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Abstract

Adequately forecasting moist processes resulting from mesoscale and synoptic weather
system dynamics is an active problem in the realm of operatiotabroigy.
Numerical weather prediction has been a beneficial tool for studying and forecasting such
processes. A number of parameterizations have been developed to facilitate the solution
while suppressing numerical instabilities and controlling budgfetenserved quantities.
However, the ideal model must be initialized with an analysis that adequately resolves
variations in the moisture concentration and cloud cover on the same scale as the
simulation grid spacing to attain the most accurate foredase to a very sparse upper
air observation network across the United States, the only way to accomplish this is with
satellite products.

This paper developsraethodology for an experiment with several parallel
regional Weather Research and ForecagiviBF) model simulations initializewith
satellitebased retrievals. The intent isdlarify the impact of observationm the form
of retrievals from the Geostationary Operational Environmental Satellite (GOES)
Sounder on 12, 24, and-B®urWRF modelforecasts of precipitable water, |devel
relative humidity, precipitation, and sky cover. Two experimental analyses are built from
a CIMSS Regional Assimilation System (CRAS)-foeecast spirup. The CRAS
assimilates precipitable water and cloud picid derived from the GOES Sounder. An
experimentation period between late September and early October 2011 found that the
majority of impact in the experimental simulations compared to the control is recognized
in the total precipitable water field oviire first 12 hoursln some cases, this resulted in
an improved precipitation forecagtloud cover results were inconclusive, though a new
technique developed for use in the CRAS outperformed the current WRF cloud fraction

approach.
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Executive Summary

The purpose of this study was to assess the impact of Geostationary Operational
Environmental Satellite (GOES) Sounder moisture retrievals in-grontpredictions
using the Weather Research and Forecasting model (WRF), which is commonly used on
regional sales at National Weather Service (NWS) forecast offices. The Advanced
Research WRF (ARW) configuration used for this investigaticiuded the Kain
Fritsch convective scheme. ishs a mass flux scheme wilensitivity to relative
humidity in the midée and upper troposphere. The model domain was Lambert
Conformal over th@orth central United States willd0 grid points irboth horizontal
dimensionspaced every 20 km.

In comparison, retrievals from the GOES Sounder are available approximately
every1l0 kmat hourly intervals over the continental United Stafélse Cooperative
Institute for Meteorological Satellite Studies (CIMSS) Regional Assimilation System
(CRAS) routinely takes these retrievals and maps them to a model grid with background
mass felds from the Global Forecast System (GFS). The CRAS framework, which
applies a onglimensional variational method with a strong constraint to adjust moisture
content (precipitable water) for clear fields of view in three vertical layers, but not the
vertical gradients within those layers, was leveraged in this study. The CRAS also adds
or subtracts clouds based on GOES Sounder cloud top pressure products.

For this study, the WRF model was initialized from CRAS input in both of the
experimental runs. Theontrol run, the WRFX, contained initial and boundary
conditions from the GFSThe GFS does not assim#dGOES Sounder observations over
landas of this writing The WRFY experiment run obtained boundary conditions from
the CRAS, while the WRFZ experant run obtained boundary conditions from the GFS.
The WRFY also used an analysis formed from dddr CRAS predorecast procedure,
whereas the WRFZ analysis was the result of a single assimilation step at the
initializati on t i mighoursorecast astthe backgrouadr Theus GF SO
duration of all WRF model simulations was 36 hours.

The experiment period ran frog® UTC 28 September 2011 to 00 UTC 8

October 2011 Other cases in October and November were also considered to
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demonstrate perforamce of the assimilation technique for higipact weather. A small
precipitable water improvement was noted fothb2ir forecasts using the WRFZ over
the WRFX. This result was substantiated by the use of Global Positioning System (GPS)
integrated precipable water point measuremeiats truth, as well as the North American
Mesoscale (NAM) model analyses, which contain GPS precipitable water measurements,
but primarily insitu moisture observations as inpdthe changes to the precipitable
water analysigs a result of the assimilation procedure also altered surface precipitation
forecasts, ashownin an example case. Most of the moisture improvement by
assimilation was found to be confined to the middle and upper troposphere, where the
weighting functons for water vapor emission wavelengths sensed by the GOES Sounder
typically peak during the summer months. Observation skill in the boundary layer, closer
to the surface, is typically only possible in drier regimes common of winter months.

Performance fathe WRF and CRAS models for shéerm cloud fraction
predictions was also evaluated. For total sky cover, the WRF model control and
experiment runs collectively underperformed compared to the CRAS. A special cloud
fraction algorithm, using a celestidme techniqueoupled with a cloudo-precipitation
autoconversion limit ratio, was developed for the CRAS to better match the NWS
National Digital Forecast Database (NDFD) forecasts. Since the default WRF model
cloud fraction algorithm takes an aveeagf three tropospheric layers, which is not the
conventional understanding of cloud cover, a technique was implemented to find the
maximum fraction of the three layers for comparison with the CRAS and default WRF
algorithms. The maximum fraction approatiti perform better than the default, but not
as well as the CRAS. However, even using the maximum fraction approach, differences
in error between the control and experimental WRF runs were unablexplaéened as a
consequence of the assimilation pisxe

In lieu of these findings, it was evident that future work must focus on the
development and clarification of cloud fraction for uses in numerical weather prediction
and conventional forecasts. Furthermore, our geostationary observing platformaplaces
constraint on our ability to monitor and forecast weather patterns because it is unable to

assess vertical moisture and temperature gradients without substantial reliance on a



background from radiosondes orditu measurements. The results presentesl he

confirm this. It follows from a basic tenet of numerical weather prediction that remotely
sensed observations at the same spatial and temporal scale as weather prediction models
would usuallylead to increased performance of those models. Withouheahmgentto

increase the number of observationgprove vertical spectral resoluticemd decrease

the error numerical weather prediction skill will eventually plateau.

Acknowledgements

Dr. Steven Ackerman, a professor of atmospheric and oceanicexiginthe
University at Wisconsin, andobert Aune, a research meteorologist il National
Oceanic and Atmospheric Administration (NOAAYovided guidancand assistanda
the execution othis study The worth of their advice and interest in a thayh scientific
process is immeasurabl& he Uni ver sity of WindsEngneeingnds Spa
Center (SSEC) wsa valuable location to perform this study due to its academic wealth,
integral science staff, and superior computing ueses.

| would like to thank the Wisconsin Space Grant Consori{jwWsGC) the
National Aeronautics and Space AdministratitiASA), NOAA, specifically the
National Environmental Satellite, Data, and Information Service (NESDIS), the
Geostationary Operational Environmdriatellite RSeries (GOESR) Program Office
and the National Weather Service (NW&)d SSEC for the abilitgnd supporto
conduct this research, as well as the researchers at the Cooperative Institute for
Meteorological Satellite Studies (CIMSS) for ithenending support in guiding my
academic and professional pursuits.

Lastly, the faculty in the Department of Atmospheric and Oceanic Sciences at the
University of Wisconsin deserves recognition for building a wolégs program for
undergraduate and ghaate meteorological studies. Specifically, thanks are extended to
Dr. Gregory Tripoli and Dr. Jonathan Martin for their review of this thesis.



Vi

Table of Contents

R | 11 o o 3o 1o USSR 1
2. Background of problem..............ouiiieiiiiii e 4.
a. Precipitation effiCIENCY.........ueviiiiiiiii s 6.
b. Conservation of enthalpy.........ccooiiiiiiiiiiiii s 1.
c. Advanced Research WRF cONfiIQUIation.............ueeeeeiiiiieeciiiiiieiieeceeeeeeeee e 8
FIUX RENOMMALIZALION........coiiieeee e e e e e e e e an 10
CONVECTHIVE SCNEME......eiiiiiiiiieie et eeees s e e e e e e e e e e e eeeeeesannes 11

3. Data and methodology.........ccoiiiiiiiiiiiiiieeee e 11
a. Configuration of control and experimental WRF runs..............ccccccvimeennnnns 12
b. Building analysis from GOES Sounder retrievals with CRAS..................... 14
c. Summaryof methodology behind GOES Sounder moisture retrievals........ 16
d. Incorporation of the clear retrieval into the maedehulated atmosphere......... 16
e. History of the approach........... e 17

f. ASSIMIlAtioN PrOCEAUIE..........ooviiiiieee e erre e e e e e e e 18
g. Critique on likelinOOd Of SUCCESS ... ..uuuiiiiiiiiiiiiiiiceeeieeeeee e 20
h. Adjustments due to cloudy fields of VIEW...............coovvviiieeee i, 21

i.  Experiment domain and justifiCatiQn.............cooeviiiiiiieemiiiiieeeeeeee e 22

Jo o Initial @ValuatioNS.............oovviiiiiiiccce e e e e e e e aneas 22
4. Precipitable Water reSUILS..........coooii it e e 24

a. Error of NCEP operational model analyses compared toIBRS................... 26
b. Error of experiment and control WRF analyses compared telBRS............ 27
c. Error of experiment and control WRF analyses comgpan GOESL3 retrieval®7
d. Error of NCEP operational model analyses compared to GI3&8trievals....29
LI O =TS (U o Y PP 30
f.  Error of experiment and control WRF-hdur forecasts compared to GV .31
g

ANAIYSIS. ..ttt e e e e e e e ——r e e 32
h. Error of relative humidity forecasts compared to NAM analysis................. 33
I Impact ON Precipitation....... ..o 35
5. Cloud fraCtion FESUILS.......cooiiiiiiiirees et eeeere e e e e e e e e e eee s 36
a. WREF cloud fraction methodology............cccuuuiiiiiiiiieeeiiiiieeeeeee e 37
b. Motivation for CRAS cloud fraCtion............ceeeviiiiiiiiiieeeiieeeeeee e 39
Cc. CRAS cloud fraction methodology............uuuueeiiiiiiiieeeiiiiiiiiieieeeee e 40
. RESUILS..... e e e e e e e ene e e e e e e e e e e e eees 42
G T @ T 1113 [ 1 L= SO L
RETEIENCES. ... e A8
1= o [ O 54

10 U =TT U RPPSTR 6l



Vil

List of Tables

TABLE 1. The core configuration for the WRF model used in the experiment.....54

TABLE 2. Mean values of MAE and RMSE for NCEP model analyses of total
precipitable water compared to GIHSN over the period from 00 UTC 28
September 2011 to 00 UTC 8 October 2011.........uuueiiiiieeieeeeeiiiineee e 55

TABLE 3. Mean values of MAE and RMSE for WRF model analyses of total
precipitable water compared to GIF8BN over the period from 00 UTC 28
September 2011 to 00 UTC 8 October POL..........ouvveiiiiieieiececciiieeeee e 55

TABLE 4. Mean values of MAE and RMSE for WRF model analyses of total
precipitable water compared to GOBES Sounder Ma retrievals over the period
from 00 UTC 28 September 2011 to 00 UTC 8 October 2011................... 56

TABLE 5. Mean values of MAE and RMSE for &€ model analyses of total
precipitable water compared to GOES Sounder Ma retrievals over the period
from 00 UTC 28 September 2011 to 00 UTC 8 October 2011................... 56

TABLE 6. Mean values of MAE and RMSE for WRF modelHdlr forecasts of total
precipitable vater compared to GPIBW over the period from 00 UTC 28
September 2011 to 00 UTC 8 October 2011.......cccooeeeeeiiiiiiieeeeee e, 57

TABLE 7. Mean values of MAE and RMSE for WRF modelHdur forecasts of total
precipitable water compared to NAM analyses over the period from 00 UTC 28
September 2011 to 00 UTC 8 October 2011...........ouiiiieiiiiiceccceeeee e 57

TABLE 8. Mean values of MAE and RMSE for WRF modell#&ur forecasts of total
precipitable water compared to NAM analyses over the period from 00 UTC 28
September 2011 to 00 UTC 8 October 2011.......cccooeeeeeiiiiiiieeeeeeeeeeeeeeeeee 58

TABLE 9. Mean walues of MAE and RMSE for WRF model-Béur forecasts of total
precipitable water compared to NAM analyses over the period from 00 UTC 28
September 2011 to 00 UTC 8 October 2011..........oueiieeiiiiicecciiiceeee e 58

TABLE 10. Mean values of MAE of relative humidity at 700 hPa and 85CGbP@ared
to NAM analyses over the period from 00 UTC 28 September 2011 to 00 UTC 8
(@ 1o 0 o = 2 0 1 I S 59

TABLE 11. Mean values of MAE of total sky cover for WRF model maximum fraction
12-hour forecasts compared to NAM analyses and NDFDBhane forecasts over
the period from 00 UTC 28 September 2011 to 00 UTC 8 October.2011..59



viii

TABLE 12. Mean values of MAE of total sky cover for WRF model default fractien 12
hour forecasts compared to NAM analyses and NDFDhaone forecasts over the
period from 00 UTC 28 Sepinber 2011 to 00 UTC 8 October 2011........... 60

List of Figures

FIG. 1. Water vapor weighting functions for the GOESSounder and future GOHS
ABI in an idealized midatitude summer atmosphesounding......................! 61

FIG. 2. A skewT log-P diagram comparing the radande sounding from International
Falls, Minnesota, to the GFS analysis, vatid2aUTC on 13 November 20152

FIG. 3. A skewT log-P diagram comparing the radiosonde sounding from International
Falls, Minnesota, to the GFS analysis adjusted with arwafeor retrieval, valid
at 12 UTC on 13 November 2011.......coooiiiiiiiiiiiieeee e cneneeees 63

FIG. 4 The 36hour accumulated precipitation ending 12 UTC 1 September 2010 from
various WRF runs initiatied at 00 UTC 31 Augu&010.......c.cccceeeiiiiieeeeeennninand 64

FIG. 5. MAE and RMSE for total precipitable water cédéed with GPSPW over the
experiment pgod for NCEP model analyses..........ccccceeeeiiiiiiieccvviiiiceee e, 66

FIG. 6. MAE and RMSE for total precipitable water calculated with-GRS over the
experiment priod for WRF modenalySes.........ccccoeeeeeeieiiiiiiieeeeeee e, 67

FIG. 7. MAE and RMSE for total precipitable watelccgated with GOESL3 Sounder
Ma retrievals over the experimerdgrod for WRF model analyses............... 68

FIG. 8. MAE and RMSE for total precipitable water calculated with GQESounder
Ma retrievals over the experimentrjpel for NCEP model analyses.............. 69

FIG. 9 A comparison of NCEP and WRF model total precipitable water analyses all
valid at 00 UTC 8 October 201L..........coovvviiiiiiiiiiimmmeeeeeeeesiiee e ennnnens 70

FIG. 10. A comparison of WRF model total precipitable water 12, 24, and 36 hour
forecasts all viad at 00 UTC 8 October 2011.........cccovvviiieiiiiieemieeiiiee e 12

FIG. 11. MAE aad RMSE for total precipitable water calculated with @P®/ over the
experiment period for WRF model-Idur forecas............ccoovvvviiiiiiiiiieeennnns 73

FIG. 12. MAE and RMSE for total precipitable water calculated with NAM analyses
over the experiment period f&RF model 1zhour faecasts.........................L4



iX

FIG. 13. MAE and RMSE for total precipitable water calculated with NAM analyses
over the experiment period fo¢RF model 24hour forecasts........................Z5

FIG. 14. MAE and RMSE for total precipitable water calculated with NAM analyses
over the experimengeriod forWRF model 3énhour forecasts........................L6

FIG. 15. MAE for relative humidity at 700 hPa and 850 hPa calculated with NAM
analyses over the experiment periodWiRF model 1zhour forecasts........... 77

FIG. 16. The total precipitable water analysis valid at T€ 10 November 2011 from
TNE NAM. L. 78

FIG. 17. The total precipitable water analysis valid at 00 UTC 10 November 2011 from
the WRFX control run and a difference between the WRFX anhll [dAalyses
fOr the SAME M. e e 79

FIG. 18. The total precipitable watnalysis valid at 00 UTC 10 November 2011 from
the WRFZ experiment run and a difference between the WRFZ and NAM
analyses for the SAMEe tiMe............uueiiiii e 80

FIG. 19. The 700 hPa relative humidity analysis valid at 00 UT@dvember 2011
frOmM the NAM . ...eee e enees 81

FIG. 20. Ther00 hPa relative humidity analysis valid at 00 UTC 10 November 2011
from the WRFX control run and a difference between the WRFX and NA
analyses for the SAME tIMB...........uuuiiiiiiii e 82

FIG. 21. The 700 hPa relative humidity analysis valid at 00 UTC 10 November 2011
from the WRFZ experiment run and a difference between the WRFZ aivl NA
analyses for the Same tiMe............uuiiiiiii e 83

FIG. 22. The 850 hPa relative humidity analysis valid at 00 UT@dvember 2011
frOM the NAM ....cee e enees 84

FIG. 23. The 850 hPa relative humidity analysis valid al.OiC 10 November 2011
from the WRFX control run and a difference between the WRFX and NAM
amalyses for the SAmMe tIME............uuiiiiiii e 85

FIG. 24. The 850 hPa relative humidity analysis from the WRFZ experiment run valid at
00 UTC 10 November 2011 and a difference betwkerWRFZ and NM
analyses for the same tiMe...........oiii i 86

FIG. 25. The total precipitable water analyses valid at 12 UTC 8 OQ06hérfrom the
WREFX QN0 WRFZ......coiiiiiieiiie et 87



FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

26. The total precipitable water analysis valid at 12 UTC 8 October 2011 from the
NAM, a difference between the WRFX and NAM analyses, and a difference
between the WRFZ and NAM analySes............coooiiuimmrimmmnenisiiiiiveeeeeeee 88

27. The 1zhour accumulated precipitation valid ending at 00 UTC 9 October 2011
from the NCEP Stage || muisensor analysis, WRFX d®ur forecas and
WRFZ 12-N0UF fOrECAST.....ccviiiiiiiiiiieiei e 90

28. The NAM analysis of total sky cover valid at 00 UTC 120et 2011........92

29. The aut@onversion limit as a function of tempered that is used in the

30. MAE for total sky cover over the period fromWODC 28 September 2011 to 00
UTC 8 October 2011, calcuéd for WRF default fraction............cccccceeennnnnd 94

31. MAE for total sky cover over the period from 00 UTC 28 September 2011 to 00
UTC 8 October 2011, calcutd for WRF maximum fraction........................ 95

32. The NDFD osthour total sky cover forecast, CRAS-ti@ur forecast of total
sky cover, WRFX 1zhour forecast of total sky cover using the default
calculation, and WRFX *Rour forecast of total sky cover using the maximum
layer calculation all vadl at 00 UTC 12 Octadr 2011.........coovvvevvvvvveviniiieeenn. 96



1. Introduction

Water vapor is an important molecule in our atmosphere which has a profound impact on
the dynamics and physics of the fluid earth systé&ecurately assessing magnitudes and
gradients of moisture in the troposphere, especiallgabboundary layeris an ongoing
challenge.While in-situ observational data from surface stations and radiosondes paint a
partial picture of the moisture distribution in the atmosphere, information collected from
weather satellites is the only way tetermine shorterm changes in water vapon
spatial scales under a few hundred kilometers

Many of the earthds most significant weat
temperature and moisture gradients. The tropics and middle latitudes contain a
substatial amount of water vapowhich condenses to produce clouds and precipitation.
In order to better foreca#ite broad spectrumf diabatic weather processésis
necessary tonprove understanding of such processes on multiple spatial and temporal
scaks, frommesoscaleonvective systems (MCSE) synopticscale midlatitude
weathersystemsthrough their simulated evolution in numerical weather prediction
(NWP) guidance. Essential to accurately resoland parameterizintpesephenomena
as part ofa forecasts incorporating satellite observationsatdud andwater vapor into
numericalmodels. The consistent use of these observationsahtime model
simulations has the potentialitaprove predictions of storms and precipitatiarclaim
whichis investigated here

Since 1992, the development of the dynamics and physics within the Cooperative

Institute for Meteorological Satellite Studies (CIMSS) Regional Assimilation System
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(CRAS) weather prediction model (http://cimss.ssec.wisc.eddy¢trasbeen guided by
the addition of satellite products into the assimilationfprecast During the pre

forecast, cloud and precipitable watBwW) products from the twelve hours ahead of the
initialization time are substantiated in the modeled atmosph&hese products are
predominantly from th&eostationary Operational Environn@nSatellites (GOES)
Imager and Sounder due to their relative temporal frequenmgr-éthiting satellites,

such as thosequipped with a MODerate resolution Imaging Spectlioraeter

(MODIS), can also be used where temporal frequency can be sacrificed in place of
increased spatial and spectral resolutidine goal of the CRAS has been to show
forecast improvement when additiosaltellitedata sets are addénlthe traditionkin-

situ observationéR. Aune2011 personal communication)n recent years, however,
other modeling systems have grown in popularity aslévelopment of the CRAS
slowed. Despite this, the use of CRAS ougpatdualy expanded into dozens of

Nationd Weather Service (NWS) forecast offices between 2006 and 2011. Forecaster
comments reveal that the CRAS output continues to have a positive impact in certain
forecast situations.

In contrast to the CRAShé Weather Research and Forecasting (WRdel
(http://wrf-model.org/) is a NWP modelilt from an increasinglyopularcollection of
codefor simulating atmospheric conditions at high spatial scales. The MdgEl is a
stateof-the-art mesoscale NWP tool which was developed to satisfy the needthof bo
operational forecasters in the field and atmospheric scientists in a research setting. This

functionality allows the WRImodel to be usetoth in scientific studies and for reahe
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prediction. NWSfield offices across the United States im@reasimgly reliant on output
from the WRFEnvironmental Modeling System (EMS)) &ndto-enddistributablefor
running the WRF locally and producing outglottp://strc.comet.ucar.edu/wrfems/

Since the WRF has been widely adodt@dforecast applicationsvith
improvements to its dynamical cores and physical packages dagtthtough the
present time, it isin ideal platfornior obsenation impact studies becausettoé
applicability to numerous redime users. Obtaining a better solution via a more aceurat
set of initial conditions is a lorgtanding tenet of NWP mathematics. The CRAS pre
forecast methodology remains a viable source of initial conditions (ICs) which have been
influenced with satellite datal his investigationquantifiesthe degree of impvement
that the CRASproducedCs have in WRF simulati@out to 36 hours duringortions of
theNorthern Hemisphere fall months of September and October 2011, where there are a
combination of both moist and dry regimes over the north central Unitezs Stat

This paper will provide a summary of the current stat&®ES Sounder radiance
andretrieval assimilation in numerical modals a motivating factor for this reseayrte
design of the experimennt seekingo quantify the impact of these retrievals a
regionalscale domainan explanation of how satellite observasipim the form of
retrievals, are assimilated into the CRASjescription of the CRAS and WRF sky cover
algorithirs; andsomeresults and comparisons between the WRF simulations, C&AIS,
validating analyseand point observatiorfer certain moisture fieldsThe objective is to
develop anethodology for an effective, applicable stuhsily replicated in the fieldhat
confrontssubstantial forecast problesmesulting fromropospheg moisturegradients

which are inadequately resolved in NWP guidance at the current time
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2. Background of problem

The basic premise of NWP is that it is an initial value problémstriving to attain the
perfect forecasthere are several other factorsiethconstrain the accuracy of the
solution, including parameterizations amgproximations within the modedgchemes
which use timestepping to solve partial differentiadj@ations over a finite interval;
atmospheric features occurring on spatial and teatgoales sniker than resolved by
the modeljimited observations to populate the initial analysis, particularly above the
surface and away from lanthe quality and accuracy of those observatemd the
representation of any observation errors dutimegassimilation procesand the
boundary condions on the perimetaf the domain which can force the solution for
long-duration simulationsTheUni t ed St atesd® Nati onal Centers
Prediction NCEP) operational models use numerous data sonsisting of wsitu and
remotely sensed observations in building their analysis. However, some forecasters have
indicated that moisture representation in the NCE#ets is sometimes inadequate for
forecastingnesoscal@recipitation events. Mann2011 personal communicatipn

To resolvethis issue additional moisture information was sougyioim
unexploited earttobserving satellite instrumerftsr incorporatiorinto model
simulations. Retrievals from the GOHS Sounder were chosen due to iheted
amount of use during thmurrentassimilation process in the NCEP operational models
(Keyser et al. 2011)As of this writing, the North AmericaviesoscalédNAM;
http://www.emc.ncep.noaa.gov/?branch=NANModeland Global Forecast System

(GFS http//www.emc.ncep.noaa.gov/GH®Modeldo use brightness temperatures from



the GOES Sounders (GOHS and GOES.3) over ocean as part of their radiance
assimilation system. However, they do not use retriemalsjo not use the GOES
Sounder observations aviand. The Rapid Update Cycle (RU@odel, which is
transitioning to the Rapid Refresh (RfRtp://rapidrefresh.noaa.ggvhodel does use
PW etrievals, but only those over ocean frttaGOES11 Sounder

Figurel shows thehree water vapowreighting tunctions for a standardid-
latitude summer atmospheaethe central wavelengths sensed by the current series
GOES Soundeaind future GOES imager (Gunshor et al. 20IThese weighting
functions are at terrestrial infrared wavelengths on the edge ofitiee vapor absorption
spectrum.Theyindicate that under standard summertime conditioearsurface water
vapor is not observable by the Sounder, and water vapor observed by the Sbveadhbr
wavelengthcomes from a fairly broad vertical tropospheraoge,usually at least 250
hPa deep. In very dry atmospheres, letwepospheric and even nesurface
distributions of moisture are discernibl8uch environments are occasionally evident
during the winter season across North America. In these rggitn®not uncommon for
fairly narrow weighting functions to peak on or near the surface.

It is worth noting that there are currently no plans to expand vertical resolution of
moisture information through increasingservablavavelengthsensed byuture
imagersonboard operational geostationary satellji&&shmit et al. 2008) For example,
the Advanced Baseline Imager (ABl) on GOES&ies (GOER), the first satellite of
which will be ready for launch in late 20{b. Schmit 2011, personal communica,
will provide for a significantly highetemporal andhorizontal resolution oflouds and

water vapornominally 2 km at the satellite subpqibtitfor still only three water vaper
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sensing bands at the approximate wavelengths as the current GOE®$8anmitet

al. 200§. This despite that #re have been a number of studies which have described the
benefits of hyperspectral infrared observatj@ml the likely resultant increased value

such information wou bring to shorterm atmospheripredctability of high-impact

weather phenomenaa model simulations (Let al. 201}

a. Precipitation efficiency

While there remains a substantial disadvantage to our cgeestationary earth
observingsatellitesdblindness toward lovievel water vapor comntration, gradients, and
evolution, all is not lostthough it does present a sethadlhunderstorms are responsible
for vast amounts of precipitation over the United Statediqularly during the summer.
Market et al. (2003) investigated the pre@pian efficiencies, the ratio of accumulated
precipitation to PW, for MCSs over the central United States during the July through
September periods of 2000 and 2001. PW fields from the RUC were used in concert with
radarderived precipitation grids to callate precipitation efficiencies. Soundings from
the GOES and winds from the RUC were applied in assessing th&gfe=nvironment.
After an analysis of the statics, it was found that there sva strong positive correlation
between precipitation effiency and the relative humidity between the surface and lifting
condensation level (LCL), and strong negative correlations between the precipitation
efficiency and both theonvective mhibition (CIN) based on the lowest 100Pa parcel,
and the layer winghear across the convective, wesloud depth. There were
statistically insignificant findings between precipitation efficiency and PW, warm cloud

depth, and relative humidity through the warm cloud layer.



b. Conservation of enthalpy
Though Mar kasinéosclusve in fthging & correlation between
precipitation efficiency and PW, theory provides a connection between temperature and
moisture during convective process&s.convective towers ascend, the parcel cools and
condenses resulting in a releaséatent heat. lrder to conserve moist enthaly

E = CﬂT + qu,

whereC, is the heat capacity at constant pressliis,temperature.,, is the latent heat of
vaporization, and is specific humiditynot only does the convection require a removal
of water vapofrom theparce| but that amount must be directly proportional to the
change in temperaturdhis relationship must also hold for the depth of the convective
cloud, from the baspressurat the LCL Cyase 0 itstop pressuret theequilibrium

level, Ciop, as shown in Baldwiet al.(2002) such that

Coaze Ctop
f L Agdp = f C,ATdp
Crop Chasze

Therefore, the availability ahiddle and upper troposphernwisturefor deep
convective processes is a factor in their strength, effectiveness, and longevity, because as
environmental temperature irases aloft, the stability increases and parcel buoyancy
decreasesln fact, it has bendemonstratethat tropical convection is respondent to mid
level moisture, as found in Shepherd et al. (2001) and Thompkins (2001). This is also an
observation whiclhas been incorporated into the K&ntsch(KF) convectivescheme
(Kain 2004) andfurther confirmed by Knupp and Cotton (198&hich found that

environmental humidity is an important factor in assessing downdraft streRughKF
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scheme is the conveot parameterization of choice in this study to allow the model
solution to indicate increased sensitivityaasonsequenaaf differential moisture

resulting in vertical mass fluxes.

c. Advanced Research WRBNfiguration

The Advanced Research WRF (ARW(udions are fullycompressible and cast
in flux formas described in Skamarock et al. (2008he configurations non
hydrostaticfor experiments conducted in this study. The vertical coordisdégrain
following and based on dilyydrostatic pressureithh a constant pressure surface at the
top of the model. A horizontal Arakawadtid staggering is applied with a thioider
RungeKautta time integration schemdn theARW6 s moi st E therearenequat i on
moisture source terms in the mass consmmwaquation. e dry air mass remains
coupled to the prognostic variablesomentumpotential temperaturgeopotential,
pressureandinverse densitywith the conservation equation for dry guiding the

solution The moistequationsas shown irskamarok et al. (2008)assume the form

OU + (V - Vu) + paad,p + (a/aq)0,p0-¢ = Fy
OV + (V- Vu) + paadyp + (a/aq)Oypdy¢ = Fy
W + (V - Vw) — g[(a/aa)Oyp — pra] = Fww
3,0 +(V-Vl) = Fg
Oepg +(V-V) =10
0.6 + g (V- V) — gW] =0
0 Qm + (V- Vgn) = Fg,,

for a threedimensional coupled (via scalar multiplication with dry hydrostatic pressure

differencepy) velocity vectorV with componentsJ, V, andW, conventional components



of velocityu, v, andw, pressurg, geopotential , coupled potential temperatugte
conventional potential temperatufegravityg, coupled generic mixing ratid3y,
conventional generic mixing ratiag, and forcing termg.

In these equationslis theinversefull parcel density. Th@versefull parcel
density, which contains the reciprocal of the surthefproduct of dry air density with
the model water species mixing ratansd unity is a coefficient to the pressure gradient
termsand horizontal geopotential gradient ternis addition, each wisture species has
an advective component and time tendency equal to the forcing Tdrishformulation

also uses a diagnostic relation foe full pressure expressed by

wherepy is the reference sdavel pressurd} is the inverse density of dry aif, is the
moist potential temperaturBqi s t he gas constant for dry
capacities for dry air at constant pressure and volume.

Early versions of th&RW dynamial core met some criticisfor the use of
RungeKautta transport integration with a flux divergence operator that was conservative
but did not assure positive definiteness. Positive definiteness of moisture variables is a
natural physical constraint (i.e., negative mixing ratioshatepermissible) that is not
necessarily easilgnforcedn a finite-difference timestepping algorithm. Recent
versions of thé@RW dynamical core, used in experiments conducted here, have
additional capabilities which apply a positidefinite flux renemalizationto conclude
the RungeKutta transport Skamarock et al. 2008 The scheme and effect on the model

solution is explained in Skamarock and Weisman (2009).

ai
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FLUX RENORMALIZATION

The application to the problem at hand in these experiments is evigeaor to
developing a scheme that enforced positive definiteness of the moisture variables, water
masswas not a conserved propertgkanmarock and Weisma(009)were able to
demonstrate that the use of a flux renormalization, also known as a pdsitivéeness
limiter, had sizablg@ositiveimpact on precipitation forecasts, though it did not eliminate
the positive bias t&RW precipitation forecasts. Without the renormalization, liquid
cloud water was a substantial contributor to artificial, nucaly-generated moisture.

While the WRF provides configurability to force negative quantities of the moisture to
zero,this correction leads to an increase in the mass of water, both of that species and the
speciessummed, total quantity.

While Skanarock and Weismar2009)focused on the influence of flux
renormalizatiorto precipitation resulting froraxplicit convectionthe findings are
relevant to the simulations conducted as part of this study despite the use of a convective
parameterization with lger grid spacing than adequate for expkahvection.

However, convectivparameterizations are the numerical forcing behind the precipitation
when they are applied. Parameterizations are designed to inhibit numerical, unphysical
instability in the modl, not accurately produce precipitation.

Furthermore, flux renormalization does not resolve all sources for moisture error
within the model.Skamarock and Weism#&a009)introduced a process which
conserves water mass at each species instead of thestot@hed quantity. The result of

this is that phase changes may be artificially limited despite the fact that the total water
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mass is conservedn addition, each scalar moisture quantity is advected independently
and there is no articulated constrainthw the dynamical core that connects the scalar
moisture variables. As such, the moisture budget, and consequently, the entropy budget
are not without lingeringources foerror. Mixing parameterizatioredso bear some

responsibility tathe precipitatbn bias (Skamarock and Weisniz009.

CONVECTIVE SCHEME

The WRF simulationsn this experimenall utilize theKF convective
parameterization, which is a mass flux scheme, and thus requires an adjusted response
based on the grid scaling. The closure ffigr KF scheme is convective available
potential energy (CAPE). This is an important source for latent heat release, and thus,
accumulated convective precipitation. It has been shown in Kain and Fritsch (1990) that
the normalized vertical mass flux varggnificantlyd by a factor of twé in the upper
troposphere for changes of relative humidity between 50% and 90%. This sensitivity is
critical because, for cold temperatures, the amount of water vapor mixing ratio required

to adjust the relative humidity ot particularly substantial.

3. Data and methodology

The canfiguration of the models in this WRF transition experiment weshded to be
easily duplicated in the fields part of the EMSThe dynamicgoreand physics
packageshosen fothe ARWruns clogly match those from tHecal WRFmodel used

at that NWS office in Milwaukee, Wisconsin. Table 1 outlines the core configuration.

The WRF code used for simulations throughout the study was version 3.1.1.
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The doman selected for the simulations svaverthe north central United States,
including the Northern Plains and Upper Mississippi Valley. Odmbert Conformal
grid containedLO0 grid points in each horizontal direction wattpuatareaspacing of 20
km to minimize the time to compkeach simulatie. The domain wathus square with
2000 km on each boundary and 45 vertical levels up to a model $0phéfa. The WRF
model runsavereinitialized twice dailyduring the experiment periat the standard times

of 00 and 12 UTC and executed out to 36repautputting every ho.

a. Configuration of control and experimental WRF runs

Therewas one control and twexperimental WRF runs, all of which utilida
MODIS sea surface temperature composite for water grid pdlaises et al. 200@nd
soil moisturefrom the operational O-8egreeGFS distributed by NCEPSoil
temperatureandthe source of atmospheric properties weliéferent based on the run.
Temperature, wind, relative humidifywater vapor mixing ratio)cloud water mixing
ratio, geopotentiaheight, and surface presswerepre-processed by the WR#fior to
each unique model simulation. Additional moisture information was available for the
first experimentatun (WRFY). As part of the WRF preparation process, input model
fields were interpaltedboth vertically and horizontallyp the WRF grid, which resulted
in some minor smoothing to the analysis.

Thecontrol run, herein referred to ¥RFX, contairedICs and boundary
conditions (BCs) from th&FSexecuted six hours prior to the experimiantialization
time. Thus, the skhour forecastrom the GFSwvas used to initialize the WRFX run.

Lateral boundariewereforced every three houfsom the same GFS rurMoisture
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components of the GFS initial and boundary conditiwerserelative humidty and cloud
water mixing ratio.

Thefirst experimental run, herein referred toRFY, containedCs and BCs
from a CRAS simulation run on @axpandedt5 kmgrid with an identical projection,
allowing lateral boundarie® beforced hourly. Moisture intialization in the WRFY
camefrom four mixing ratios produced by the CRAS {ioeecast procedure: water
vapor, cloud water, icevater, and rain waterThe CRAS utilzed only one cloud mixing
ratioand one precipitation mixing ratio, however. The foifithe water carriedi the
CRAS mixing ratio arrayw/as a function of the temperaturéheywere classified prior
to being served to the WRF preparation process as ifjma.background for the CRAS
simulationwasthe same GFS ruas used in the WRFX run.

Thesecond experimental run, herein referred toV&3-Z, usedthe ICs froma
i c ol dCRASiIaitialthour assimilatiobut BCs from the previous GFS ruas in the
WRFX. Like the WRFX, the WRFZ uska sixhour forecast from the GFS as the IC
background.The WRFY took advantage of the CRAS pferecast assimilation of GOES
Sounder retrievals intothe ICs whi ch i s commonl.yTheRMRBAVN as
took advantage of the Sounder retrievalsich improve the moisture analysisly at the
initialization time. Moisture initialization in the WRFZamein the form of water vapor
mixing ratio only.

The purpose and configuration of the WRFZ run was strictly to assess whether the
updated moisture analysis would havarapact on shorterm forecastsfanoisture
related variables: relative humidity, total precipitable waI@&Ww), and accumulated

precipitation. In contrast, the intent of the WRFY experiment was to see whether the
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CRAS could build an analysis which could outperf@simple assimilatia technique,

or no assimilation at all, sinceé¢ CRAS was developed to assess the impact of-space
based observations on the accuracy of NWP solutions. Producing forecasts using
parameterizations antdchniques which explo&nd give merit tanformationfrom

satellites, particularly the GOES Soundeas thus a necessactpmponent of the project.

b. Building analysis from GOES Sounder retrievals with CRAS

The CRASpre-forecast procedure contaitha 12hour spinup forecast to
initialize water vapor and cloudom the GOES Sounder The retrieved cloudnd
water vapor mixing ratiogere inserted into the spimp at the median time of the
Sounder scanCRAS physics and dynamiegere run following each insertfThe
iterativeprocess physically instaated the rerievals in the modeled atmosphei&he
CRAS uss a semiimplicit time stepping scheme described by McGregor et al. (1978)
with a thirdorder time filter (Raymond 1991). The advective fahthe motion
equations follow Leslie et al. (1985) with horizéal moisture and precipitation
advection included. In lieu of horizontal diffusjansixthorder tangent filters applied
(Raymond 1988) to preserverizontalgradients.

While not the emphasis of this study, the CRAS dynamical and physical schemes
mustbe considered in light of their role B3s andBCs forthe WRFY experimentalin.
The CRAS modifieshe background for the retrieval assimilation during thefprecast
spinup usedorior to the initialization of th&/RFY. A modified Kuo convective
paameterization is uskin the CRAS (Raymond and Au803). Cloud is distributed

between the base and top as defined by the environmental static stability. Only deep
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convection is parameterized. There is no moistening of the column due to deep
convectia, and no shallow convective scheme. Monvective sublayers are used as
the moisture source for subsequent convection. The explicit cloud and precipitation
microphysics follow Raymond (1995) with phase diagnostics from Dudhia (1989).
Sundquist (198%rticulates the collisicicoalescence, precipitation, evaporation, and
autoconversion methodologies. The relative humidity limits for cloud evaporation are a
function of temperature, with cloud condensation allowed for relative humidity values of
less han 100% in the boundary layer. Sintdger cloud fields are the result of a ron
local turbulence scheme with vertical turbulence exchange derived frotheoky
method with a turbulent kinetic energy parameter. Liquid cloud sedimentation is from
Lee (1992) and ice cloud sedimentation follows Heymsfield and Donner (1990). The
CRAS model is pseudoon-hydrostatic with parameterized ralrag (Raymond and
Aune1998).

Besides cloud retrieval products which build or clear cloud mixing ratios in the
model cbmain, here are thredisjoint layerintegratedropospherid®W products from
the GOES Soundsr Theycorrect the water vapor in the modielring the preorecast
procedure At the end of the spHap, the initial time of the simulation, the gmour
forecasts of temperature and wind from the operational GFS run six hours prior to the
start time are merged with the respfithe moisture assimilation. h€re is no adjustment
made to the background grid points not observed by the SouRdieexample,here is
no GOES Sounder coverage for some Canadian portions of the experiment déeonain.
the WRFY, it is possible for upstream GOES Sounder observations to influence the

solution during the model executidne toanexpanded CRAS parent domain.
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c. Summary omethodology behind GOES Sounder moisture retrievals

The procedure which builds the retrieved paranfetea clear field of viewout of

the raw GOES Sounder observations is described in Li et al. (2008). The full retrieval
algorithm consists of a regressicomponent andphysical component. Prior to the
enhancements by let al.(2008) a NWP model forecast profile was used as the sole first
guess for the physical iterative approach. The linear regression procedure developed by
Li et al (2008) to praduce the herein referred to as Li retrievaisedthree primary
predictors: brightness temperatures, forecast profiles, and surface temperature and
moisture observations. The nonlineaygbal algorithm closely followeia et al.
(1999) the legacy proedure for extracting quantitative water vapor information from
infrared radiancginto the herein referred to as Ma retrievalfiere wee some changes,
however. Beyond the iterativelgeveloped temperature and moisture profilest al.
(2008)produeda training database consisting of collocated radiosonde observations,
GOES12 brightness temperature measurements, and GFS model profiles for a period
from June 2003 through September 2@B4twas used tareatetwo covariance matrices,
one for the regession and the other for the forecast. This training database was also used
to reduce the bias between the observed radiance and the calculated one. uldie/eum
result of the changes letter lessbiasedTPW Li retrievakto the amount 0.4 mm

compared to the legadyla retrievals (Li et al. 2008)

d. Incorporation of theclearretrieval into the modesimulated atmosphere
For a cleaisky Sounderetrievalwithin the CRAS model domainwater vapor

adjustmerg areperformedusing the background. Asmpaf this process;loudis
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removed from the préorecastanalysisf present. If not, the mean &ckground mixing
ratio profileis cdculated and the perturbatioae removedut retained Subsequently, a
strong constraint, ordimensonal variationaimethod adjustthe mean profile using the
power functiomapproach from Smith (1966) to match thater vapor mixing ratio from
the GOESSoundePW retrieval Then, he perturbationare added back into the
adjusted profile.During this procedure, rdige humidity at any onesvel within the
layeris not forced beyond 95% orderto assure clouds do not immediately develop in
the model and thusnforce the cleasky condition required to make the retrieval. This

method is beneficial to retain tisgucture of thetempeature profile and lapse rates.

e. History of the approach
Incorporating remotehgensed retrievals W into numerical analyses and

prediction systems was first demonstrated in the early 1990s. Kuo et al. (1993)
developed an analytic relai@n scheme for assimilating TPW retrievals from greund
based profilers. In 1994, Filiberti et al. demonstrated positive results with assimilated
TPW retrieved fronthe Special Sensor Microwave/Imag@8SM/I) radiometeusing a
onedimensional optimal irrpolation techniqueThat technique involved a statistical
constraint on thenodel while updating theertical moistureprofile from the analysis as a
result of the SSM/I observatiorBecausd®W is an integrated quantity, the methods in
Kuo et al.(1993 and Filiberti et al(1994)required a backgroundertical moisture
profile that wa revised with the retrieved estimate. This was a philosophy first explained
in GalChen et al. (1986) for improving temperatures in NWP analyses from satellite

retrievak.
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The mid1990s led to té first assimilation studies involving retrieved properties
from GOES instruments. Vertically integrated moisture retrieved from observations
taken withthe Visible/Infrared Spin ScaRadiometer (VISSR) Atmospheric Sounder
(VAS) on GOES7 was among the first derived quantities suggested for inclusion as part
of a numer i foeetasconstdiciondimne 1994 Starting with the Sounder
on GOESS, three separateW retrievals were possible at a nominal 10 km resolution
courtesy of three water vapor channelie specification of the GOES Sounder has not
changed since therSoundermretrievals are generally available hourly. order to
assimilate this water vapor information into the CRAS, it was necessary to develop an
approach that maintained the integrity of background vertical moisture gradients while
adjusting the bulk properties observed by the GOES instruments. Ralyicuiportant
in this process wathe realization that, for some tropospheric water vapor otatens,
the origin ofwater vapoemissia observed by the sensor is in the middle and upper

troposphere.

f. Assimilation procedure
With the GOES Sounder still operational toddng assimilation strategy
developed for the CRAS #ill a formidable methotbday Prior to the beginning of the
PW retrieval assimilation procesan analysis is obtained from a previous mode] run
which depends on the length of thefweecast assimilation. For the WRFY, the first
analysis in the préorecast iSrom the opeational GFS run initialized 12 hours prior to
the start of thsimulation The WRFZ uses the shour forecast from the operational

GFS run six hours prior to the start of the WRHAe preforecast atmosphere from the
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GFS is treated as an analysis ardves as the background for the GOBBretrieval. It
is possible to approximate a mean profile of mixing ratio ftioisimodel background,

using a power functioapproach described by Smith (1968Yith the Smith approach,
the mean mixing ratio at agssure leveb, is calculated from a surface pressyxg and

background surface mixing rafws,

)
whereads aninteger between 1 and 3. Taeponentais incremented by one until the
PW backgroundPW, is proportional to theolumnintegratedjuantity consisting of
mean watevapor at each pressure level. Hoeinds of integration aependent on the
depth of theetrieval. During thredayer PW assimilation, as used in this experiment, the
integration is bounded betwesigma levels in the C&S as determined frorthe layer of
the retrieval: 1t0 0.9, 0.91t0 0.7, and 0.7 to Q8yers are processatarting with the
the lowest sigma layand ending with thapper sigma layerFor each of these three
sigma layers, the meamixing ratioprofile is removed fromhe background but retained
for asubsequent adjustmenthe result is a profile of mixing ratio perturbatiasase
reapplied following the adjustment

The retrieved values are brought to populate the model grid using the recursive
filter analysis (Hayden and Purd®95). Such an analysis combines multiple retrievals
near a model grid point where the grid spacing is greater than the retrieval dansity.
local quality check is performed within each grid cell to identify outliersciwhre

omitted from the sample. In addition, observations are omitted when the difference

between the background surface pressure and the retrieval surface pressure is greater than
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10 hPa.The background mean mixing ratio profile is thgratedbased oran

adjustment oin the previous equatioto achieve a balangEWs = PWsoes — PW5'

betweerthe mean background integratew/, FWs, andthe difference betweeneh

bounded and averagedantity? Weozs from the retrievalsnd the mean background

perturbatiorPW, PWs'. To complete the asmilation, the perturbation mixing ratios are
added to the adjusted mean mixing ratio profile. Then, a quality check is performed to
assure there is no saturation. Any residual moisture is transferred to the top of the
bounded layer for use in tlsebsguent layer calculationTo this end, the purpose of
applying this method is to increase or reduce moistnilaterally over the entire profile

and not to alter vertical moisture gradients already present in the model.

g. Critique on likelihood of success

This method does not evade criticistdnlike most multidimensional variational
approaches, this ordémensional approach does not consider systematic or random error
in the observations or the model forecasthile good, Li et al. (2008) demonstratedith
the retrievals are not without biag/eather model forecasts are not improved as a result
of assimilating additional observations where the random error of those observations is
more than the a priokiasin the background foreca@utmanet al. 2004. Without this
consideration, it may be difficult to expect an imypement from the assimilatiorin
addition, this technique does not necessarily preserve horizontal gradiegtrieved
PW outside of the recursive filter used to combine multiplaeedlsin close proximity
Still, there is no redistribution of moisture between adjacent grid pehitd would

purporta water vapor mass conversation constrawet a fixed areaThis would be
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difficult to implement on a regional model, howevercdigse rass fluxes exist at the
boundariesvhere the budget would be essentially uncontrolled.

Considering this, it is appropriate to speculate that this assimilation process may
be better for model gridoint spacingdistance largerthan the retrieval desity. A larger
extent of the filter tgically results in a smallempact ofrandomerror during the
assimilationsince more retevals would produce the mean profil&till, this logic is not
straightforward because numeaiartifactsin the modelsud as finite differencing
formulations whichincorporae diffusion, and other parameterizationdich assure
numerical stabilitywork to smooth the madi solution, particularly for features with
local minima or maxima covering a small number of grid pomusr a fairly sha
period following the time of assimilation, at or before the analysis

The GOESL3 Sounder moisture retrieval correction can be seen in Figure 2,
which compaes the model background at WRitialization time to a radiosonde
soundingrrom International Falls, MinnesotéKINL) at 12 UTC on 13 November 2011,
and Figure 3, which compares the retrieadjusted profile to the same KINL sounding.

In this case, the retrieval adjusts the moisture profile much closer to the observation than
the background. The primary adjustment to the moisture profile occurs in the middle and
upper troposphemnghere the Sounder weighting functions pedkere is no change to

the temperature or momentum figld part of the assimilation scheme

h. Adjustmentsiue to cloudy fields of view
The assimilation of clouds into the pi@ecastwas first demonstrated in Aune

(1996) andollows the approach from Bayler et al. (2000 this study There are two
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GOES Sounder products that are part of the cloud assonilstheme: Cloud Top

Pressure (CTP) and Effective Cloud Amount (ECA). The ECA is an indicator of the
amount of cloud mass to add to the model grid. Cloudgxisting in the model are left
unmodified if the CTP concurs with théiorizontal and vertal placement.For a cloudy
background where the cloud height is lower than the retrieval CTP, the cloud is adjusted
to match the height from the Sounder retrieval. Modeled clauddeight greater than

the retrieval CTP are cleared. When the backgtasiiclear in the presence of an

observed cloudhe relative humidity is adjusted and a new cldedkis built consistent

with the CRAS cloud physics.

i. Experiment domain and justification
The domain selected for the experiment cont&i@dES13 Sunder iput for the

United States grid points, and adjacent points in Canada approximately south of 50
degrees North latitude. The intent is to capture the consequence of resolved moisture
gradients, requiring numerous clear fields of view from space, in wealk @osoutherly
flow, typical of summertimand early falimid-latitude patterns. Northerly winds
typically introduce cool, dry, and stable air into the northern United States, so potential
for notable impact in these regimes is not anticipated, espesigtiout Sounder
coveragen the far northern portion of the gridVeaker winds are also ideal for this
simulation so that the BCs do not control the solution early in the simulation. A-winter
characteristic strong 26Knhot jet streak will overtake thentire grid in less than six
hours. For a mean flow speed of 20 knots, the domain is completely forced by boundary

conditions after around 55 howstsimulation However,deep moisture is traditionally
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observed irthe early and mid summer. Thus, watapor weighting functionat the
wavelengths sensed by the GOES Sounder are likely to peak higher in the troposphere

than in the late summer and early fall, when drier air filters out of Canada.

. Initial evaluations

The initial investigation on this domawas to assess the consequence of different
moisture analyses on precipitation predictions, especially when strong convective
elements were involved. To show this, a series of six WRF simulations were initialized
at 00 UTC 31 August 2010 in the basic ARWhfiguration explainegreviously with
the exception of a fidayer thermal diffusioimethodas the langsurface scheme. Five
of the simulations contained initial and boundary conditions from the GFS. Three of
those simulations had relative humidity difced to 90% of the outputted value in one
layer for both the ICs and BCs: surface to 800 hPa, resulting in a layer mixing ratio
decrease of approximately 1.25 g/kg in the ICs, 750 to 400 hPa, resulting in a layer
mixing ratio decrease of approximately30 g/kg, and 350 to 100 hPa, resulting in a layer
mixing ratio decrease of 0.01 g/kg. One of the simulations contained 90% of the relative
humidity from GFS initial conditions across the entire depth of the atmosphere, an entire
atmosphere average mixingtio decrease of 0.23 g/kg in the ICs. The fifth simulation
contained the GFS initial conditions with no change. The sixth simulation was from the
CRAS. BCswere forced every three hours out to then®@r simulation length.

Figure4 shows the compaon of the 3éhour accumulated precipitation between
these model runs. Note the difference in the amounts between the GFS simulations

despite the same coverage patteFhe most sizable impact in the precipitation forecasts
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came from the decrease in théial water vapor in the lower levels of the GFS.

However, the decrease in relvel moisture also played a prominent role in decreasing
precipitation amountsEven the relatively insubstantial change to the upper tropospheric
water vapor decreased fage convective precipitation along the southern extremity of
the precipitation bandThe overall meanrelativedistribution of the precipitation is the
same among all of the GFS rurtdowever, he CRAS simulatiosuggests the maximum

in precipitation @er a different area than the GFS. Precipitation output from NWP
models is traditionally spatially distributed and lacking in sharp, reliable definition,
because, as in this case, convective precipitéiksas the result of parameterizations

which keg the model numerically stable

4. Precipitable wateresults

In assessing the value of the GOGESSounder retrievate the WRF forecast it was

first necessary to examineetimprovement to thBW analyses initializing the model

runs Not only was the eor of the control compared to the experiment, but the NCEP
operational models were verified against point observations as well as-GO&Sunder

PW retrievals The subsequent evaluation focused on the impact of the retrievals on
forecasts, in 1-hour incements, through 36 hours, for each of the simulations, the

control and both experiments. There were several fields that were examined in the latter
portion of the evaluation: 1Rour accumulated precipitation compared against the NCEP
Stage Il precipitaibn analysis, 700 hPa and@BPa relative humidity compared against

the NAM analysis, total sky cover compared against the National Digital Forecast

Database (NDFD)-br forecast and NAM analysis, am&@W compared against the
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NAM analysis and poinGlobal Positioning System (GPS) integrated precipitable water
(IPW) observations.For comparisons involving NANMhass field (relative humidity,
TPW, and sky coverstatistics were computed fgrid points within the interior of the
domain;for those involvinghe NDFD, statistics were computed for grid points within
the continental United States in the interior of the donfairthose involvingGPSIPW,
statistics were computddr TPW at grid points neahe observatiorsites;andfor those
involving theStage Il analysisprecipitation verificatiorwas computedbor interior grid
points observable by thén i t e d Wé&ather Swrveiliance Radar 88 Doppler (WSR
88D) network. Infigurescontaining mapsthespatial coverage of verificatidor that
specific vaiable and observing platform is outlinedred. Interior grid points weresed
for the grid verification of the model domain instead of all eligible grid points to discount
anyBC and WRF blend zone influences from the resulise Model Evaluation Tols
(MET) package, version (http://www.dtcenter.org/met/useysivasused to compute the
statistics. The primary statistics used to assess performancemeag absolute error
(MAE) androotmeansquare error (RMSE)

The evaluation period consisteti21 times between 00 UTC on 28 September
2011 and 00 UTC on 8 October 2011. This period was clios&oth dry and moist
regimes. In addition, most precipitation was the result of-fwetied, kinematic
processes rather than thermodynamically drivEme objective was to establish whether
a remotely sensed, integrated quantity could be adequately analyzed te a three
dimensional grid and produce favorable results in sfeomy forecasts, under 36 hours.

The growth of th&GPSconstellation of navigaticaiding satellites has spurred a

unique approach to assessing atmospheric water f@pegrification purposesGPS
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satellites transit radio signals to receivers on the ground. This signal is disturbed by

moisture concentrations in the troposphere. Thigmn o me n o n , known as fwel
has been found to be nearly proportionah@IPW between the satellite transmitter and

the receiver (Askne and Nordius 1987). The
estimate of PW is explained in Duan et al. (199Buan et al(1996)compared the

accuracy of the tr acalalatorsoreedsurénfets fibrwawaterd el ay 0
vapor radiometer during a May 1993 field campaign in the Southern Plains. The

observations suggested that the GP®/ technique estimad water vapor with RMSE

of 1.0 to 1.5 mm. Duan et §L996)commented that there are theoretical cases in which

the error of GPSPW estimates may prove larger, but these situations, which involve

concentrations of large wateoated, ice particlesccur infrequently in nature.

a. Error of NCEP operational model analyses compared to-GRS
The first assessment was a comparison of &/ MAE among the NCEP

operational modelwhen validated with GR8W observationsthe NAM, RUC, and
GFS. The MAE wa calculated based on approximately 70 GP® sites within the
domain. The sites uséadr each verification timgarieddue to availability of the
observation, and weret equidistantlyr randomlyspreadacross the grid. There vee
portions of the vefication domain where the GPIBW observation network vgalenser
It is possible that the GPIBW results may be geographically biasedertainregions
and cities For examplethe state of Michigan has arou8 functioningGPSIPW sites
Each GPSPW observation was compared to the nearest grid plirthis comparison,

it was found that thBlAM had a lesser mean MAE than the RUC and the GFS had the



27

highest MAE. Table 2contains the mean MAE and RMSE for the three operational

NCEP models. Figurg shows the trend in performance based on MAE and RMSE over
the experiment periodn general, the NAM MAE was less than the other two models for
all but three of the 21 evaluation times. That is, the NAM had the lowest MAE compared
in this fashion foB86% of the times. This result was not surprising because the NAM and

RUC both assimilate GRIPW measurements, while the GFS does not.

b. Error of experiment and control WREhalysesompared to GP-EPW

Anotherinvestigationcalculatedhe meanTPW MAE for the experimental runs
compared against GH8W during theevaluationperiod. There was not a discernible
leader as indicatd in the mean MAE and RMSE over the period shown in Tabl€he
difference in mean MAE over this period between the best perfotheeYWRFX
(control), and the WRFY was 0.03 mmhé&'WRFY had the lowst MAE for 38% of the
21 periods;the WRK had the éwest MAE for 33% of the periodsand the WRFX had
the lowest MAE for 28% of the periodsas shown in Figure 6, which also indicates a
similar trend in the ruto-run RMSE during the experiment perio@ihe inconclusive
results wee likely due to the poor spatial heterogeneity of GP% sites across the
domain compared to theagnitude of the correction. Because of thig possibldéhat

somehorizontal moisture distributiorfavor one analysis over the others.

c. Error of experiment and control WRF analyses compared to GCE$trievals
A second comparison wasime computing th@PW MAE for analysesgainst
the GOES13 Sounder Ma ragvals using the same methodology as described previously

for pointwise comparisonsMa retrievals in clear fields of viewere used in the
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comparison;fere was no comparison conducted in cloudy fields of viewthermore,
the GOES Sounder does noas@bove approximately 50 degrees North latitude, so the
majority of verified grid points were within the United Statd$ie result of th8 method
was that geatest errors weltkely to occur in locations where a PW retrieval was made
in clear sky buthe nearest analysis grid point was cloudy. This saacceptable
procedure because, despite weaknesses for low clouds and thin high clouds, the GOES
Sounder observations have been heavily utilized to assess whether cloud exists in the
creation of clouetelated product¢Schreineret al.2002. In this case, it was found that
the WRFZ had the lowest mearA compared to the WRFX and WRFYable4
contains the mean MAE and RMSE calculdtmdthe WRF rungising the retrievals as
truth. Figure 7 shows thren-to-run trend in theIAE and RMSE over the experiment
period. The WRFY and the WRFZ contain GOHES Sounder Li retrievals in clear fields
of view. This statistic confirms that the Sounder retrievals are assimilated into the
experimental runs. It alsodicates that, if the GOES Sounder retrievals are more
accurate than the GFS background, then the WRFZ analysis, in general, is more accurate
thanthe WRFX (control). Ongoing research indicates tivatr the experiment peripd
for all retrievals, everhbse outside the experiment domaoinpared to GREW
observationsthe GOES Soundéi and Maretrievals exhib#d morebias than the GFS
background analysi&s. Wade2011, personal communication

It is not surprisinghat the meaidPW MAE is notclose to zero, because there
were differences between the assimilation method and the comparison. Beyond the

difference in technique between the Li retrievals assimilatéokming the WRFY and
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WRFZ analyseand the Ma retrievalgsedas truthin the compasons theassimilated.i
retrievalswere averaged around each grid ppwltereas during the comparistin
calculateMAE, each retrieval wacompared against the nearest grid pdurthermore,
for grid points near both cloudy and clear retrievals, thestéed profilemayhave
contairedboth retrieval cloud andater vapor influences. Such a profile may be starkly
different in water vapor content to a nearby clear field of view retrieval which is
compared against it, which would increase the errasly, there is a slight loss of
precision to integrated quantities suchT&W when the WRF runs are initializedth
pressure surfaces in composing the initial troposphericlstataise layers are derived
from interpolation between leveld his tends téead to a smoothing of atmospheric
moisture profiles in the verticdimensiondepending on the depth between pressure

surfaces in the ICs

d. Error of NCEP operational model analyses compared to GOE&trievals
In conducting pointwise comparison®detweerMa PW retrievals from the

GOES13 Sounder and model grid points, it was found that the GFS had the lower mean
MAE during the evaluation period, whereas the RUC had the highbstsame
methodology was used as discussed previouslyhis comparison,dwever, the GFS
initialization had the lowest MAE only 57% percent of the time during the pefibd.
trend of MAE and RMSHor the NCEP operational model analys&sr the experiment
period is shown in Figure 8Theabsolutedifference between the GFEEANAM mean
TPW MAE was only 007 mmwith the Ma retrievals as truth, compared to (88 for

the GPSIPW comparisonwhere the NAM analysis showed less error against the GPS
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IPW network Mean MAE and RMSHalues for the NAM, RUC, and GFS, are shown in
Table5. TheTPW MAE of the GFS appeared to outperform the NAM and RUC when
there were morelearskyretrievals available for comparison. That is, the GFS MAE
wasthelowest of the modelsvolved in the comparisowhen theverificationcontained

a smalle fraction of cloudy observatiorthan clear fields of viewAs a general trend for
all models compared, theiPW MAE was lower when the domain wekearer and thus
likely drier.

The better GFS performantseexplainable becausiee GFS wa used as the first
guess for the GOES43 Sounder retrievals. However, the GFS ansiysed fothe
retrievalbackground was not from the same GFS run & wexified against. Thiallows
the possibilitythat the previous forecast wased as a background tbhe subsequent
GFS run, and theiwas producing desirable results for the Giv@ralland a discrepancy

compared to the GRBW resultsverifying the same quantitipr the operational models

e. Case study
The analyses from 00 UTC 8 October 2@té shown irFigure 9 In all

analyses, the position of the presumed frontal struettn@ss the Northern Plainss
almost exactt the same. The WRFZ analysisstass smooth than the other analyses
due to the individual disparities between spatially close retrieWdls.moisture
assimilation does not change the momentum fields, so tkenkiics in the WRFX and
WRFZ werethe same at the analysis time. Momentum fields from the CRASanaey
modifiedthe WRFY prediction beyond the analysis (initialization) timaich isthe last

time the GFS wind fields are merged with the-fanecast spirup. The comparison
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between the WRFX and WRFZ analysis indicates that the result of the retrieval
assimilation was to increase moisture acrossak@klahoma and eastern Kansas, and
slightly decrease moisture in Minnesota and far southwestern Qnratimok atFigure
10shows how TPWorecasts for that analysis time developed with subsequent model
runs and the inclusion of the GOES Sounder moisture retrievals. The WRFX and the
WRFZ have thesame boundary conditionso it wa expected that the 3®ur forecasts
would be approximately the samin this case, the 2Aour forecasts weraso quite
similar. Differences wer@vident in thel2-hour forecasts where there wasincrease in
integrated moisture across southern Minnesota and western euvthermore, there
wasa slightly moister regime in the WRFZ compared to the WRFX well preceding the

moisture plume, over Michigan.

f. Error of experiment and control WRF -tdur forecasts compared @PSIPW
The aforementioned casesrepresentative of the mean quantitative results over

the experiment period. Using GHSW pointobservationsthe 12hour forecast
comparison indicatethat the WRFAarrowly outperformethe WRFX with a lesser
mean MAEfor TPW by 0.05 mm.Table6 compares the mean MAE and RMSE for the
WRF simulations.For both the 24our and 3éhourforecass, the WRFZ and WRFX
performed statistically about the sgméth a mean MAE difference no greater than 0.01
mm. During this perid, theTPW MAE was lowest for the WRFZ 1Rour forecast nine
of 21 times, or 43%. This w8an comparison to the WREMhich had the lowest MAE
only five of 21 times, or 24%The WRFY had the lowest MAE seveh21 times, or

33%. WRF tends for MAE and RISE over the experiment period are shown in Figure
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11. This indicates that the WRFY analysiss compative, but occasionally exhibiteal
higher MAE forindividual misses than .w"WRFX and WRFZ, which increaséd mean
TPW MAE. Of particular interessithat the WRFY analyses exhibited a loWEW
MAE for four of the last five periods evaluated. Thehb®ir forecast PW MAE for the
WRFY was likewise the lowest for four of the last five period@is lends credence to
the already semindlolding that NWP is an initialvalue problem andchore accuratéCs

result in amore accuratéorecast.

g. Error of experiment and control WRF-tdur forecasts compared to NAM

analysis

In order to confirm the result of the point comparison, a grid analysis comparison
was aranged. The grid comparison used the NAM analysiEPW, which contains the
GPSIPW observationss input. All grid points within the verification area were
compared. The verificatiogrid and forecast gridiere collocatea@tfter reprojecting the
verification analysis This was completed through remapping and upscaling the NAM
analysis from its native projection and resolutiothiat ofthe experiment domain. A
bilinear interpolation was used as part of the subsampiMigF model output was not
re-projected. The meanTPW MAE calculated with this approadver the experiment
periodreached the same result as 8RSIPW pointwise comparison. Using the NAM
analysis and comparing all verification grid points, the WRFZ mean MAE was 0.04 mm
less than th®VRFX, which producedhe next lowesineanMAE. Mean MAE and
RMSE are compared in Tableand the trend throughout the evaluation period can be

found in Figure 12 The WRFY exhibited the worsheanMAE, but that was only 0.16
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mm greater than the WRFZ.h& performance of the WRFX and WRFZ at the 24 and 36
hour forecasts were not discerniblErends in MAE and RMSE are shown in Figufe 1

for 24-hour forecasts and Figure 14 fo8-Bour forecastsAgain, the difference in the
mean MAE was 0.01 mm or lebstween the twdor both forecast hours, as shown in
Table8 for 24-hour forecasts and Tabld& 36-hour forecasts The WRFY had a higher
mean MAE at those forecast hours, but still indicated some strength relative to the

WRFX and WRFZ during the lasw# periods.

h. Error of relative humidityforecasts compared to NAM analysis

In order to ascertain whether the GOES Sounder retrievals were able to improve
low-level moisture analyses, mean MAE was calculated for relative humidity at 700 hPa
and 850 hPa. Argl comparison to the NAM analysis was used for this inquiry
Radiosonde point observationsre@ot used for this evaluatialue to their limited
coverageand, more importantly, because the Sippican Mark IlIA GPS radiosondss in
at the NWS launch sitésvebeen known to produce a dry bias and the moisture
observations are fimeteorologically inconsi st
well-mixed boundary laygivanCleve and Kimowski2007) There is some evidence
that the vertical distribution ahoisture in NAM forecasts may also égoneousiue to
limited correcting observations over the continental United States in an@ygase
2011, personal communicationut a disparate analyssrequired However, the
differences between the mesiAE and RMSE, given in Table 1@ere far too small to
lead to any conclusive results. For examei@mining 1zhour forecastat 850 hPa, the

mean MAE difference of relative humidity between the WRFX and WRFZ was 0.12%.
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At 700 hPdor 12-hour forecaststhis difference was reduced to 0.02%ends in MAE
over the experiment period are shown in Figuselh both cases, the WRFZ slightly
outperformed the WRFX and WRFY. While thessults are consistent with theean
TPW MAE results, additional obseations or closer analysis would be required to
determine if this difference is meaningful or significtotrelative humidity

A case from 00 UTC 10 November 2011 demonstridieshangethat the GOES
Souncer assimilation process makes in produgmgWRFZ analysis The WRFZ was
used because differences between the WRFZ analysis and the NAM analysis can be
attributed solely to a single assimilation step. Figérelbws the TPW from the NAM
analysis for the case, in which a strong 4taitkude weathesystem is exiting the eastern
boundary of the grid. Figure7shows how the TPW analysis used to initialize the
WRFX comparedvith the NAM. There is ary bias over Lake Huron. In comparison to
Figure B, the TPW analysis for the WHZ, the WRFX analysisontains less column
integrated moisture. The GOHS Sounder water vapor retrievals and cloud adjustments
updated the analysis in the WREXZdecrease bias in that area

To determinewvhether the CRAS assimilation step adequately adjusted the
atmospherienoistureprofile in the correct location, 70Paand 850 hPa relative
humidity values were compared to the NAM analysis. These levels were chosen because
the cloudnesson theretreating side of the system was likely baisetthe lower
troposphereThiswas al so consi stent with the position
middle and upper tropospheric air into the systehich traditionally scowgice clouds

In addition,largedifferences in lowlevel relative humidity typically indicate meaningful
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water vapor mixing ratio added to or subtracted from the profitee 700 hPa relative
humidity analysis from the NAM is shown in Figur@ 1Compared to the WRFX

analysis, it is evidenhat that the WRFX exhibits a negative relative humildigs at 700

hPa over Lake Hurgmased orthe difference shown in Figure 20 here wa limited

bias over the Ohio Valley. In comparison, the WRFZ analysis and comparison to the
NAM analysis for this field, as shown in Figuz#é, suggestethe CRAS assimilation
stepproduced a high bias over the Ohio Valley as the result of cloud assimil&tien.

CTP can have a high bias when there is an inversion in the reference profile (Schreiner et
al. 2002). This manifests into greater moisture higher in the troposphere tthering
assimilation stepThe dry bias over Lake Hurpwhere sky conditions were clear for

water vapor retrievalsyas less.In comparison,hie 850 hPa relative humidity analysis

from the NAM is shown in Figure2 Figure 3 compares this analysis to théRFX,

which indicates a moist bias at 850 hPa along the Ohio River bordering Indiana, Ohio,
and Kentucky. The impact of the Sounder assimilation is apparent in Fgwizh

depicts a much smaller bias in that locatidime summary of this investigan is that the
CRAS assimilation step was able to correct moisture in clear fields of view, and in some

cloudy areas where the cloud asgation used the correct CTP.

i. Impact on precipitation
Anothersynopticscale weather system traversing the contindsnéaed States
provided acase on 8 October 2011, in which the adjusted TPW resulted in a clearly
advantageous precipitation forecabtgure 25shows TPW analyses for the WRFX and

WRFZ on this morningMorning TPW analyses from the WRFX valid 12 UTC 8
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October 2011 indicate integrated moisture of up to 8 mm greater than eaNa#lysis.

The WRFZ analysis with the GOES Sounder retrieval input exhibited minimal bias in the
moisture fietl, compared to the NAM analyser this same argas shown in Figre

26. The WRFZTPW MAE computed based on the GIH8N observations wal.58

mm, compared to 1.87 mm from the WRFX. This would have an impact on the quantity
of the ensuing precipitation over thebsequent 12 hours. Figurei@dicates that Wwile

the patial coverage of precipitation between the WRFX and the WRFZ was very similar,
the WRFZ produced less precipitation over south central Kai$esWRFZ

accumulated precipitatioAE computedbased on the Stage Il analysisswla48 mm,
compared to 1.65 m from the WRFX.Thus, he WRFZ amounts were more consistent
with the multisensor NCEP Stage |l precipitation analydise NCEP Stage Il analysis

is a multisensor product of accumulated precipitation which combinescbiascted
WSR-88D estimates whit gage measurements. The advantage is leveraging the spatial
patterns captured by radar with the truth amounts at limited locations within the radar
coverage area. Though not without criticism, this product is more actoaagn

analysis of one of itsomponents, with most notable improvement during the spring and
fall months when rainfall occurs on a larger spatial sehleh aids in correlatingage

measurements with radar returns (Seo 1998).

5. Cloud fraction results

The same effort has not been affed to develop a cloud parameterizatoiverification
analysisthat serves both operational and modeling requirements. Adequate cloud

representation has implications for NWP because clsttdegly control the radiation
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budgetin addition b their impotancefor transitions between water vapor, condensate,
and precipitation Furthermore, the NWS produce$oaecastereditedgridded sky cover
forecastas part of the NDFD fatheir public forecast package. This forecast takes into
account changes in cldicoverage over the celestial dofoean hour period This has

been challenging becauS&EP operational model output of total sky cover does not
meet this requirement. This has led to the development of heuristic approaches within
NWS offices which ar@ot well documented or teste@onsequently, NDFD verification

for total sky cover has suffered (J. Cra2€11Q personal communication).

a. WREF cloud fraction methodology
Xu and Randall (199aleveloped the cloud fraction computation for the WRF
based onlte notion that grichveraged condensate mixing rawonsistng of cloud water
and cloud iceis a better diagnostic for stratiform cloudiness than-gvieraged relative
humidity. The result is a coupling between the cloud frac@agion, cONdensat mixing

ratio, and relative humidifyRH:

—Fotu
[(1-RH)q,,]"

c _ RHk[l—exp( )], if RH=<1

froction ~

1, ifRH=1

whereg;, is the largescale liquid water mixing ratio argsis the saturabn water vapor

mixing ratio. The values &, by, andUwere determined empirically to be 0.25, 100, and
0.49, respectivgl This formulation indicates that the cloud amount varies exponentially
according to the gridveraged condensate mixing ratio, which is the primary indicator of
cloud fraction here. The rate of variation is a function of the@retaged relative

humidity.
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The cloud fraction is calculated at each point for eativemodel(sigma)level.
The cloud fractions for vertical columns are combined based on a binning approach,
where the final cloud fraction is assigned to a layer based grehtesftraction for one
level within the layer. The low, middle, and high layers are bounded by the surface, 642
hPa, 350 hPa, and 150 hPa. The final cloud fracthomputed for each of these layess
the mean of the valuegthin the vertical bounds

The averagin@f the three layers decases the overall sky cover, which is not
consistent with an observational perspective. For example, total coverage (100%) in the
lowest level but clear skies above, a common scenario where stratiform cumulus may be
expected, wouldead to a WRF cloud fraction of only 33%. This is contrary to the
working NWS definition which is forecast into the NDFBonsequeny, this
experiment pursued results fegrification of the total sky cover computedthe
traditional way as welhsin a maximum fraction method, where tirgal cloud fraction
is calculatedbased on the maximum value from all three lay#fst, this approaclvas
still underdone becausg totwo cloud fractions we negated. For example, if there
was widespread highreus above broken low clouds, the actual fraction from an
observation perspective will be the sum of the lower cloud fraction and the product of the
uncovered lower sky and the upper cloud fraction.

The WRF cloud fraction was compared to the NAMakskycover analysisas
shown in Figure 28 ThisNAM analysis, also based on the Xu and Ran(d996)
methodology, idgypically a bimodal product (either clear or cloudy), though there are

some gradientsThemicrophysical parameterizatigrartitioning anccontrolling
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interactions between speciessyaimarily responsible for the magnitude of the cloud

fraction. Furthermore, the computation of the NAM cloud fraction is not well

documented. Thus, intricacies in the calculation may evade analysis. Howenarse

cloud fraction is a component of the model 0s
not anticipated to be unreasonable from a lsameperspective The Xu and Randall
(1996)methodology was originally formulated for climate models, wiiaHditionally

havealarger spacing of grid points.

b. Motivation for CRAS cloud fraction

The cloud fraction computation in the CRAS was motivated to improve the sky
cover composites in the NDFD. The NDBRy grid, which is adjusted by a human
forecaster agach of theNWS offices across the country for a small subset that is the
f or e c llarearobrasponsibility (AOR), have diminished integrity as the result of
fractional discontinuities between AORs well as limited gradients within AORs.
Existing operational NWP modetio not provide a sufficient firgjuess for sky cover.
Relative humidity has traditionally been a substantial portion of the cloud formulation.

The NWS definition for sky cover is fAdthe
percen} covering thelsy valid for the indicated hoar(National Weather Service 2011)
There is no probabilistiopagamrp adeontld camd rMald
Craven 2010, personal communicatioifhe implication ighat the sky cover product
representsloud coverage of the celestidome (all sky visible from an adleeingpoint
observer).There is not an outright radiative component of the sky cover formulation

adopted by the NWS. Thus, the CRAS cloud fraction is not used and was natdntend



40
for radiative balances in the model; it is derived as part of thepposessing, parameter

calculations.I't i s a fApartly cloudyo scheme which d

c. CRAS cloud fraction methodology

The methodology for the CRAS cloud contration is based out of the fairly
loose constraints set forth by the NWS and is thus fairly ad hoc and founded on simple
physical principles. Teummarize this approacfor each model grid point, a cloud
concentration profile is calculated. The averagofile for the upper and lower
troposphere is based on the number of cloud layers, which determine the local sky cover.
Adjacent grid points are combined with the central grid point to form an upper and lower
celestial dome, with preference given te thwer celestial dome, since it is closer to the
theoreticalbbserveiand could obscure the upper dome

In articulating the methodhe first step is to compute a poly-point, levetby-
level cloud concentration. For every grid point at each vergwal | if the cloud mixing
ratio is greater than or equal to 0.01 g/kg, a ratio is computed between this mixing ratio
and the autaonversion limit (based solely on the temperature at that grid point). The
resuting ratio, generally between zero and pisehe fraction of cloud water to the
maximum cloud water possible at a point without a precipitggfoness. Thysa ratio
greater than one impligkat the clad at that point, on that leves, precipitating.

Thecloudto-precipitationauto-conversiorlimit, ACL, is a piecewise function
which returns the maximum neprecipitating cloud mixing ratio in g/grhe ACL is
greatesand constant for warm clouds, which greater than freezingnd thus in liquid

phase As shown in Figure 29, the slopeALL is steepest at 261 K, the temperature at
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which there is maximum ice growth, and the typical avetaggperature whedoud
transitiors from liquid to ice:

T = 273: ACL = 0.001

273 — T)E

261 = T < 273: ACL = 0.001 — III.IJIJS( 5

T — 2492
249 < T < 261: ACL = 0.0001 + u.nm(T)

T < 249: ACL = 0.0001

Essentially, the fraction of mixing ratio &CL is a first guess at how much each
test pont is attenuatinghortwave radiatiodue to cloud. If the sigma level of the test
point is greater than 0.agproximatel\600 hPa), then the ratio is half of the original
value. This ad hoc approach prevents ice ¢laddch is typically thin and reftgive,
from producing overcast conditions. Since the upper half of the troposphere is largely
cold and dry, the fraction of mixing ratio &CL is not an ideal approximation. The next
step is to vertically average the ratios at each grid point. Onagevex done for all test
points at or abové = 0.5, another is done for those below.

If any of the layers averaged beléw 0.5havea cloud mixing ratio greater than
the ACL, then the cloud cover ratio $&t toone(100%). Overcast conditions are
assumed at grid points where precipitation isuogng. For the layers averaged at or
abovel = 0.5, if the vertical average is greater than 0.5 (50%), then the cloud cover is
lowered to 0.5 (for the upper troposphere component) because icescitauely
observed tattenuate light like water cloy®. Hentz 2009, personal communication)

The followingstep is to combine the two ratio averages into a sky cover.



42

To create the uppeelestial dome for ice cloud avery grid point, the ratio
average for each adjacent grid point contributes to 20¥%eabtal. The final 20%
contribution comes from theerticalratio average of the grid point itself. To create the
lower celestial dome for water cloud for every grid point,ubicalratio average for
each adjacent grid point contributes to 10% efttital. The final 60% contribution
comes from theerticalratio average of the grid point itself. This approach was
implemented because the upper celestial dome is spatially larger to the observer than the
lower celestial domef not obscured

Finally, to produce sky cover outp&C in percent coveredt each vertical
columnin the model horizontal domaithe result from the lower celestial dorh€D,
computations added to the upper celestial dgtd€D, computatiorover the lower
dome area left wwoveredby the water cloudUpper cloud will not contribute to a sky
cover fraction if it is obstructed by lower clou@hus,SC = LCD + ((ELCD)(UCD). If
the resulting sky cover is less than B&is readjusted to 0%ue to the limited

predictabilityof small coverage amounts

d. Results
To assess the benefit of the CRAS algorithm, the mean sky cover MAE was
computed during the experiment period and comparedthatdefault WRFsky cover
algorithmoutputas well as the recomputed maximum fraction. Ta#tused to
compute the mean MAE for each comparison was taken from the D&Bour
forecastand NAM analyss. The trend osky coveMAE for the WRF runs, based on the

default calculation, and CRAS over the experiment perigtiasvn in Figure 30
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Corresponding plots for the trend in MABr the WRF runsising the maximum fraction
calculation are found in Figurel3 While the skill of the CRAS dynamics and physics
which provide theanputatmosphere fothe sky cover algorithpwas thought to
underpeform based on the generally poor performance of the WRFY in aRd\elated
verification, the algorithm was built to fit the CRAS and not easily applied to the WRF
model. Figure 2 shows the NDFD onrour forecast compared to the CRAS as well as
the defalt and maximum methabf the WRFX sky cover calculation. It shows the
superior performance of the CRAS algorithm from increased cloudiness over Wisconsin
and northern Michigan matching the pattern of the NDFDlume forecast grid. The
WRFX has very litle cloud cover in thtcorridor.

With the NDFDonehour forecastised as truth, the CRAS -tidur forecast
resulted in a mean sky cover MAE of 14.76% compared to between 17.97% and 18.84%
for the WRF control and experimental réosrresponding forecassing the maximum
fraction computationas shown in the second data row of Taldleahd between 20.39%
and 20.87% for the WRF control and experimentdunsc or r e s p o nsthgtheg f or ec a
default calculationas shown in the second data row of TalleThis mean MAE was
the lowest of all model runs for all forecast times against each analysis. The result was
anticipated because the development of the CRAS algorithm was guided by a need for the
numerical representation of model output in an observabléedly With the NAM
analysis used as truth, the CRASHdUr forecast resulted in a mean sky cover MAE of
29.68% compared to betwed.04% and 31.00%r the WRF control and experimental
rungcorresponding forecassing the maximum fraction computati@s shownn the

first data row of Table 1land betwee243% and 32.86% for the WRF control and
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experimentalrurd c or r e s p o osthg theglefdulocaleulatepas tshown in the
first data row of TableZ Differences between the WRF contraldeexperimental runs
were not substantial in either caséhat is, the deficiencies in the total sky cover output
and lack of a suitable validating analysisershadowed any inagt of the GOES Sounder
cloud assimilation.

The performance of the CRAS algbm, though, wasoteworthy especially in
cases \uere cloudiness was observed across a large extent of the ddrhainesult was
observed in the comparisons involving the calculation of ,skgrtoveMAE using the
maximum fraction recalculation as wehs the traditional, layesiveraged approach. In
cloudy cases, the maximum fractiapproaclhproduced a greatsky coverand thus was
more competitive with the CRAS.

The other interesting element svéhat the mean sky cover MAE for the CRAS
did not subgantially increase between the-h@ur forecast and 36our forecast. For
example, the mean sky cover MAE when computed usinbj&M analysis as truth only
increased from 29.68% at the-th@ur forecast to 30.62% tite 36hour forecasts.

Similar small hcreases of mean sky cover MAE with forecast hour were also found for
the WRF control and experimental rurisven the mean sky cover MAE from the CRAS

at its best, using the NDFD o#®ur forecastwas not particularly good, considering that
for an oversnplified bimodal case in which all grjgbints wee either clear or cloudwg

MAE of 15% is equivalenip a misclassificatiomver 600,000 km, which is slightly

smaller than the combined surface area of North Dakota, South Dakota, and Minnesota.

To exterl this analogy, if cloud coverage associated withiddlelatitude weather
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systemwas simplified and represented by an overcast fraetaossts length scale, a
synopticsystem would need to be misplaced on the model grid by approximately 400 km,
the gproximate distance from Fargo, North Dakota, to Duluth, Minnesota, at some point
over the 3ehour simulatiorto produce a sky cover MAE that substantiélhe other

verified fields,such as PW, suggest that thisswet the caseAll of thecloud fractio
algorithms, or the analysehey were verified against, veetoo imprecise to produce any
meaningfulresults based on the predictability of synoptic features within the model
domain. Given this, finding skill in mesoscale enhancesienthe analysis aud field s

unlikely and not recognized in this study

6. Conclusions

This study was amitial investigation into the benefits of using GOES Sounder
retrievalsas part of regional NWP to improve forecasts of TPW, sky cover, melativ
humidity, and precipation. In theevaluationsonducted here, the retrievals were found
to be inconsequential many caseand did not produce a consistgrsitive reflection

in the statistics. This indicates that instruments onboard our@aastrving

geostationary sallites need spectral improvementstagpply a meaningful correction to
analyses used in regional NWP. It also requires a reassessment of how the operational
NWP community uses indirect moisture information from remote sobegmd the
techniques explotehere While the resu$ presented are perhaps a testament to the
adequacy of current analyséisey stand as a challenge to improve numerical techniques
for assimilatingadditionaldatabecause theumber of data sets assimilated into

operational modelsontinues to grow.Yet, NWP solutions are far from perfect and, as
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demonstrated, there is information from the GOES Sounder whidmpaove moisture
representatiom modelsandalter forecasts for the better

Benefits were expected in part due to sticg of theARW governing equations
in flux form in conjunction with the KF convective parameterizatishich issensitive
to variations in middle and upper tropospheric relative humaditgart ofts formulation
The method and results were tempdyaded on the limited vertical resolution of the
GOES Sounder. During the summer months, the GOES Sowatkarvapor channels
aremost capable of detecting temperatanel moisturgradientsn the upper
troposphere, and sense relatively little, if amytdary layer moisture. sne
dimensional variational assimilation scheme was used to add or subtract water vapor
from a model soundingndiscriminately of verticagradientspased on three sigma
bounded layers producéy the Li et al. (2008) enhancents to the retrieval process

Comparing WRFX and WRFZ, two sourcesRW verification confirned
forecasts wee slightly better 12 hours after initialition if GOES13 Sounder input v&a
included. Results were calculated based on the @&®8 network and aafirmed using a
NAM analysis. A few case studies indicated the potential for better precipitation
forecastsvhen compared with the NCEP Stage Il analysiswever, the dexterity of the
model analyses produced from the CRAS was far from ceraian grater uncertainty
is presumed to exist for analyses at higher spatial resolutions and model simulations with
explicit convection.Cloud cover assimilatioresulted in additional moisture
occasionally placed too high in the column and retrievals did natyalpositively

influence the analysis and foreca¥here was no substantial impact of the added
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observations at 24 or 36 hours in the flow regohtheperiod studied from late
September into early October. While the WRFY haetiitey success, the iraditions
were that the CRAS dynamics and physierecontrolling and negatively influencing
the solution, even at shantervalsfrom the initialization time Despite this, the CRAS
sky cover algorithm showed improvement compared to legacy NWP forrmdatio
including the current WRF cloud fraction method, which led to undesirable cloud cover
results for the control and experimental runs in this study.

Thus, in order for an accurate forecastloud, water vapor, and precipitation
distributions it is ne@ssary for our NWP models to contain a detaglled accurate
analysis of moistureThe current NCEP operational models are good, but there remains a
small margin for improvement from assimilating additional observations if done so with
skill and knowledg®f the dynamics and parameterizations within the model that would
respond to such changes in producing a forecast. At the currenthisns,dnly possible
through the use of satellite products. Using the CRASq@exastand assimilation
techniquesn conjunctionwith the WRFhasallowedfor GOES Sounder observatioins
the form of retrieval$o impact the solutionThe WRF transition experiment conducted
during theearly fall of2011has beemble to better quantify the degree of this effaad
will continue in realtime for upcoming season§Vhile the results are temperbg some
inherent shortcomings in the capabilities of the instrument, assimilation scieine
numerical modelthe strategy and path forward are cleArdelicate investigatio of
moisture integration techniques within assimilation constraints and model
parameterizations for different seasons and flow regimes can slowly extract gainful

information from the current, and future, geostationary platorm
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Tables
Dynamics Non-Hydrostatic
Cumulus Scheme Kain-Fritsch
Microphysics Scheme WSM SingleMoment 5Class
PBL Scheme Yonsei University
Land Surface Scheme NOAH
Surface Layer Physics Monin-Obukhov with heat and

moisture surface fluxes

Long Wave Radiation RRTM
Short Wave Radiation Dudhia Scheme
Time-Integration Scheme RungeKutta 3% Order
Damping Rayleigh

TABLE 1. The core configuration for the Weather Research and Foireg QatRF)
model used in the experiment. The dynamical package was the Advanced Research WRF
(ARW). Each simulation had an adaptive time stepfeences for the schemes can be

found in the Skamarock et al. (2008) technical note.



GPSIPW NAM-00 RUC-00 GFS-00
MAE 1.04 1.24 1.43
RMSE 1.41 1.65 1.87

TABLE 2. Meanvalues of mean absolute error (MAE) and fromansquare error
(RMSE) of total precipable water (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated based on théR&P8etwork as

truth compared to the analyses of the NAM, RUC, and GFS.

GPSIPW WRFX-00 WRFY -00 WRFZ-00
MAE 1.58 1.61 1.59
RMSE 2.07 2.11 2.10

TABLE 3. Meanvalues of mean absolute error (MAE) and fomansquare error
(RMSE) of total precipitable water (mm) over the period from 00 UTC 28 September

2011 to 00 UTC 8 October 2011. Error is calculated based on théP®P8etvork as

truth compared to the analyses of the WRFX, WRFY, and WRFZ.
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Sounder WRFX-00 WRFY -00 WRFZ-00
MAE 1.61 1.60 1.44
RMSE 2.13 2.11 1.92

TABLE 4. Mean values of mean absolute error (MAE) and-reeansquare error
(RMSE) of total precipitable wat (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated based on the -G®E8under Ma

retrievals as truth compared to the analyses of the WRFX, WRFY, and WRFZ.

Sounder NAM -00 RUC-00 GFS-00
MAE 1.76 2.13 1.69
RMSE 2.38 2.81 2.23

TABLE 5. Mean values of mean absolute error (MAE) and-rmeansquare error
(RMSE) of total precipitable water (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated based on the - G®&3inder Ma

retrievals as truth compared to the analyses of the NAM, RUC, and GFS.



GPSIPW WRFX-12 WRFY-12 WRFZ-12
MAE 1.77 1.81 1.72
RMSE 2.27 2.37 2.24

TABLE 6. Mean values of mean absolute error (MAE) and-reeansquare error
(RMSE) of total pecipitable water (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated based on théR&P8etwork as

truth compared to the 1our forecasts of the WRFX, WRFY, and WRFZ.

NAM WRFX-12 WRFY-12 WRFZ-12
MAE 1.97 2.09 1.93
RMSE 2.59 2.78 2.56

TABLE 7. Mean values of mean absolute error (MAE) and-reansquare error
(RMSE) of total precipitable water (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated basededdAlM analysis as truth

compared to the XBour forecasts of the WRFX, WRFY, and WRFZ.
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NAM WRFX-24 WRFY -24 WRFZ-24
MAE 2.17 2.32 2.16
RMSE 2.84 3.07 2.83

TABLE 8. Meanvalues of mean absolute error (MAE) and fromansquare error
(RMSE) of total pecipitable water (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated based on the NAM analysis as truth

compared to the 2hour forecasts of the WRFX, WRFY, and WRFZ.

NAM WRFX-36 WRFY -36 WRFZ-36
MAE 2.43 271 2.42
RMSE 3.18 3.57 3.18

TABLE 9. Mean values of mean absolute error (MAE) and-rmeansquare error
(RMSE) of total precipitable water (mm) over the period from 00 UTC 28 September
2011 to 00 UTC 8 October 2011. Error is calculated based onANeadalysis as truth

compared to the 3Bour forecasts of the WRFX, WRFY, and WRFZ.



NAM WRFX-12 WRFY-12 WRFZ-12
700 hPa 9.26 10.42 9.24
850 hPa 9.47 9.90 9.35

TABLE 10. Meanvalues of mean absolute error (MAE) of relative humidity (%) at 700
hPa ad 850 hPa over the period from 00 UTC 28 September 2011 to 00 UTC 8 October

2011. Error is calculated based on the NAM analysis as truth compared tehtber12

forecasts of the WRFX, WRFY, and WRFZ.

MAE WRFX-12 WRFY-12 WRFZ-12 CRAS-12
NAM 29.95 31.00 30.06 29.68
NDFD 17.97 18.84 18.11 14.76

TABLE 11. Mean values of mean absolute error (MAE) of total sky cover (%) over the
period from 00 UTC 28 September 2011 to 00 UTC 8 October 2011. Error is calculated
based on the NAM analysis and NDFD draurforecast as truth compared to the 12

hour forecasts of the WRFX, WRFY, WRFZ, and CRAS. The WRF sky cover was

calculated using the layer with the highest fraction for each grid point.
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MAE WRFX-12 WRFY-12 WRFZ-12 CRAS-12
NAM 32.43 32.86 32.50 29.68
NDFD 20.39 20.87 20.51 14.76

TABLE 12. Mean values of mean absolute error (MAE) of total sky cover (%) over the
period from 00 UTC 28 September 2011 to 00 UTC 8 October 2011. Error is calculated
based on the NAM analysis and NDFD draur forecast as tratcompared to the 12

hour forecasts of the WRFX, WRFY, WRFZ, and CRAS. The WRF sky cover was

calculated using the default algorithm.
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Fic. 1. Water vapor weighting functions for the GOBES Sounder (top) and future

GOESR ABI (bottom) in & idealized midatitude summer atmosphere sounding

observed at a zemegree zenith anglé&unshor et al. 2011)The total precipitable water

is 28.06 mm. For the GOER3 Sounder, the central wavelengths are 7.5 um, 7.0 um,

and 6.5 um (left to right) For the GOESR ABI, the central wavelengths are 7.3 um, 7.0

pm, and 6.2 pum (left to right). Their observation capabilities are similar. Water vapor

weighting functions are a function of both temperature and moisture content. The

strength of the GOE$3 Sounder and GOER ABI is sensing nddle tropospheric water

vapor.
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International Falls, MN (KINL) [WRFX T+00 V111113/1200] Observed Sounding Dashed,
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FiG. 2. A skewT log-P diagrancomparinghe observed sounding from a radiosonde
launched from International Falls, Minnesota, at 12 UTC on 13 November 2011 (dashed)
with the backgroundounding (solid) used at the nearest grid point in thogcted
GFSanalysis valid at the same tim¥isibly substantial differences to the dew point

profile above the tropopause are quantitatively very small in mixing régémperature

is in red; éw point is in green.
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International Falls, MN (KINL) [WRFZ T+00 V111113/1200] Observed Sounding Dashed,
100 Py Winds eft 1 Forecast
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Fig. 3. A skewT log-P diagram comgring the observed sounding from a radiosonde
launched from International Falls, Minnesota, at 12 UTC on 13 November 2011 (dashed)
with a sounding from the #erojectedGFSanalysis valid at theasne timeadjusted with

a water vapor retrieval. The background sounding is from the nearesvpiieGFS
analysisgrid with acorrectionbased on waterapor retrieval assimilation in th@RAS.

Temperature is in red; dew point is in green.
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FiG. 4. The 36hour accumulated precipitati@mding 12 UTC 1 September 20ft06m

various WRF rungnitialized at 00 UTC 31 August 2010From uppeteft to lowekrright
horizontally these runs contain irgti and boundary conditions consisting operational
GFSoutput, CRAS outputcontaining satellite observations in the-fweecast procedure

GFS output with 90% of theriginal relative humidity (Rl GFS output with 90% of the
original RH between the surface and 800 hPa, GFS output with 90% of the original RH
between 750 hPa and 400 hPa, and GFS output with 90% of the original RH between 350

hPa and 100 hPa.
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HAE of Total Precipitable Hater {Compared to GPSIPH)
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Fic. 5. Mean absolute error (topphd rootmeansquare error (bottom) for total
precipitable water (mm) over the period from 00 UTC 28 September 2011 to 00 UTC 8
October 2011. Error is calculated based on the-BR&network at the valid time
compared to the analyses of the NAM (red), Rldf&en), and GFS (blue) for the same

time. The observation count (purple) is plotted on the right ordinate axis.
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HAE of Total Precipitable Hater {Compared to GPSIPH)
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FiG. 6. Mean absolute error (top) and reneansquare error (bottom) for total
precipitable water (mm) over the period from 00 UTC 28t8mber 2011 to 00 UTC 8
October 2011. Error is calculated based on the-BR&network at the valid time
compared to the analyses of the WRFX (red), WRFY (green), and WRFZ (blue) for the

same time. The observation count (purple) is plotted on theaidimate axis.
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HAE of Total Frecipitable Mater {Conpared to GDE5=-13 Sounder}
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Fic. 7. Mean absolute error (top) and reneansquare error (bottom) for total

precipitable water (mm) over the period from 00 UTC 28 September 2011 to 00 UTC 8
October 2011. Error is calculated based on the GOESounder Ma retrials at the

valid time compared to the analyses of the WRFX (red), WRFY (green), and WRFZ
(blue) for the same time. The observation count (purple) is plotted on the right ordinate

axis.
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Fic. 8. Mean absolute error (top) and reneansquare error (kitom) for total

precipitable water (mm) over the period from 00 UTC 28 September 2011 to 00 UTC 8
October 2011. Error is calculated based on the GOESounder Ma retrievals at the
valid time compared to the analyses of the NAM (red), RUC (green), aBdthke) for

the same time. The observation count (purple) is plotted on the right ordinate axis.



