The three modes are independent in the linear sense. The higher order correlation between the three

calculated modes (pseudo-channels) are possible to exist.



33

Fig. 6. Bivariate histograms of the gridded annual rainfall totals depicted in Fig. 3 for the
two TMI algorithms under evaluation versus the 2A25 reference rainfall for ocean only. a)
2A12, b) UW-M.
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Figure 2-8: Comparisons of algorithms and PR rain rate data. (Left) comparison

between PR rainfall rate and rainfall retrieved in 2A12; and (Right) comparison

between PR rainfall rate and rainfall retrieved with UW algorithm. (Petty and Li,

2013a)



Chapter 3

Pseudo-channels

Pseudo-channels were developed from the nine TRMM microwave channels as the top

three independent modes in the principle component analysis Petty and Li (2013a,b).

To retrieve rain rate, the peudo-channels were the middle product for finding the

match in the trained ‘lookup’ table, representing nine TRMM microwave channels.

However, the physical meaning of each pseudo-channels are not known, in order to

fully corroborate the physical process of the UW algorithm. Gram-Schmidt process

is employed to seek the essence of each pseudo-channel.

By producing pseudo-channels, the background noise such as land type, or other

factors don’t necessarily reflect the rain rate features are filtered. More detailed algo-

rithm of generating pseudo-channels were clearly addressed in Petty and Li (2013b,a);

Petty (2013).

3.1 Over the Ocean

Precipitating features over the ocean can be relatively easier to recognized through

microwave imagers than land. The ocean provides a colder and polarized background

in the microwave channels than land. Relative to the ocean background, liquid wa-

ter emission due to precipitating events appear to be warmer and unpolarized in

microwave channels. Therefore, in lower frequency channels in microwave sensors,

precipitating events tend to have a warm image over cold background (Figure 3-3

34
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(a)). When ice aloft is involved, cold brightness temperature due to strong scattering

and weak polarization are reflected in high frequency microwave channels (Figure 3-3

(b)).

It was addressed that the relationship between brightness temperatures and varia-

tions in different channels are nonlinear Petty and Li (2013b). To linearly decompose

the 9 observed microwave channels to pseudo-channels, the observed channels are

transformed into the following form Petty and Li (2013b):

xi,o = log(Tskin − TB,i) (3.1)

where, TB,i stands for brightness temperatures of different microwave channels, Tskin

is the skin temperature of the surface. Through the transform (Equation 3.1), the

nonlinearity and background noise are eliminated Petty and Li (2013b). Pseudo-

channels over the ocean are generated with ~x using principle component analysis.

3.1.1 Gram-Schmidt Process

Three pseudo-channels are calculated to be the key components to measure tropical

rainfall rate over the ocean. 1 Gram-Schmidt analysis is to convert three pseudo-

channels to a set of observed channel vectors that are orthogonal to each other. In

this way, the physical meaning of the pseudo-channels can be inferred from observed

TMI channels. Besides, Gram-Schmidt analysis serves to filter out the dependence

between pseudo-channels due to errors caused by manual division on pseudo-channel

scatter plots (Figure 3-1). Therefore, the ‘distinct’ features of pseudo-channels can

be achieved as a result.

1It is worthwhile to notice that choosing the top three modes from the result of PCA is decided concerning

trade of reduction in dimensionality from nine physical channels and rain rate retrieval algorithm quality.

Further information regarding the number of kept modes for pseudo-channels is illustrated in Chapter 4

Information Theory.
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The pesudo-channels are set to be zeros when there is no precipitating clouds at

presence. CH1 ranges always positive, CH2 and CH3 can be positive and negative

values. In the scatter plots of CH1, CH2, CH3 (Figure 3-1), fives cases are binned to

further investigate each pseudo-channel (Table 3.1).

~vi = ~Ti − ~T0 , i = 1, 2...5 (3.2)

where ~Ti refers to the vector of 9 microwave brightness temperatures in different cases

with case number i, and ~v is the vector of temperature difference of non-background

cases subtracted by background vector. T0 is the brightness temperature vector of

background case (Table 3.1). The Gram-Schmidt analysis for pseudo-channels are

calculate:

~u1 = ~v1 (3.3)

~u2 = ~v2 − proju1(~v2) (3.4)

~u3 = ~v3 − proju1(~v3) (3.5)

~u4 = ~v4 − proju1(~v4)− proju2(~v4)− proju3(~v4) (3.6)

~u5 = ~v5 − proju1(~v5)− proju2(~v5)− proju3(~v5) (3.7)

where ~ui refers to the of orthogonal vectors between three pseudo-channels. In another

words, ~u1 (CH1 positive) is orthogonal to ~u2 (CH2 positive) and ~u3 (CH2 negative),

but ~u2 and ~u3 are not orthogonal. similarly, two cases in CH3 are both orthogonal to

CH1 and CH2 cases but are not necessarily orthogonal to each other.

Equation 3.2∼3.7 provide the detailed procedure of calculating the orthogonal

modes for different cases, which are plotted in Figure 3-2, demonstrating three pseudo-

channel independent behaviors due to rain signal reflected on 9 observed microwave

channels.
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Figure 3-1: Scatter plots of three pseudo-channels over the ocean

(1B11.20020911.27506.7.HDF): (a) CH1 and CH2, (b) CH3 and CH2, and (c)

CH1 and CH3. The blue line refers to the division of different cases for Gram-

Schmidt analysis
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Case Range Description

0 CH1 < 35, 10 > CH2 > −3, 3 > CH3 > −5 Background

1 CH1 > 35, 10 > CH2 > −3, 3 > CH3 > −5 CH1 positive

2 CH1 < 35, CH2 > 10, 3 > CH3 > −5 CH2 positive

3 CH1 < 35, CH2 < −3, 3 > CH3 > −5 CH2 negative

4 CH1 < 35, 10 > CH2 > −3, CH3 > 3 CH3 positive

5 CH1 < 35, 10 > CH2 > −3, CH3 < −5 CH3 negative

Table 3.1: Case division for Gram-Schmidt analysis

3.1.2 CH1

In Figure 3-2 (a), the blue line gives the positive CH1 feature when CH2 and CH3

are close to zeros. Lower frequency microwave channels (10, 19, 37GHz) majorly con-

tribute to positive CH1, while higher frequency channels (85GHz V and H) contribute

little (Figure 3-2). It is known that lower frequency channels in TMI emphasize more

on cloud liquid water emission from the precipitating clouds, while the high frequency

channels have large contribution of ice scattering. Therefore, a positive CH1 inde-

pendently describes the emission from cloud liquid water.

Shown in a storm (Figure 3-4 (a)) as an example, CH1 becomes positive at areas

where 19GHz V shows warmer brightness temperature (19GHz V, in Figure 3-3 (a)).

A warmer brightness temperature in 19GHz V reflects majorly emission from liquid

precipitating cloud.

3.1.3 CH2

In Figure 3-2 (b), the black triangle curve refers to negative CH2 case reflected on 9

observed microwave channels by TMI. Figure 3-2 (b) shows insignificant contributions
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by lower frequency channels, but rather high and positive contributions by higher

frequency channels (85GHz V and H). 85GHz V and H feature in a combination of

strong emission from cloud liquid water and high sensitivity to ice scattering. The

negative CH2 case majorly reflects events with strong emission from liquid cloud and

sensitive reaction toward ice scattering, such as strong convective precipitating events.

In Figure 3-2 (b), the green line is the positive CH2 case, when CH1 and CH3

are close to zeros. The positive CH2 case majorly reflects events that have lower

frequency channels counted against high frequency channels. In a precipitating event,

It is known that lower frequency channels majorly observes the emissions from cloud

liquid water, and high frequency channels reflects both cloud liquid water and ice

aloft. When high frequency channels are subtracted by lower frequency channels in a

precipitating events, it is the ice aloft that is left. Therefore, a positive CH2 describes

events that only have ice aloft, which can be anvil of the storm, or cirrus clouds.

Shown in a storm (Figure 3-4 (b)) as an example, CH2 becomes negative at areas

where 85GHz V (Figure 3-3 (b)) shows colder brightness temperature, which reflects

strong ice scattering. The ice aloft overlaps with areas with strong emission between

19GHz V and 85GHz V (Figure 3-3 (a) and (b)), which indicates the ice aloft is

part of the deep convective system. In Figure 3-4 (b), CH2 appears positive at

areas surrounding deep convective rain bands (Figure 3-3 (c) and 3-4 (d)). The area

where CH2 appears positive corresponds with very little rain rate. The anvil of the

convective system is known to have thin ice aloft but doesn’t usually precipitate.

Therefore positive CH2 indicates majorly the anvil of the convective system.

3.1.4 CH3

In Figure 3-2 (c), the red line and magenta lines are negative and positive CH3 cases

receptively. Both red and magenta curves (Figure 3-2 (c)) are quite symmetric at axis



40

y = 0 line, with sinusoid shapes, which resemble the higher order mode in Fourier

series. In Figure 3-4 (c), strong positive and negative CH3 areas are coupled together,

located at areas with strong horizontal rain rate gradient. At areas with very little

horizontal precipitation gradient, there is little variation of CH3. It is inferred that

CH3 plays a role as ‘edge detector’ of precipitating events, although further research

is needed to analyze the dipole structures of CH3 to seek its association with scanning

geometry of TMI.

The 9 observed microwave channels are known to have different of field of views

(FOVs). The different size of FOVs among microwave channels may cover different

fractures of non precipitating and precipitating areas over the sharp horizontal rain

rate gradient, though all the FOVs are centered at same pixels. CH3 may captures

the brightness temperature variations of nine microwave channels due to brightness

temperatures averaged in different FOVs. The CH3 concerning different FOVs would

be especially sensitive when the horizontal rain rate gradient is large.

3.2 Probability Distribution Functions

The ‘lookup’ table has five dimensions, which are skin temperature, total precipitable

water (TPW), and three pseudo-channels. With in each line of the ‘lookup’ table, the

samples with different rain rates are binned to form a distribution. The retrieved rain

rate within each line of the ‘lookup’ table is calculated as the mean of the distribution.

It was addressed that the skins temperature, TPW, and three pseudo-channels

need to be binned in an appropriate bin sizes, so that the samples in each bins are

sufficiently densely populated but not too large Petty and Li (2013b). It was also

realized that pseudo-channels range from 101 to 102, yet most of the samples are

distributed around 101, and very few get to 102 or higher Petty and Li (2013b).
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Therefore, a scheme is used to convert the pseudo-channels for bin division.

Yi ≡ ∆ arctan(
PCHi

∆
) (3.8)

where, PCHi refers to pseudo-channel values (i = 1, 2, 3), ∆ = 15 for pseudo-

channels. Similar conversion is applied to Tskin with ∆ = 5K and TPW with

∆ = 10mm. From here on in statistic analysis, the pseudo-channels, skin temper-

atures and TPWs take on the converted binned values, not original values, unless

statement specifies.

Probability distribution functions are generated, with rain rate binned exponen-

tially in mm hr−1:

[0.0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1.01.7, 3.05.2, 10.0, 17.0, 30.0]

where, 0.0 has its own bin, and the rest goes from 0 < R ≤ 0.01 and so on. When none

of the three pseudo-channels are involved in the retrieval, the probability distributions

of rain rate only vary with the two environmental variables (a.k.a. Tskin and TPW),

which are considered distributions of climatological data (Figure 4-3, 4-4, and 4-5 (a)).

As each pseudo-channel is added to the ‘lookup’ table, the probability distributions

are altered, and retrieved rain rate becomes closer to the real value (Figure 4-3, 4-4,

and 4-5 (b)(c)(d)). The three pseudo-channels are adding information into the rain

rate retrieval process. It is very important to understand how much information each

pseudo-channel provides to rain rate retrieval, which is discussed further in the next

chapter.

In short, Gram-Schmidt analysis revealed the independent features each pseudo-

channel describes over the ocean. CH1 describes the emission of cloud and rain water.

CH2 describes the ice aloft, with negative CH2 for ice on top of convective systems

and positive CH2 for ice aloft as anvils. CH3 is the ‘edge detector’, measuring the
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horizontal rain rate gradient. However, it is still unknown about how important each

pseudo channel is to retrieve rain rate. The significance of each pseudo-channel for

retrieving rain rate includes how important are the pseudo-channels between each

other and are three pseudo-channels enough to retrieve rain rate, and whether the

‘forth’ (or higher) pseudo-channels are necessary for the purpose of improving the

rain rate retrieval precision.
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Figure 3-2: Orthogonal modes of 9-microwave-channel distributions with: CH1 pos-

itive in blue dotted line, CH2 positive in green triangles, CH2 negative in black

triangles, CH3 positive in magenta squares, and CH3 negative in red diamond.
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Figure 3-3: Microwave channels 19GHz V, 85GHz V, and retrieve rain rate of Hur-

ricane Lily in October 2002, to the southwest of Florida. (a) 19GHz V brightness

temperature (K), (b) 85GHz V brightness temperature (K), and (c) retrieved rain

rate in mm/hr.
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Figure 3-4: Pseudo-channels of Hurricane Lily in October 2002, to the southwest of

Florida. (a) CH1, (b) CH2, (c) CH3, and (d) RGB plot of CH1 (red), CH2 (green),

and CH3 (blue).



Chapter 4

Information Theory

In previous chapters, the physical insight of three pseudo-channels are analyzed. It

was observed that CH1 is related to column rain water, CH2 is related to ice scattering

aloft, and CH3 responds to edges and gradients of horizontal precipitation distribu-

tion. Besides, posterior probability densities are calculated based on one, two, or three

pseudo-channels. The posterior PDFs based on one, two, or three pseudo-channels

allow us to quantitatively evaluate the information added by each successive channel.

Both Shannon entropy (SE) and relative entropy (RE) are employed to evaluate

the information that is added by three successive pseudo-channels to the rain rate

retrieval.

4.1 Shannon Entropy and Relative Entropy

In this section, both SE and RE are calculated in the toy models to reveal their

distinctions in quantifying the information content.

4.1.1 Gaussian Distribution

A Gaussian distribution f(x) is designed to represent the prior distribution.

f(x) =
1

σ
√

2π
exp−(x− µ)2

2σ2
(4.1)
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where σ = 2.0 is the standard deviation, µ = 0.0 is the mean. The bins are un-

evenly divided from −10 to 10, with exponentially divided spacing. The posterior

distribution g(x) is designed to be Gaussian distribution with signal or dispersion

change. When signal is changed, the mean of Gaussian is shifted as: µ = −4.0, 0, 4.0.

When the dispersion is changed, the standard deviation varies as σ = 1.0, 2.0, 4.0.

The content of information that changes distribution from f to g is evaluated for

each bins in terms of Shannon entropy change and relative entropy change. Accord-

ing to Equation 1.6 and 1.7, the relative entropies for both discrete and continuous

forms have identical results. Therefore, relative entropy RE(f → g), Discrete Shan-

non entropy difference ∆DSE(f → g), and Continuous Shannon Entropy difference

∆CSE(f → g) are calculated for each bins, and the results for signal or dispersion

variations are shown in Figure 4-1. In Figure 4-1, the blue shaded distribution in

the upper panel refers to the prior distribution f(x) and the pink shaded distribution

refers to the posterior distribution g(x).

In Figure 4-1(a), f(x) and g(x) are overlapping with each other, which indicates

no information is provided to change the distribution, and RE = ∆DSE = ∆CSE =

0.0.

Relative Entropy In Figure 4-1 (b) and (c), signal is shifted to the right and left

respectively to same distance. The REs are shown the same for signal shiftings to

both directions. It is noticed that RE has a large positive contribution at bins where

the prior probability is close to 0 (for example, less than 0.02), but the posterior

probability is large (for example above 0.15) in Figure 4-1 (b) or (c). RE has a

very small and negative contribution at bins where the prior probability is large (for

example, above 0.15), but the posterior probability is close to 0 (for example, less

than 0.02) in Figure 4-1 (b) or (c).
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In Figure 4-1 (d) and (f), the RE values are small compared with RE in Figure

4-1 (e). It is noticed that the signals in Figure 4-1 (d)–(f) are not shifted, only

the dispersions are changed. In Figure 4-1 (e), the dispersion is flattened, when

less possible area becomes more possible at the skew part, and more possible area

becomes less possible at the peak part. RE in Figure 4-1 (e) is largely contributed by

the increase in possibility at the skew parts. It is noticed that upon all the cases, RE

become more positive at places where it is not quite possible in the prior distribution

but it becomes very possible in the posterior distribution. This process that greatly

improves the probability from a case not likely to happen at all to a case that quite

likely to happen can also be described in the real life as surprise. Therefore, it is

confirmed that RE measures the signal shift through a piece of information. In

another word, RE quantifies the ‘surprise’ that a piece of information is adding to

change the prior distribution.

Shannon Entropy In Figure 4-1 (b) and (c), the signal shifts change very little on

Shannon Entropy, ∆CSE = 0.0 and ∆DSE = −0.28, 0.34 (−0.28 to the right and

0.34 to the left respectively). The spacing for bin division is uneven in Figure 4-1.

According to Equation 1.4 and 1.5, both DSE and CSE are identical when bins

are evenly divided for PDFs. The Gaussian distribution experiment with undivided

bins are designed to examine the difference between ∆DSE and ∆CSE. In Bayesian

statistics, ∆DSE(f → g) and ∆CSE(f → g) are quantities to measure the in-

formation content of the message that changes prior PDF f to posterior g. It was

addressed that DSE is uniquely defined by the probability measure over the message,

not dependent on bin sizes. And CSE measures the message with probability density

(involving both probability and bin division) (Frigg and Werndl, 2011). By defini-

tion, DSE is uniquely defined for a discrete probability message (such as flipping the
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coins), not dependent on the bin sizes. CSE is uniquely defined for a continuous

probability density message (PDFs) not dependent on the bin sizes.

In short, to describe information content of PDFs, the CSE and DSE would be

identical if the bins are evenly divided. Otherwise CSE for quantifying the informa-

tion measure PDFs would include the coordinates influence. This conclusion is also

confirmed by the numerical experiment involving Gaussian distribution.

According to Equation 1.4, ∆DSE counts each bin equally in significance over

the Gaussian PDFs (for example the Gaussian PDF f(x) in blue shades). Yet in

the experiment the Gaussian PDFs have unevenly divided bins. Therefore calculated

∆DSE is a combination of information content of the PDF message and the bin

coordinates that is chosen to describe the message. The signal shift to the left and to

the right in Figure 4-1 (b) and (c) are quantified by ∆DSE differently when the bins

are not evenly divided. It is observed that Shannon entropy (∆CSE) doesn’t change

when there is a signal shift (Figure 4-1 (b) and (c)).

When the bins are evenly divided in 4-2 (a) and (b), ∆DSE counts each bin

with equal significance. The calculated ∆DSE, under evenly divided bins, is able

to exclusively quantify the Shannon entropy information content solely due to signal

shift, without the influence of binning. As shown in 4-2, signal shifts on both positive

and negative side of the axis correspond with zero change in ∆DSE, but a same RE

measure. As comparison, for same Gaussian function signal shift, ∆CSE correctly

measures the information content regardless of bin division (4-1 (b) and (c)). ∆CSE

has limitations, compared with ∆CSE. ∆CSE is used for continuous distributions.

When used in discretized fashion, ∆CSE becomes invalid when bin width is zero

(Equation 1.5).

The posterior data for three successive pseudo-channels is made into discrete com-

mulative distributions, with unevenly discretized binning. According to the distribu-
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tion, more samples are falling into the lower or zero rain rate range than high rain rate

range. Thus, the bins for rain rate is set exponentially so that narrower bins at lower

end (for example, 0.1 ∼ 0.2 mm hr−1) is equally important as wider bins at higher

end (for example, 10 ∼ 20 mm hr−1). Besides, the first bin is non-raining bin, which

is counted as bin with zero bin width. Due to the discrete form and the non-raining

bin, ∆DSE is more suitable than ∆CSE to take measurements for Shannon entropy

of three successive pseudo-channels.

A couple of reversed processes for PDF change in dispersion are depicted in Figure

4-1 (e) and (f). Figure 4-1 (e) shows the less dispersion in blue turning to more

dispersion in pink. Figure 4-1 (f) shows the opposite. It is reflected in entropy

distribution that equal and opposite Shannon entropies changes (∆CSE and ∆DSE)

are shown for 4-1 (e) and (f). When the posterior PDF becomes more spread out

(flattened in PDF curve shape), ∆DSE and ∆CSE are positive. When the posterior

PDF becomes less spread out (sharpened in PDF curve shape) ∆DSE and ∆CSE are

negative. In short, the Shannon entropies measure exclusively the dispersion change

of a distribution, and cannot reflect the signal change at all.

4.2 Pseudo-channels

The rain rate probability distribution are generated for retrievals with one, two, or

three pseudo-channels. The raining samples are observed to be more clustered at

the lower rain rate range. Much fewer samples falls into higher rain rate range more

scattered than lower rain rate samples. The rain rate samples are observed to be

distributed in an exponential fashion. In another words, light rain appears to be

much more likely than heavier rain. Therefore, bins are designed to be in exponential,

where, for example, rain rate bin ranging from 0.01 to 0.02mm hr−1 is considered as
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important as the bin from 10 to 20mm hr−1 in the information content analysis.

The discrete Shannon entropy difference and relative entropy are calculated to

measure the information content of each pseudo channels to the rain rate retrieval.

Three cases are picked out to demonstrate the probability distribution changes by

adding three successive pseudo-channels in Figure 4-3, 4-4, and 4-5.

In Figure 4-3(a), the probability distribution is based on rain rate samples collected

according to the environmental variables (skin temperature and total precipitable

water 1). When CH1 is added (CH1 = 41 in Figure 4-3(b)), the posterior probability

distribution has a signal shift, which is reflected by positive RE. RE = 2.26 in Figure

4-3(b) is bigger than RE = 1.03 in (c) and RE = 0.01 in (d). Clearly reflected by RE,

the signal change between prior and posterior distributions by adding CH1 in Figure

4-3 (a) and (b) is more significant than shifts by adding CH2 or CH3 in this presented

case. It is worthwhile to notice that CH1 CH2 and CH3 are added in order to test their

information contributions to rain retrieval. The information contributions of these

three successive pseudo-channels depend on the order that they are added successively

during the retrieving process and their own independent information contents. In this

chapter of information theory, our focus is mainly on evaluating within a set order (i.e.

CH1, CH2, and then CH3), how much information each pseudo-channel is adding to

the retrieval in addition to the priorly added channels and environmental variables.

For example, CH3’s information content in our information analysis refers to how

much additional information CH3 contributes more than environmental variables,

CH1, and CH2. It is noticed that in climate data Figure 4-3 (a), zero rain rate bin

has the largest amount of samples. The dispersion change between Figure 4-3 (a)

and (b) are not large compared with Figure 4-3 (b) and (c), which is reflected by

1All the values of Tskin, σwater, CH1, CH2, CH3 in the Information theory chapter are all scaled values

for statistical purposes, not the physical values. The scaling process is mentioned in Petty and Li (2013a).
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∆SE = −0.12 in (b), much smaller than ∆SE = −0.92 in (c). In short, ∆SE and

RE reflect that adding CH1 in Figure 4-3 brings significant signal change of rain rate

probability distribution, but not strong dispersion change, compared with adding

CH2.

Between 4-3 (b) and (c), the signal shift between prior and posterior distributions

is not large compared with (a) and (b), which is reflected by RE value. RE = 1.03

for adding CH2 in Figure 4-3 (c) is only half of RE = 2.26 for adding CH1 in Figure

4-3 (b). The dispersion is eliminated by adding CH2 from Figure 4-3 (b) to (c). It

is observed that Figure 4-3 (b) has a wider dispersion than (c), which is reflected by

negative ∆SE value in (c), greater in magnitude than ∆SE = −0.12 in Figure 4-3

(b). In short in Figure 4-3 (c), the RE shows that adding CH2 brings about a signal

shift on rain rate probability distribution, not as much as adding CH1 in (b). Besides,

in Figure 4-3 (c), ∆SE shows that adding CH2 decreases dispersion on posterior rain

rate probability distribution, more than adding CH1 does in (b).

Between Figure 4-3(c) and (d) probability dispersion, the signal shift between prior

and posterior distributions is very little, so is the dispersion change. ∆SE = −0.04

and RE = 0.01 in Figure 4-3(d) are much closer to zero than those in (b) and (c). In

short, CH3 in 4-3(d) adds little information to the probability distribution change,

compared with CH1 or CH2. As a summary for Figure 4-3, CH1 brings significant

signal change of rain rate probability distribution, compared with CH2 and CH3. In

another word, CH1 in Figure 4-3 provides majority of information content for rain

rate retrieval algorithm compared with CH2 and CH3.

In Figure 4-4, another set of rain rate probability distributions are shown to

demonstrate the information contents provided by three successive pseudo-channels.

In Figure 4-4(b), little is changed in the probability distribution signal shifting by

adding CH1, which is reflected by small value RE = 0.03 (small compared with
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RE = 2.1 in Figure 4-4(c)). In Figure 4-4(c), the zero rain rate bin sample num-

ber is reduced, and numbers of samples in bins with intermediate/light rain rate

0.05 ∼ 1.0mm/hr are increased by adding CH2. In correspondence, RE = 2.1 reflects

the distribution signal in Figure 4-4c is shifted towards the light rain rate bins relative

to (b), and ∆SE = 2.37 reflects the dispersion of the probability distribution in (c)

is increased relative to (b). From Figure 4-4(c) to (d), the distribution changes very

little, which is reflected by small RE and ∆SE in (d) compared to those in (c). In

short, CH2 in Figure 4-4 contribute majorly to the rain rate distribution, by providing

the largest information content RE of all three successive pseudo-channels.

In Figure 4-5, another set of rain rate probability distributions are shown to

demonstrate the information contents provided by three successive pseudo-channels.

In Figure 4-5 (a), (b), and (c), small RE and ∆SE compared with those in (d) re-

flect small information contents CH1 and CH2 provide for rain rate retrieval in this

specific case. In Figure 4-5(d), RE = 1.81 reflects significantly large signal shift of

rain rate distribution when CH3 is added. In Figure 4-5(d), ∆SE = 2.3 reflects

significantly large dispersion of rain rate distribution when CH3 is added. From the

rain rate probability distribution in Figure 4-5, probability of intermediate/light rain

rate (0.05 ∼ 1.0mm/hr) is increased and zero rain rate probability is decreased when

CH3 is added. In short, CH3 in case demonstrated by Figure 4-5 has major influ-

ence on rain rate retrieval, by having the largest information content of all three

pseudo-channels.

As a sum-up, three over-ocean cases in correspondence of Figure 4-3, 4-4, and 4-5

are chosen to confirm the physical indication of RE and ∆SE. Based on the analysis

in this section, three successive pseudo-channels can all provide large information

content, altering the posterior rain rate probability distributions in the Bayesian

algorithm.
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However, the information content of three successive pseudo-channels over other

land types are still unknown. Also, it is unknown of how much keeping first one,

two or three pseudo-channels would alter the rain rate retrieval results. Moreover,

it is important to understand what ranges of retrieved rain rate are influenced most

by each pseudo-channels. Are higher order pseudo-channels (ex, CH2, CH3) always

necessary to keep to retrieve rain rates of all samples? Is the higher order pseudo-

channel (ex, CH4, CH5, etc) necessary to increase the precision of the presented

Bayesian algorithm? Further analysis is performed in the next section to associate

pseudo-channels with retrieved rain rate over each surface type, using RE and ∆SE

to quantify the rain rate distribution change.
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Figure 4-1: Information entropy changes between two Gaussian distributions over

unevenly divided bins. Blue blocks are normal distribution before, and pink blocks

are normal distribution afterwards. All upper panels are probability density functions

(PDFs), and lower panels are changes of informational entropy of different kinds. The

green lines are continuous Shannon entropy difference (∆CSE). The magenta lines

are discrete Shannon entropy difference (∆DSE). The cyan lines are relative entropy

(RE).
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Figure 4-2: Information entropy changes between two Gaussian distributions over

evenly divided bins. Blue blocks are normal distribution before, and pink blocks are

normal distribution afterwards. All upper panels are probability density functions

(PDFs), and lower panels are changes of informational entropy of different kinds.

The magenta lines are discrete Shannon entropy difference (∆DSE). The cyan lines

are relative entropy (RE).



58

Figure 4-3: Probability distribution changes and information entropy changes with

restrictions of CH1, CH2, and CH3. The land type is 0w. After scaling, Tskin = 6,

σwater = 7, CH1 = 41, CH2 = 38, CH3 = 23. Color blocks are probability within each

bin, using the vertical axis to the left. The black triangle lines are relative entropy

(RE). The black dotted lines are change of shannon entropy ∆SE. Both triangle

and dotted lines follow the vertical coordinates to the right. Shown in each panels

are: (a) only climate data, (b) climate data with CH1 restriction, (c) climate data

with restrictions of CH1 and CH2, and (d) climate data with restrictions of CH1,

CH2, and CH3.



59

Figure 4-4: Probability distribution changes and information entropy changes with

restrictions of CH1, CH2, and CH3. The land type is 0w. After scaling, Tskin = 3,

σwater = 2, CH1 = 23, CH2 = 27, CH3 = 23. Color blocks are probability within each

bin, using the vertical axis to the left. The black triangle lines are relative entropy

(RE). The black dotted lines are change of shannon entropy ∆SE. Both triangle

and dotted lines follow the vertical coordinates to the right. Shown in each panels

are: (a) only climate data, (b) climate data with CH1 restriction, (c) climate data

with restrictions of CH1 and CH2, and (d) climate data with restrictions of CH1,

CH2, and CH3.
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Figure 4-5: Probability distribution changes and information entropy changes with

restrictions of CH1, CH2, and CH3. The land type is 0w. After scaling, Tskin = 4,

σwater = 1, CH1 = 23, CH2 = 23, CH3 = 26. Color blocks are probability within each

bin, using the vertical axis to the left. The black triangle lines are relative entropy

(RE). The black dotted lines are change of shannon entropy ∆SE. Both triangle

and dotted lines follow the vertical coordinates to the right. Shown in each panels

are: (a) only climate data, (b) climate data with CH1 restriction, (c) climate data

with restrictions of CH1 and CH2, and (d) climate data with restrictions of CH1,

CH2, and CH3.
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4.3 Necessity

In this section, both relative entropy and Shannon entroy are calculated under chosen

environment variables and land types. When the prior retrieved results are altered

to posterior ones by adding each pseudo-channel, both RE and ∆SE are evaluated

to measure the information content of each pseudo-channel. Retrieved rain rate dis-

tributions are compared between posterior and prior to verify the quantification of

information for each pseudo-channel. The goal of this section is to demonstrate the

necessary condition of three successive pseudo-channels in terms of rain rate retrieval.

In another words this section is to answer to what extent does each pseudo-channel

contribute to the best to rain rate retrievals over different surface types.

4.3.1 CH1

CH1 is added to alter the retrieved rain rate from climate data that solely depends on

the environmental variables (Tskin and σwater) (Figure 4-6 4-7 and Table 4.1). For

each surface type, the environmental variables that include the highest RE by adding

CH1 is selected for the plots to show the CH1 information content. For example,

Figure 4-6 with environmental variables of Tskin = 6 and σwater = 6 has the largest

Relative entropy (RE = 5.79 in Table 4.1) among other environmental variable values

over the ocean.

In Figure 4-6, higher CH1 values corresponds with higher posterior2 retrieved rain

rates, which is depicted in (c) and (d), and higher CH1 values are responsible for

a higher prior-posterior retrieved rain rate difference, which is depicted in (a) and

(b). Reflected in the information content, generally lower CH1 samples have smaller

2posterior and prior are relative terms. In this section, retrievals before and after adding CH1 are

considered prior and posterior respectively.
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relative entropy values, higher CH1 samples have larger relative entropy. When CH1

in Figure 4-6 is small (ex. 15 ∼ 25), both prior and posterior rain rate probability

distribution peak at zero or low rain rate bins (c) and (d). As CH1 increases (ex,

CH1 > 25), more samples in the prior distributions are recognized by CH1 to have

significantly larger rain rate. At the same time, more non-raining samples in the prior

distributions are filtered by CH1. As a result, in Figure 4-6, peak of the rain rate

distribution is shifted to higher rain rate bins as CH1 increases.

When CH1 is small (ex. CH1 < 25), negative ∆SE in Figure 4-6(f) depicts the

dispersion reduction in the posterior retrieved rain rate distribution. Low CH1 values

itself in Figure 4-6 (c) and (d) correspond with posterior low rain rates. It can be

inferred that prior rain rate distribution before adding CH1 should peak at low or

non-rain rate bins, so that the mean of prior rain rate distribution, as retrieved rain

rate, can be close to zero in value. This inference of prior rain rate distribution is to

certain extent reflected by Figure 4-3(a), 4-4(a), 4-5(a), where majority of samples

are located at zero rain rate bin, although the environmental variables are not the

same. In the posterior rain rate distribution, reduction of dispersion through CH1

further reflect the samples low or non rain rate features. In this way, a small CH1

value is considered as confirmation of little rain rate.

As CH1 > 25, ∆SE is positive (Figure 4-6(f)), which indicates an increase in

dispersion of posterior rain rate distributions compared with prior ones. At large

CH1 values in Figure 4-6 (ex. 25 ∼ 40 in (f)) the possibility of non-rain or little rain

rate is reduced, and the samples with moderate or large rain rates are left and appear

diverse in rain rate probabilities despite the fact they share similar CH1 values.

It is also interesting to notice that as CH1 > 27 in Figure 4-6(f), ∆SE turns less

positive as CH1 increase in value. As CH1 increases beyond CH1 = 27, more samples

of high rain rates are left from the prior distribution due to their high CH1 value, and
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more samples of moderate rain rates are filtered due to their low CH1 value, and the

rain rate distribution is shifted towards the higher rain rate , as reflected in Figure

4-6(c) and (d). In another words, high rain rates samples are less diverse when they

share similar CH1 value (ex, CH1 > 40), and samples with moderate and low rain

rates are more diverse when they share similar CH1 value (ex,25 < CH1 < 30).

As a sum-up, to retrieve rain rate, CH1 serves to correct the climate-data based

Bayesian algorithm more at higher rain rate bins. For lower rain rate samples, adding

CH1 provides confirmation to the retrieval based on climate-data, simply because

lower rain rate samples are highly likely to have low CH1 values. Besides, CH1 is

better to exclusively determine the high rain rate samples than it does to do moderate

or low rain rate samples. Lower or moderate rain rate samples sharing same CH1

have more diverse rain rate distribution than high rain rate ones do sharing same

CH1.

Figure 4-7 is plotted to depict the information content associated with prior-

posterior retrieved rain rate difference over the warm vegetable land. Similar trend

of CH1 over warm vegetable land is found as it is in ocean surface.

For some other surfaces types such as 1w, 1c, 2w, and 4w, in Table4.1, similar

trends are found as 0w, that CH1 provides more information on higher rain rate bins.

For some surface types, the numbers of chosen samples are so limited, not enough

to present a trend, such as 2c, 3w, 3c, 4c, 5w, 5c, 6w, and 6c. Table 4.1 collects

all the surface types with the largest relative entropy values in each surface, to more

efficiently illustrate the necessary value of CH1 quantified in information content. In

Table 4.1 for retrievals in surface types 2c, 3c, 5w, 5c, 6w, and 6c, CH1 plays a role

as confirmation to the low rain rates, reflected by little RE values. In Table 4.1 for

retrievals in surface types 1w, 1c, 2w, 3w, and 4w, CH1 appears to alter the posterior

rain rate distributions in terms of shifting the signal, and increasing the dispersion
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Figure 4-6: Rain rate information change by adding CH1 restriction. (a) average

rain rate (R) difference, (b) avaerage rain rate ratio, (c) probability of R = 0, (d)

probability of R > 1mm hr−1, (e) relative entropy after adding CH1, and (f) Shannon

entropy difference after adding CH1. The land type is 0w. Environmental variables:

Tskin = 6, σwater = 6 after scaling.
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from prior distributions. In Table 4.1 for retrievals in surface types 1w, 1c, 2w, 3w,

and 4w, the retrieved rain rates after adding CH1 appear to be small or moderate

in quantities. Reflected by ∆SE, adding CH1 in surface type 1w, 1c, 2w, 3w, and

4w in Table 4.1 increases the diversity of samples with low or moderate rain rate. It

is worth to notice that Table 4.1 displays the case of adding CH1 with the highest

relative entropy in each surface. Lower RE values of CH1 in different surface types,

similar to the previous analysis on Figure 4-6, indicate CH1 as confirmations of lower

rain rate feature.
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Figure 4-7: Same as above. The land type is 1w. Environmental variables: Tskin = 5,

σwater = 6 after scaling.
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4.3.2 CH2

CH2 is added to alter the retrieved rain rate from ‘climate+CH1 data’ that depends on

both environmental variables and CH1 (Figure 4-8, 4-9 and Table 4.2). Alike previous

section about CH1, for each surface type, the environmental variables that include

the highest RE by adding CH2 is selected to show the CH2 information content. For

example, Figure 4-8 with environmental variables of Tskin = 6 and σwater = 6 has

the largest Relative entropy (RE = 1.22 in Table 4.2) among other environmental

variable values over the ocean. It is worth noticing that the scatter plots for CH2 are

two dimensional, because both CH1 and CH2 are variables for information content

even though environmental variables are settled.

In Figure 4-8, higher CH1 values correspond with higher retrieved rain rate dis-

tributions according to (c) and (d). The rain rate varies with CH2 quite weakly in

Figure 4-8(c) and (d) compared with it does with CH1. When CH1 is large (ex.

30 < CH1 < 40 in Figure 4-8(d)), CH2 decreases as more samples have rain rates

larger than 1mm hr−1. When CH1 is small (ex. CH1 < 25 in Figure 4-8(c)), CH2

increases as less samples have zero rain rates, which is opposite in trend from large

CH1 mentioned previously.

In Figure 4-8(a) and (b), when CH1 is large (ex. 30 < CH1 < 40), CH2 alters the

retrieved rain rate from prior distribution3. For example, at CH1 = 40 and CH2 = 35

in Figure 4-8(a) and (b), the posterior distribution estimates a lower rain rate than

prior distribution does by adding CH2. At CH1 = 40 and CH2 = 17 in Figure 4-8(a)

and (b), the posterior distribution estimates a higher rain rate than prior distribution

does by adding CH2. Reflected in information content (Figure 4-8(e)), positive RE at

3To calculate retrieved rain rate, the mean is taken from the rain rate distribution. In this section, prior

and posterior are relative terms indicating the distributions before and after adding CH2 respectively.
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large CH1 (ex. 30 < CH1 < 40) shows signal shifts in rain rate distribution, where the

upper positive anomaly (CH2 = 35) indicates a shift to a lower rain rate, and bottom

positive anomaly (CH2 = 17) indicates a shift to a higher rain rate according to (c)

and (d). In Figure 4-8(f), negative ∆SE at large CH1 (ex. 30 < CH1 < 40) shows

less dispersion in distribution after adding CH2 compared with prior distribution.

When CH1 is small (ex, CH1 < 25), CH2 changes the rain rate distribution.

In Figure 4-8(e), when CH1 = 20,CH2 = 27, a significant positive RE indicates a

signal shift of rain rate from the prior distribution. The change of distribution of

CH1 = 20,CH2 = 27 can be reflected by increased rain rate ratio at same spot in

Figure 4-8(b). ∆SE in Figure 4-8(f) shows positive anomaly at CH1 = 20,CH2 = 27,

which indicates a larger dispersion in the posterior distribution than the prior one.

Negative ∆SE at CH1 = 25,CH2 = 20 in Figure 4-8(f) indicates the posterior

distribution, the rain rate dispersion is less spread out, where higher probability of

non-rain samples are left in the posterior distribution after adding CH2. In Figure 4-

8(f), the abrupt ∆SE anomaly at 20 < CH1 < 25, which is reflected correspondingly

in (b) and (e), suggests an independent raining mechanism that involves envil clouds

and produce little rain fall.

In short, Figure 4-8 shows the rain rate distribution change by adding CH2 over

the ocean. CH2 over the ocean is observed to change the signal of rain rate PDF at

higher retrieved rain rate samples. For lower rain rate samples, CH2 seems to be able

to reflect different low rain rate precipitation types by ice.

Figure 4-9 shows the precipitation change by adding CH2 over warm vegitated

land (1w) for a set of chosen environmental variables. The environmental variables

Tskin = 5 and σwater = 6 were chosen for the plot because the case under such

environment variables contains the largest RE value for CH2 to have the biggest

signal change on posterior rain rate probability distribution. In Figure 4-9(c), for low
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rain rate samples (CH1 < 25), little variation of rain rate is shown along CH2 axis.

In another words, CH2 reflect little on low rain rate variation. In Figure 4-9(d), for

high rain rate samples (CH1 > 25), CH2 shows to reflect rain rate probability density

variation for a chosen CH1. For example, when CH1 = 30 and CH2 = 20, more

samples have rain rate over 1mm hr−1 than they do when CH1 = 30 and CH2 = 27

in Figure 4-9(d). Figure 4-9(d) shows that CH2 is responsible for more variation of

moderate and high rain rates over warm vegitated land than it is for ocean.

Adding CH2 is shown to have larger RE at areas in Figure 4-9(e) when CH1 > 25

where lower than prior rain rate is evaluate due to higher CH2 value and higher than

prior rain rate is evaluated due to smaller CH2 for the same CH1 values. In Figure

4-9(f), rain rate distribution has significant less dispersion to retrieve high rain rate.

Besides, data of other land types with largest RE in each case are listed in Ta-

ble 4.2, which shows that CH2 gives the signal shift more in warm surfaces (0w,

1w, 2w, 3w, 4w), reflected by higher RE than cold surfaces (1c, 2c, 3c) and Ti-

betan/Himalayan range (5w, 5c, 6w, 6c). On average, the maximum RE by adding

CH2 appears to be half or less than half as much as the maximum RE by adding

CH1 (Table 4.1).
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Figure 4-8: Rain rate information change by adding CH2 restriction. (a) average

rain rate (R) difference, (b) avaerage rain rate ratio, (c) probability of R = 0, (d)

probability of R > 1mm hr−1, (e) relative entropy after adding CH2, and (f) Shannon

entropy difference after adding CH2. The land type is 0w. Environmental variables:

Tskin = 6, σwater = 6 after scaling.
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Figure 4-9: Same as above. The land type is 1w. Environmental variables: Tskin = 5,

σwater = 6.
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4.3.3 CH3

Figure 4-10 (over the ocean), Figure 4-11 (over the warm vegitated land), and Table

4.3 (maximum RE over all land types) are shown to evaluate the information CH3

is added towards the rain rate retrievals. Figure 4-10 (over the ocean) and Figure

4-11 (over the warm vegetated land) are chosen because they both contain the largest

RE values in each case, indicating the biggest signal changes from prior rain rate

distribution to posterior one due to CH3. The prior rain rate probability distribution

in this section refers to the rain rate distribution retrieved by environment variables

(Tskin and σwater), CH1, and CH2. The posterior rain rate probability distribution

in this section refers to the rain rate distribution retrieved by environment variables

(Tskin and σwater), CH1, CH2, and CH3.

Over the ocean in Figure 4-10, large RE values in (e) (for example, CH3 = 26

and CH2 = 22) correspond with large rain ratio change in (b), where the rain rates

are low or moderately low, according to (c) and (d). The ∆SE reflects an increase in

dispersion in Figure 4-10(f) on the posterior distribution at places where RE is large

in (e).

Over the land in Figure 4-11, large RE values in (e) (for example, CH3 = 26 and

CH2 = 23) correspond with low rain rate signal shifted further towards lower end

compared with prior distribution, which is reflected in small rain rate difference in

(a) and small rain rate ratio (b) and high possibility of non-rain samples (c). The

negative ∆SE in Figure 4-11(f) shows a shrink in dispersion on rain rate distribution,

for example at CH3 = 26 and CH2 = 23. Both RE and ∆SE around CH3 = 26 and

CH2 = 23 in Figure 4-11(e) and (f) indicates a confirmation of low rain rate samples.

In Table 4.3, the maximum RE values over all surface types are smaller than 1.0,

not significant on altering the rain rate distribution signal shift.
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Figure 4-10: Rain rate information change by adding CH3 restriction. (a) average

rain rate (R) difference, (b) avaerage rain rate ratio, (c) probability of R = 0, (d)

probability of R > 1mm hr−1, (e) relative entropy after adding CH3, and (f) Shannon

entropy difference after adding CH3. The land type is 0w. CH1 = 24, Environmental

variables: Tskin = 4, σwater = 3 after scaling.
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In short, CH3 doesn’t appear to influence as significantly to rain rate retrievals as

CH1 or CH2. The contribution of CH3 to rain rate retrieval is shown in this section

to provide confirmation to the samples with low/zero rain rate.
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Figure 4-11: Same as above. The land type is 1w. CH1 = 24, Environmental

variables: Tskin = 6, σwater = 6 after scaling.



78

S
u
rf

ac
e

T
sk
in

σ
w
a
te
r

C
H

1
C

H
2

C
H

3
R

D
iff

.
R

R
at

io
P

(R
=

0
m

m
h
r−

1
)

P
(R

>
0.

01
m

m
h
r−

1
)

R
E

∆
S
E

0w
4

3
24

22
27

0.
08

9.
31

0.
61

0.
38

0.
85

1.
80

1w
6

6
24

22
27

-0
.4

1
0.

02
0.

99
0.

01
0.

90
-2

.5
9

1c
11

1
25

22
26

-0
.0

5
0.

09
0.

98
0.

02
0.

15
-0

.8
6

2w
6

6
25

22
24

0.
81

4.
25

0.
30

0.
69

0.
53

1.
10

2c
11

1
24

22
22

-0
.0

0
0.

54
0.

98
0.

02
0.

01
-0

.1
3

3w
4

2
23

24
25

0.
07

11
.0

4
0.

78
0.

22
0.

41
1.

19

3c
11

1
24

22
20

-0
.0

0
0.

70
0.

99
0.

01
0.

02
-0

.1
5

4w
5

5
23

22
25

0.
07

3.
39

0.
84

0.
15

0.
09

0.
60

4c
-

-
-

-
-

-
-

-
-

-
-

5w
1

1
23

23
21

-0
.0

1
0.

17
0.

98
0.

02
0.

04
-0

.3
4

5c
11

1
23

23
25

0.
00

2.
55

0.
98

0.
02

0.
01

0.
07

6w
2

2
22

23
21

0.
01

1.
58

0.
94

0.
06

0.
01

0.
03

6c
11

1
22

21
22

-0
.0

0
0.

69
0.

97
0.

03
0.

01
-0

.0
9

T
ab

le
4.

3:
M

ax
im

u
m

re
tr

ie
ve

d
ra

in
ra

te
ch

an
ge

s
in

p
os

te
ri

or
p
ro

b
ab

il
it

y
d
is

tr
ib

u
ti

on
s

b
y

ad
d
in

g
C

H
3

u
n
d
er

va
ri

ou
s

su
rf

ac
e

ty
p

es
.

T
h
e

co
lu

m
n
s

ar
e

d
en

ot
ed

as
(f

ro
m

le
ft

to
ri

gh
t)

:
su

rf
ac

e
ca

te
go

ri
es

,
su

rf
ac

e
sk

in
te

m
p

er
at

u
re

,
to

ta
l
p
re

ci
p
it

ab
le

w
at

er
,

C
H

1,
C

H
2,

C
H

3,
ra

in
ra

te
d
iff

er
en

ce
(p

os
te

ri
or

-
p
ri

or
),

ra
in

ra
te

ra
ti

o
(p

os
te

ri
or

/p
ri

or
),

p
ro

b
ab

il
it

y
of

p
os

te
ri

or
ra

in
ra

te

eq
u
al

to
ze

ro
m

m
/h

r,
p
ro

b
ab

il
it

y
of

p
os

te
ri

or
ra

in
ra

te
gr

ea
te

r
th

an
0.

01
m

m
/h

r,
re

la
ti

ve
en

tr
op

y,
an

d
S
h
an

n
on

en
tr

op
y

d
iff

er
en

ce
.

T
h
e

th
re

sh
ol

d
of

sa
m

p
le

n
u
m

b
er

s
in

th
is

an
al

y
si

s
is

10
00

sa
m

p
le

s.
A

ll
ca

se
s

in
4c

h
av

e
le

ss
th

an
th

e
th

re
sh

ol
d
,

th
er

ef
or

e,
th

e
4c

ca
se

s
ca

n
n
ot

b
e

co
n
si

d
er

ed
st

at
is

ti
ca

ll
y

re
p
re

se
n
ta

ti
ve

.



79

4.4 Sufficiency

In this section, the sufficiency of three successive pseudo-channels is evaluated by

using bivariant histograms to compare the prior and posterior rain rate distributions

when each pseudo-channel is successively added to the algorithm. Representative

bivariate histograms are displayed in Figure 4-12 (over the ocean), Figure 4-13 (over

the vegetated land), Figure 4-14 (over the land/water mix, coast), and Figure 4-15

(over all surface types). The goal of this section is to show whether three successive

pseudo-channels are sufficient to retrieve the rain rate, is the fourth pseudo-channel

necessary in terms of improving the precision of retrieved rain rates.

Over the ocean in Figure 4-12(a), from climatology to climatology and CH1, the

samples are completely redistributed in the posterior bins. In Figure 4-12(b), from

climatology + CH1 to climatology + Channel 1 and 2, adding CH2 doesn’t change

the rain rate distribution much when retrieved rain rate is above 0.2mm hr−1, but

CH2 changes the rain rate distribution significantly at among low rain rate samples.

In Figure 4-12(c), the majority samples O(108) are not significantly redistributed by

adding CH3, which appears to be y = x linear relationship in the diagram. There

are some samples in the lower rain rate bins that are redistributed by CH3 in Figure

4-12(c), with around O(103) or O(104) samples.

Over the warm vegetated land in Figure 4-13(a), from climatology to climatology

and CH1, the samples are largely redistributed in the posterior bins. In Figure 4-

13(b), CH2 alters the distribution to an even spread almost along all the bins. In

Figure 4-13(c), adding CH3 doesn’t appear to change much on the higher end of the

bins (ex. rain rate above 1.0mm hr−1). At lower rain rate bins, majority (O(108)) of

samples are not altered by adding CH3 in Figure 4-13(c), and some minor samples

O(103) are redistributed from moderate rain rate bins like 0.3mm hr−1 in prior to low
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rain rate bins like 0.01mm hr−1 in posterior.

Over the warm land/water mix (coast) in Figure 4-14(a), like previous two cases,

CH1 alters the distribution greatly. In Figure 4-14(b) and (c) CH2 and CH3 don’t

appear to alter the distribution much, as majority (O(105)) are on the y = x line.

The bivariate for all surfaces classes are plotted in Figure 4-15. It is shown that in

Figure 4-15(a), CH1 alters the distribution greatly from climatology to climatology

and CH1. In Figure 4-15(b) and (c), CH2 and CH3 appear to alter little the majority

(O(108)) of the samples. Samples of O(103) are redistributed by CH3 among lower

and moderate rain rate bins.

As a sum-up, in most of the cases examined so far over ocean and different land

types, it appears that the majority of information affecting the posterior probability

distribution of rain rate is found in the first two pseudo-channels. Dropping the third

channel from the retrieval usually has only a minor effect on the retrieved probability

distributions. But there are exceptions, especially for less common combinations of

the first two channels.
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Figure 4-12: Bivariate histograms comparing distributions of rain rates prior to (hor-

izontal axis) and following (vertical axis) the successive addition of channels, starting

with Channel 1 relative to climatology (left), Channel 1+2 relative to Channel 1 only

(center), Channels 1-3 relative to 1+2 (right). The surface type here is ocean (0w).

Figure 4-13: Same as above. The surface type here is warm vegetated land (1w).
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Figure 4-14: Same as above. The surface type here is warm land/water mix, coast

(2w).

Figure 4-15: Same as above. It includes all surface types (0w, 1w, 1c, 2w, 2c, 3w, 3c,

4w, 4c, 5w, 5c, 6w, 6c), where surface 4c has zero selected samples for the statistics

that are statistically representative.



Chapter 5

Conclusions

The UW algorithm was developed to retrieve rain rate from TMI, using reduced-

dimensional Bayesian algorithm. Three pseudo-channels are generated mathemati-

cally using principle component analysis, presumably taking three most important

roles to retrieve rain rate.

In this project, the information that three pseudo-channels provide are analyzed

both qualitatively and quantitatively. Firstly, the physical meaning of the three

pseudo-channels is demonstrated by using the Gram-Schmidt Process. The initial

results suggest that over the ocean:

• CH1 is related to column rain water;

• CH2 is related to ice scattering aloft: negative CH2 is related to the ice in a

convective storm, and positive CH2 is related to the ice in anvil clouds;

• CH3 responds to edges and gradients.

As part of the UW algorithm, rain rate probability distributions are calculated

for chosen environmental variables and successive pseudo-channels. With this advan-

tage, each of the three successive pseudo-channels are evaluated for the information

contribution to the UW algorithm by keeping one pseudo-channels, two, or three and

comparing the probability distributions between each other.

83
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From Climatology to Climatology + CH1, adding CH1 provides the most domi-

nant information to the rain rate distributions among all three pseudo-channels. CH1

itself increases as the posterior rain rate increases. CH1 provides more signal shift

to the posterior rain rate distribution at larger CH1 values. The signal shift of the

posterior rain rate distribution can be reflected by a increase or decrease on retrieved

rain rate from posterior distribution in Bayesian algorithm, which is calculated as

the average of the probability distribution. CH1 provides an increase in dispersion of

posterior probability distribution at small CH1 values and a decrease in dispersion of

posterior probability distribution at large CH1 values.

From Climatology + CH1 to Climatology + CH1 +CH2, adding CH2 provides

some information to the rain rate distributions. For low CH1 values (low retrieved rain

rate from posterior distribution), CH2 would correspond little variation with retrieved

rain rate. For large CH1 values (high retrieved rain rate from posterior distribution),

larger CH2 would correspond with a smaller retrieved rain rate. Adding CH2 would

cause signal shift of rain rate distributions over all ranges of rain rate. CH2 can both

increase the retrieved rain rate from prior distribution when CH2 is towards the high

end and decrease the retrieved rain rate from prior distribution when CH2 is towards

the low end.

From Climatology + CH1 + CH2 to Climatology + three successive pseudo-

channels, most of the time, CH3 provides little information to the rain rate dis-

tributions. However, for certain cases with rare combinations of CH1 and CH2, CH3

may appear to provide significant information content.

As for evaluation on various surface types, all three successive pseudo-channels pro-

vide largest information content1 over ocean, warm vegetated land, warm land/water

1Over each surface type, the maximum relative entropy is ranked to evaluate information content each

pseudo-channel provides. For CH1, the threshold for RE is set to be 1.0. For CH2, the threshold for RE is
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mix (coast) and warm desert. Only CH1 and CH2 but CH3 provide significant infor-

mation content over warm rain forest. Only CH1 but CH2 or CH3 provides significant

information content over cold vegetated land. None of the three pseudo-channels ap-

pear to provide significant information content over cold land/water mix (coast), cold

desert, Tibetan Plateau and similar, and Himalayan range and similar.

set to be 0.4. For CH3, the threshold for RE is set to be 0.2.
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